Compressing and interpreting word embeddings with latent space regularization and interactive semantics probing
Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language processing tasks, for example, translation between two languages. Recently, there has been an increasing trend of transforming the HD embedding...
Saved in:
Published in | Information visualization Vol. 22; no. 1; pp. 52 - 68 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2023
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language processing tasks, for example, translation between two languages. Recently, there has been an increasing trend of transforming the HD embeddings into a latent space (e.g. via autoencoders) for further tasks, exploiting various merits the latent representations could bring. To preserve the embeddings’ quality, these works often map the embeddings into an even higher-dimensional latent space, making the already complicated embeddings even less interpretable and consuming more storage space. In this work, we borrow the idea of
β
VAE to regularize the HD latent space. Our regularization implicitly condenses information from the HD latent space into a much lower-dimensional space, thus compressing the embeddings. We also show that each dimension of our regularized latent space is more semantically salient, and validate our assertion by interactively probing the encoding-level of user-proposed semantics in the dimensions. To the end, we design a visual analytics system to monitor the regularization process, explore the HD latent space, and interpret latent dimensions’ semantics. We validate the effectiveness of our embedding regularization and interpretation approach through both quantitative and qualitative evaluations. |
---|---|
AbstractList | Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language processing tasks, for example, translation between two languages. Recently, there has been an increasing trend of transforming the HD embeddings into a latent space (e.g. via autoencoders) for further tasks, exploiting various merits the latent representations could bring. To preserve the embeddings’ quality, these works often map the embeddings into an even higher-dimensional latent space, making the already complicated embeddings even less interpretable and consuming more storage space. In this work, we borrow the idea of [Formula: see text] VAE to regularize the HD latent space. Our regularization implicitly condenses information from the HD latent space into a much lower-dimensional space, thus compressing the embeddings. We also show that each dimension of our regularized latent space is more semantically salient, and validate our assertion by interactively probing the encoding-level of user-proposed semantics in the dimensions. To the end, we design a visual analytics system to monitor the regularization process, explore the HD latent space, and interpret latent dimensions’ semantics. We validate the effectiveness of our embedding regularization and interpretation approach through both quantitative and qualitative evaluations. Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language processing tasks, for example, translation between two languages. Recently, there has been an increasing trend of transforming the HD embeddings into a latent space (e.g. via autoencoders) for further tasks, exploiting various merits the latent representations could bring. To preserve the embeddings’ quality, these works often map the embeddings into an even higher-dimensional latent space, making the already complicated embeddings even less interpretable and consuming more storage space. In this work, we borrow the idea of β VAE to regularize the HD latent space. Our regularization implicitly condenses information from the HD latent space into a much lower-dimensional space, thus compressing the embeddings. We also show that each dimension of our regularized latent space is more semantically salient, and validate our assertion by interactively probing the encoding-level of user-proposed semantics in the dimensions. To the end, we design a visual analytics system to monitor the regularization process, explore the HD latent space, and interpret latent dimensions’ semantics. We validate the effectiveness of our embedding regularization and interpretation approach through both quantitative and qualitative evaluations. Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language processing tasks, for example, translation between two languages. Recently, there has been an increasing trend of transforming the HD embeddings into a latent space (e.g. via autoencoders) for further tasks, exploiting various merits the latent representations could bring. To preserve the embeddings’ quality, these works often map the embeddings into an even higher-dimensional latent space, making the already complicated embeddings even less interpretable and consuming more storage space. In this work, we borrow the idea of β VAE to regularize the HD latent space. Our regularization implicitly condenses information from the HD latent space into a much lower-dimensional space, thus compressing the embeddings. We also show that each dimension of our regularized latent space is more semantically salient, and validate our assertion by interactively probing the encoding-level of user-proposed semantics in the dimensions. To the end, we design a visual analytics system to monitor the regularization process, explore the HD latent space, and interpret latent dimensions’ semantics. We validate the effectiveness of our embedding regularization and interpretation approach through both quantitative and qualitative evaluations. |
Author | Zheng, Yan Shen, Han-Wei Wang, Liang Wang, Junpeng Zhang, Wei Li, Haoyu |
Author_xml | – sequence: 1 givenname: Haoyu orcidid: 0000-0002-7138-8263 surname: Li fullname: Li, Haoyu email: li.8460@osu.edu – sequence: 2 givenname: Junpeng surname: Wang fullname: Wang, Junpeng – sequence: 3 givenname: Yan surname: Zheng fullname: Zheng, Yan – sequence: 4 givenname: Liang surname: Wang fullname: Wang, Liang – sequence: 5 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 6 givenname: Han-Wei surname: Shen fullname: Shen, Han-Wei |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz6352N3sHqX4BQUvel6y2UlN2U3WJLXorze1YkHR08y8zPPOxwSNrLOA0Dklc0qFuKSZ4KWgBWOUcsJ5eYTGO21WCpaNvnNanKBJCGtCmMhINUZu4frBQwjGrrC0LTY2gk9K3Alb51sMfQNtm8qAtyY-405GsBGHQSrAHlabTnrzLqNx9uAgVTSvgAP00kajAh68a5LHKTrWsgtw9hWn6Onm-nFxN1s-3N4vrpYzxSmLMw5a5ypnOs8rIguo2gyYUkyqjJaQSSgEzYumqdLRXGnSZo0WoIFS4ETSgk_Rxd43zX3ZQIj12m28TSNrJvJcCMJzkrrovkt5F4IHXQ_e9NK_1ZTUu7_Wv_6aGPGDUSZ-Xh-9NN2_5HxPBrmCwz5_Ax9GTo2N |
CitedBy_id | crossref_primary_10_1111_cgf_14859 crossref_primary_10_1186_s12859_024_05643_7 crossref_primary_10_1109_TVCG_2024_3357065 |
Cites_doi | 10.1162/tacl_a_00051 10.1007/s41095-020-0191-7 10.1109/TVCG.2019.2903943 10.1109/MCG.2018.042731661 10.1109/TVCG.2017.2744478 10.1613/jair.1.11640 10.1109/TVCG.2016.2598831 10.1109/TVCG.2020.3030350 10.1111/cgf.13672 10.1109/TVCG.2008.153 10.1007/978-3-319-57959-7 10.1109/TVCG.2017.2745141 10.1109/TVCG.2019.2903946 10.18653/v1/S17-2002 10.1109/TVCG.2016.2598828 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1177/14738716221130338 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1473-8724 |
EndPage | 68 |
ExternalDocumentID | 10_1177_14738716221130338 10.1177_14738716221130338 |
GroupedDBID | -TM .2L .2N .DC 01A 0R~ 1~K 29I 54M 5GY 77K 8R4 8R5 AACTG AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA AATBZ ABAWP ABCCA ABCJG ABEIX ABFWQ ABFXH ABIDT ABJNI ABKRH ABLUO ABPNF ABQPY ABQXT ABRHV ABUJY ACDXX ACFUR ACFZE ACGFS ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADVBO ADYCS AEDXQ AENEX AEOBU AEPTA AEQLS AESZF AEUHG AEVPJ AEVXP AEWDL AEWHI AEXNY AFEET AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWFA AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARCSS ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AYPQM AZFZN BBRGL BDDNI BDZRT BMVBW BPACV CAG CEADM CFDXU COF CS3 DG~ DO- DOPDO DU5 DV7 DV8 EBS EJD F5P FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HVGLF HZ~ J8X K.F MK~ O9- P.B P2P PQQKQ Q2X Q7P Q83 ROL S01 SASJQ SAUOL SCNPE SFC SPV SSDHQ ZPLXX ZPPRI ZRKOI ~32 AAYXX ACCVC AJGYC AMNSR CITATION 7SC 8FD AAPII AJVBE E3H F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c312t-3eff5c52f5590a6e9d4e2cc2ac418e4ae67156bb93873cf0d4bf7efe11e30a163 |
ISSN | 1473-8716 |
IngestDate | Fri Jul 25 02:39:02 EDT 2025 Tue Jul 01 05:19:57 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Tue Jun 17 22:30:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | visual analytics word embedding High-dimensional data visualization neural networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-3eff5c52f5590a6e9d4e2cc2ac418e4ae67156bb93873cf0d4bf7efe11e30a163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7138-8263 |
PQID | 2755770350 |
PQPubID | 25946 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2755770350 crossref_primary_10_1177_14738716221130338 crossref_citationtrail_10_1177_14738716221130338 sage_journals_10_1177_14738716221130338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Thousand Oaks |
PublicationTitle | Information visualization |
PublicationYear | 2023 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Wang, Gou, Zhang 2019; 25 Heinrich, Weiskopf Higgins, Sonnerat, Matthey 2017 Gou, Zou, Li 2021; 27 Van der Maaten, Hinton 2008; 9 Elmqvist, Dragicevic, Fekete 2008; 14 El-Assady, Kehlbeck, Collins 2020; 26 Rathore, Dev, Phillips 2021 Conneau, Lample, Ranzato 2017 Mohiuddin, Bari, Joty 2020 Mikolov, Chen, Corrado 2013 Bojanowski, Grave, Joulin 2017; 5 Ji, Shen, Ritter 2019; 25 Kingma, Welling 2013 Liu, Bremer, Thiagarajan 2018; 24 Ren, Amershi, Lee 2017; 23 Liu, Jun, Li 2019; 38 Park, Kim, Lee 2018; 24 Yuan, Chen, Yang 2021; 7 McInnes, Healy, Melville 2018 Ruder, Vulić, Søgaard 2019; 65 Burgess, Higgins, Pal 2018 Mikolov, Le, Sutskever 2013 Choo, Liu 2018; 38 Liu, Shi, Li 2017; 23 Higgins I (bibr7-14738716221130338) 2017 Li Q (bibr2-14738716221130338) Hoffman P (bibr12-14738716221130338) bibr32-14738716221130338 Kandogan E (bibr13-14738716221130338); 650 bibr25-14738716221130338 Wang J (bibr9-14738716221130338) bibr28-14738716221130338 Kingma DP (bibr6-14738716221130338) 2013 bibr24-14738716221130338 bibr11-14738716221130338 bibr1-14738716221130338 bibr17-14738716221130338 bibr3-14738716221130338 bibr19-14738716221130338 Rathore A (bibr21-14738716221130338) 2021 El-Assady M (bibr22-14738716221130338) 2020; 26 Heinrich J (bibr10-14738716221130338) Conneau A (bibr30-14738716221130338) 2017 Mohiuddin T (bibr4-14738716221130338) 2020 bibr26-14738716221130338 Mikolov T (bibr31-14738716221130338) 2013 bibr16-14738716221130338 bibr33-14738716221130338 bibr20-14738716221130338 bibr23-14738716221130338 Higgins I (bibr8-14738716221130338) 2017 Inselberg A (bibr34-14738716221130338) McInnes L (bibr15-14738716221130338) 2018 bibr5-14738716221130338 Van der Maaten L (bibr14-14738716221130338) 2008; 9 Yang W (bibr18-14738716221130338) Mikolov T (bibr29-14738716221130338) 2013 Burgess CP (bibr27-14738716221130338) 2018 |
References_xml | – volume: 7 start-page: 3 issue: 1 year: 2021 end-page: 36 article-title: A survey of visual analytics techniques for machine learning publication-title: Comput Vis Media – volume: 27 start-page: 261 issue: 2 year: 2021 end-page: 271 article-title: Vatld: a visual analytics system to assess, understand and improve traffic light detection publication-title: IEEE Trans Vis Comput Graph – year: 2021 article-title: Verb: Visualizing and interpreting bias mitigation techniques for word representations publication-title: arXiv preprint – volume: 23 start-page: 61 issue: 1 year: 2017 end-page: 70 article-title: Squares: Supporting interactive performance analysis for multiclass classifiers publication-title: IEEE Trans Vis Comput Graph – volume: 25 start-page: 2168 issue: 6 year: 2019 end-page: 2180 article-title: Deepvid: Deep visual interpretation and diagnosis for image classifiers via knowledge distillation publication-title: IEEE Trans Vis Comput Graph – volume: 24 start-page: 361 issue: 1 year: 2018 end-page: 370 article-title: Conceptvector: text visual analytics via interactive lexicon building using word embedding publication-title: IEEE Trans Vis Comput Graph – volume: 38 start-page: 84 issue: 4 year: 2018 end-page: 92 article-title: Visual analytics for explainable deep learning publication-title: IEEE Comput Graph Appl – year: 2017 article-title: Word translation without parallel data publication-title: arXiv preprint – year: 2013 article-title: Auto-encoding variational bayes publication-title: arXiv preprint – volume: 24 start-page: 553 issue: 1 year: 2018 end-page: 562 article-title: Visual exploration of semantic relationships in neural word embeddings publication-title: IEEE Trans Vis Comput Graph – year: 2017 article-title: Scan: learning hierarchical compositional visual concepts publication-title: arXiv preprint – volume: 5 start-page: 135 year: 2017 end-page: 146 article-title: Enriching word vectors with subword information publication-title: Trans Assoc Comput Linguist – year: 2013 article-title: Exploiting similarities among languages for machine translation publication-title: arXiv preprint – volume: 9 start-page: 2579 issue: 11 year: 2008 end-page: 2605 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – volume: 14 issue: 6 year: 2008 article-title: Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation publication-title: IEEE Trans Vis Comput Graph – volume: 38 start-page: 67 year: 2019 end-page: 78 article-title: Latent space cartography: visual analysis of vector space embeddings publication-title: Comput Graph Forum – year: 2013 article-title: Efficient estimation of word representations in vector space publication-title: arXiv preprint – volume: 23 start-page: 91 issue: 1 year: 2017 end-page: 100 article-title: Towards better analysis of deep convolutional Neural Networks publication-title: IEEE Trans Vis Comput Graph – start-page: 95 end-page: 116 article-title: State of the art of parallel coordinates publication-title: Eurographics (State of the Art Reports) – year: 2020 article-title: Lnmap: Departures from isomorphic assumption in bilingual lexicon induction through non-linear mapping in latent space publication-title: arXiv preprint – year: 2018 article-title: Umap: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv preprint – volume: 65 start-page: 569 year: 2019 end-page: 631 article-title: A survey of cross-lingual word embedding models publication-title: J Artif Intell Res – volume: 25 start-page: 2181 issue: 6 year: 2019 end-page: 2192 article-title: Visual exploration of neural document embedding in information retrieval: semantics and feature selection publication-title: IEEE Trans Vis Comput Graph – year: 2018 article-title: Understanding disentangling in β-VAE publication-title: arXiv preprint – volume: 26 start-page: 1001 issue: 1 year: 2020 end-page: 1011 article-title: Semantic concept spaces: guided topic model refinement using word-embedding projections publication-title: IEEE Trans Vis Comput Graph – year: 2021 ident: bibr21-14738716221130338 publication-title: arXiv preprint – ident: bibr33-14738716221130338 doi: 10.1162/tacl_a_00051 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: bibr14-14738716221130338 publication-title: J Mach Learn Res – ident: bibr17-14738716221130338 doi: 10.1007/s41095-020-0191-7 – ident: bibr25-14738716221130338 doi: 10.1109/TVCG.2019.2903943 – year: 2013 ident: bibr29-14738716221130338 publication-title: arXiv preprint – year: 2013 ident: bibr31-14738716221130338 publication-title: arXiv preprint – year: 2020 ident: bibr4-14738716221130338 publication-title: arXiv preprint – ident: bibr16-14738716221130338 doi: 10.1109/MCG.2018.042731661 – year: 2017 ident: bibr30-14738716221130338 publication-title: arXiv preprint – start-page: 51 volume-title: IEEE Pacific visualization symposium ident: bibr9-14738716221130338 – ident: bibr23-14738716221130338 doi: 10.1109/TVCG.2017.2744478 – ident: bibr32-14738716221130338 doi: 10.1613/jair.1.11640 – start-page: 437 volume-title: Proceedings. Visualization’97 (Cat. No. 97CB36155) ident: bibr12-14738716221130338 – ident: bibr19-14738716221130338 doi: 10.1109/TVCG.2016.2598831 – year: 2013 ident: bibr6-14738716221130338 publication-title: arXiv preprint – year: 2017 ident: bibr8-14738716221130338 publication-title: arXiv preprint – ident: bibr26-14738716221130338 doi: 10.1109/TVCG.2020.3030350 – volume: 650 start-page: 22 volume-title: Proceedings of the IEEE information visualization symposium ident: bibr13-14738716221130338 – ident: bibr24-14738716221130338 doi: 10.1111/cgf.13672 – start-page: 95 ident: bibr10-14738716221130338 publication-title: Eurographics (State of the Art Reports) – start-page: 48 volume-title: 2018 IEEE VAST ident: bibr2-14738716221130338 – ident: bibr11-14738716221130338 doi: 10.1109/TVCG.2008.153 – ident: bibr5-14738716221130338 doi: 10.1007/978-3-319-57959-7 – volume: 26 start-page: 1001 issue: 1 year: 2020 ident: bibr22-14738716221130338 publication-title: IEEE Trans Vis Comput Graph – start-page: 12 volume-title: 2020 IEEE conference on visual analytics science and technology (VAST) ident: bibr18-14738716221130338 – start-page: 361 volume-title: Proceedings of the First IEEE conference on visualization ident: bibr34-14738716221130338 – year: 2018 ident: bibr15-14738716221130338 publication-title: arXiv preprint – year: 2018 ident: bibr27-14738716221130338 publication-title: arXiv preprint – ident: bibr1-14738716221130338 doi: 10.1109/TVCG.2017.2745141 – volume-title: 5th International conference on learning representations year: 2017 ident: bibr7-14738716221130338 – ident: bibr3-14738716221130338 doi: 10.1109/TVCG.2019.2903946 – ident: bibr28-14738716221130338 doi: 10.18653/v1/S17-2002 – ident: bibr20-14738716221130338 doi: 10.1109/TVCG.2016.2598828 |
SSID | ssj0027409 |
Score | 2.546114 |
Snippet | Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Compressing Embedding Machine learning Natural language processing Photovoltaic cells Regularization Representations Semantics Words (language) |
Title | Compressing and interpreting word embeddings with latent space regularization and interactive semantics probing |
URI | https://journals.sagepub.com/doi/full/10.1177/14738716221130338 https://www.proquest.com/docview/2755770350 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NIeSp9006ToUCh0cVnJsmQfQ0kJJSktJJCcFlselZTEG7LeQvM78oMzetjWdpvS9GKM1h6zmk-jmdE8CHlrDBg0fbJEy1QmIheQFLWqElErVI-lKLXLcj38IvePxeeT7GQ0uomilpZt9UFf_zGv5H-4imPIV5slew_O9kRxAO-Rv3hFDuP1n3hsF7OLYw2JhmddBKHzsNpEQLiooHbHS97jeo6qZdNOUIxo2y_F9qG_CpmYA4XSycDJAi5w2m0VZ9t1ptvifnSh733a4-Tn2cKmZl6vHOof-HbY5fzXcnDah_DfZXMJgZzzWYMfPx2Q2j16gOj9HnsmeBp5JrwwFSpNrEHm95p4zOdNdxKY8zWkeXHqi9uGjdm331kX-coXDVCp_RRHgxZ3ZV8xZrW89m_bXh-MyELF8zUSD8gmR-MDpefm7unXb4eRIe9Ch_r_F07LbSGvNSKr-s5gxERxg06VOXpCHgcbhO56QD0lI2iekUdRZcrnZB5BiyIwaAwtaqFFB2hRCy3qoUUdtOgqtAYKHlq0hxYN0HpBjj_tHX3cT0JvjkSnjLdJCsZkOuMGLdJpKaGoBXCteakFy0GUIBXLZFUVOBupNtNaVEaBAcYgnZZoBLwkG828gVeEqkzmWhTSMJ0LrXVeoUqpGIiCa8m0HJNpN4MzHQrX2_4p57M7OTcm7_tXLn3Vlr89vN2xZRYW92LGVZYpZY_dx-SdZdXw052Etu7z1dfk4bBmtslGe7WEHdRv2-pNgNstIZ2hqQ |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BcoAe-kbdlhYfQJWQgjaOYyeHHlBbtDwWgQQSPaXJZLxChVCxQVX7k_pX-qc6zjrs0lLEhUOveUwm4_H4G_vzGGDFWrKc-sQB6kgHKlEUpKUpAlUahsda5djsch3s6f6R2j6Oj2fgZ7sXxltwtO5oVaxRE6yverfbJ65M5EC-5MyFw2-UeELlDn3_xuna6N3WB27bVSk3Px6-7wf-RIEAo1DWQUTWxhhLyzi6l2tKS0USUeaowoRUTtpwPlMUKX8iQtsrVWENWQpDino5QxeWOwtziavC2YG5jU_7B4Op9K4hlDgFA6ehX0O9Uenro-AE2k6xyZoBbvMR_GpNM-a1fFm_rNkqP_6oGvl_2O4xPPQ4W2yMO8YTmKHqKTyYqr74DM5dLGxowNVQ5FUpTloCprvgVBV0VlDZrM4JN2EtThmZV7XgKIwkLmjoOLx-I-tEQt4MIWJEZ-y1JzgS7tAelvEcju7ljxehU51X9AKEiXWCKtU2xEQhYlIwbDIhqVSiDlF3odf6Q4a-OLs7I-Q0C3099r_argtrV698HVcmue3hpdbJstZNMmni2Bi3tNyFt85nJrf-KejlnZ9chvn-4WA3293a23kFC5LB4Xjqagk69cUlvWYwVxdvfC8S8Pm-ne83ojxOEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9VAEJ8gJEYOiH8ITxH3oDExKbzdbnfbgwcivIAIwUQSPNV2OkuIUAivhOiH8qv4lZzt2_IeosYLB6_9M53Ozs78Zmd2FuCFc-Q49EkiNLGJdKopyipbRrqyDI-NLrDd5bqzazb39buD5GAKvnd7YYIEhyu-rIo5ao21n91nlVsNOcZVqW3sgb7i6IVNcJyGospt-nrJIdvwzdY6j-9LpQYbH99uRuFUgQhjqZooJucSTJRjLN0vDGWVJoWoCtQyJV2QsRzTlGXGn4jR9StdOkuOpKS4XzB8Ybp3YIYdowdkM2uf9j7sTIR4bVGJZzDyHIY86m-Zvu4Jx_B2oqKsdXKD-_CjE8-otuXLykXDkvn2S-fI_0d-8zAX8LZYG02QBzBF9UOYnejC-AhOvU1sy4HrQ1HUlTjqCjH9Bc-qoJOSqjZLJ_zCtThmhF43gq0xkjinQ1_LGza0jikUrSsRQzph7T3CofCH9zCNx7B_K3-8ANP1aU2LIGxiUtSZcRJTjYhpyfDJStKZQiPR9KDf6USOoUm7PyvkOJehL_uNsevB66tXzkYdSv728FKnaHmnKrmySWKtTzH34JXXm_GtPxJ68s9PPoe7e-uD_P3W7vZTuKcYI45WsJZgujm_oGeM6ZpyOUwkAZ9vW_d-ArC0UIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressing+and+interpreting+word+embeddings+with+latent+space+regularization+and+interactive+semantics+probing&rft.jtitle=Information+visualization&rft.au=Li%2C+Haoyu&rft.au=Wang%2C+Junpeng&rft.au=Zheng%2C+Yan&rft.au=Wang%2C+Liang&rft.date=2023-01-01&rft.issn=1473-8716&rft.eissn=1473-8724&rft.volume=22&rft.issue=1&rft.spage=52&rft.epage=68&rft_id=info:doi/10.1177%2F14738716221130338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_14738716221130338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-8716&client=summon |