In situ growth Fe and V co-doped Ni3S2 for efficient oxygen evolution reaction at large current densities
Industrial electrolysis of water is one of the effective strategies for green hydrogen production in the future. Nevertheless, the large-scale applications of water electrolysis are still intractable issues hindered by the high overpotentials and inferior reaction kinetics on the anode. Herein, a fa...
Saved in:
Published in | International journal of hydrogen energy Vol. 47; no. 32; pp. 14422 - 14431 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Industrial electrolysis of water is one of the effective strategies for green hydrogen production in the future. Nevertheless, the large-scale applications of water electrolysis are still intractable issues hindered by the high overpotentials and inferior reaction kinetics on the anode. Herein, a facile one-step hydrothermal method was applied to in situ growth the Fe and V co-doped Ni3S2 electrocatalyst on nickel foam substrate (Fe, V–Ni3S2/NF). In 1 M KOH electrolyte, the as-prepared Fe, V–Ni3S2/NF electrode exhibited an improved water oxidation activity with ultralow overpotentials of 253 and 370 mV to realize large current densities of 100 and 1000 mA/cm2, respectively. More importantly, the Fe, V–Ni3S2/NF electrode existed an activation process during 100 h chronopotentiometry testing period. Detailed characterizations revealed that elements of V and S in the electrocatalyst were oxidized and dissolved into the electrolyte, making the electrocatalyst undergo surface reconstruction and resulting in a faster kinetic reaction rate, thus leading to enhanced oxygen evolution reaction activities. Collectively, the resultant Fe, V–Ni3S2/NF in this work provides new cogitation towards design and synthesis of low-cost electrocatalyst with large current densities for water oxidation.
[Display omitted]
•Fe,V–Ni3S2/NF electrode was hydrothermal prepared and used as OER electrocatalyst.•Ni3S2 is converted to NiOOH during the electrochemical oxidation process.•The electrode can attain 100 and 1000 mA/cm2 with overpotentials of 253 and 370 mV.•The enhanced OER activity owned to the surface reconstruction by V, S etching. |
---|---|
AbstractList | Industrial electrolysis of water is one of the effective strategies for green hydrogen production in the future. Nevertheless, the large-scale applications of water electrolysis are still intractable issues hindered by the high overpotentials and inferior reaction kinetics on the anode. Herein, a facile one-step hydrothermal method was applied to in situ growth the Fe and V co-doped Ni3S2 electrocatalyst on nickel foam substrate (Fe, V–Ni3S2/NF). In 1 M KOH electrolyte, the as-prepared Fe, V–Ni3S2/NF electrode exhibited an improved water oxidation activity with ultralow overpotentials of 253 and 370 mV to realize large current densities of 100 and 1000 mA/cm2, respectively. More importantly, the Fe, V–Ni3S2/NF electrode existed an activation process during 100 h chronopotentiometry testing period. Detailed characterizations revealed that elements of V and S in the electrocatalyst were oxidized and dissolved into the electrolyte, making the electrocatalyst undergo surface reconstruction and resulting in a faster kinetic reaction rate, thus leading to enhanced oxygen evolution reaction activities. Collectively, the resultant Fe, V–Ni3S2/NF in this work provides new cogitation towards design and synthesis of low-cost electrocatalyst with large current densities for water oxidation.
[Display omitted]
•Fe,V–Ni3S2/NF electrode was hydrothermal prepared and used as OER electrocatalyst.•Ni3S2 is converted to NiOOH during the electrochemical oxidation process.•The electrode can attain 100 and 1000 mA/cm2 with overpotentials of 253 and 370 mV.•The enhanced OER activity owned to the surface reconstruction by V, S etching. |
Author | Zhang, Yijie Yao, Rui Wu, Yun Zhao, Qiang Liu, Guang Wang, Jinwei Li, Jinping Liu, Leran |
Author_xml | – sequence: 1 givenname: Leran surname: Liu fullname: Liu, Leran – sequence: 2 givenname: Yijie surname: Zhang fullname: Zhang, Yijie – sequence: 3 givenname: Jinwei surname: Wang fullname: Wang, Jinwei – sequence: 4 givenname: Rui surname: Yao fullname: Yao, Rui – sequence: 5 givenname: Yun surname: Wu fullname: Wu, Yun – sequence: 6 givenname: Qiang surname: Zhao fullname: Zhao, Qiang – sequence: 7 givenname: Jinping surname: Li fullname: Li, Jinping – sequence: 8 givenname: Guang orcidid: 0000-0002-9783-0523 surname: Liu fullname: Liu, Guang email: liuguang@tyut.edu.cn |
BookMark | eNqFkE1PAjEQhhuDiYD-BdM_sGunXbbbm4aIkhA9-HFtlnYKJbgl7YLy790VPXuaOcz75J1nRAZNaJCQa2A5MChvNrnfrI8WG8w54zxnPOcAZ2QIlVSZKCo5IEMmSpYJUOqCjFLaMAaSFWpI_Lyhybd7uorhs13TGdK6sfSdmpDZsENLn7x44dSFSNE5bzw2LQ1fxxU2FA9hu299aGjE2vwsdUu3dVwhNfsY-9OuV8f3mC7Juau3Ca9-55i8ze5fp4_Z4vlhPr1bZEYAbzOB0skls0tuJsjNUiGgmtSu4oWRHBBKJzg3rhITkIIJIZ1hoByyglsolRiT8sQ1MaQU0eld9B91PGpguhemN_pPmO6FacZ1J6wL3p6C2LU7eIw69d8atD6iabUN_j_EN7IOej8 |
CitedBy_id | crossref_primary_10_1016_j_surfin_2023_103694 crossref_primary_10_1016_j_electacta_2024_144695 crossref_primary_10_1002_ece2_29 crossref_primary_10_1002_smll_202311548 crossref_primary_10_1016_j_ijhydene_2023_09_075 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1016_j_ijhydene_2022_07_247 crossref_primary_10_1016_j_ijhydene_2022_04_296 crossref_primary_10_1016_j_jpowsour_2023_233244 crossref_primary_10_1021_acsanm_3c03617 crossref_primary_10_1021_acsanm_4c01898 crossref_primary_10_1007_s12274_023_5892_7 crossref_primary_10_1149_1945_7111_acf1d1 crossref_primary_10_1016_j_apsusc_2022_155537 crossref_primary_10_1021_acs_energyfuels_3c02440 |
Cites_doi | 10.1016/j.electacta.2017.05.200 10.1021/acsami.6b13244 10.1039/C9EE02388G 10.1021/acsaem.9b00317 10.1016/j.ijhydene.2020.09.242 10.1002/anie.201402822 10.1016/j.electacta.2020.135886 10.1002/admi.201900586 10.1021/acssuschemeng.8b00644 10.1073/pnas.1900556116 10.1016/j.ijhydene.2021.10.117 10.1016/j.jelechem.2019.113768 10.1016/j.cej.2020.124556 10.1016/j.matlet.2014.01.084 10.1016/j.jechem.2021.05.051 10.1016/j.ijhydene.2019.12.156 10.1021/acsami.9b05919 10.1021/acsaem.1c02930 10.1039/C6CS00328A 10.1039/C5EE03316K 10.1016/j.jallcom.2020.154465 10.1021/cs3003098 10.1038/s41467-018-04746-z 10.1002/anie.202006546 10.1016/j.apcatb.2020.119327 10.1039/C9NR08795H 10.1016/j.electacta.2018.02.131 10.1002/cnma.202000010 10.1038/s41467-020-19214-w 10.1126/science.1233638 10.1016/j.apcatb.2019.118199 10.1021/acsaem.9b01944 10.1016/j.apcatb.2019.118376 10.1039/C7TA04755J 10.1039/C8TA11273H 10.1002/smll.201904688 10.1039/D0EE00921K 10.1021/acsaem.7b00305 10.1016/j.apcatb.2018.09.061 10.1021/acscatal.7b03142 10.1002/anie.201611863 10.1016/j.jpowsour.2021.230757 10.1038/s41929-020-00525-6 10.1002/asia.202000213 10.1021/acssuschemeng.0c03263 10.1016/j.ijhydene.2019.04.076 10.1016/j.ijhydene.2021.11.120 10.1002/adfm.202100614 10.1002/aenm.202002215 10.1021/acssuschemeng.9b01260 10.1016/j.jcis.2020.12.016 10.1002/er.5636 10.1002/aenm.201903571 10.1016/S1872-2067(19)63356-5 10.1016/j.cej.2018.06.064 10.1002/cssc.201901439 10.1016/j.jcis.2019.12.010 10.1016/j.ijhydene.2021.10.244 10.1021/acsami.1c14742 10.1038/35104634 10.1016/j.ijhydene.2021.06.191 10.1039/C9NR08749D 10.1016/j.apcatb.2020.118721 10.1039/C8EE00927A 10.1021/acsami.7b03033 10.1016/j.jcis.2020.09.108 |
ContentType | Journal Article |
Copyright | 2022 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2022 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2022.02.211 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 14431 |
ExternalDocumentID | 10_1016_j_ijhydene_2022_02_211 S0360319922008783 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW T9H WUQ |
ID | FETCH-LOGICAL-c312t-3e7f7b0db2c5e2cb9e1e95af824c721e16f322cf8351730337fc019fe042d1693 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Sep 26 16:31:22 EDT 2024 Fri Feb 23 02:41:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | Surface reconstruction Oxygen evolution reaction Fe and V co-Doped Ni3S2 High current densities In situ synthesis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-3e7f7b0db2c5e2cb9e1e95af824c721e16f322cf8351730337fc019fe042d1693 |
ORCID | 0000-0002-9783-0523 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2022_02_211 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_02_211 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhou, Wang, Liua, Wang, Wang, Qin, Zhang, Dai, Whangbo, Huang (bib43) 2018; 351 Yan, Li, Pang, Wang (bib15) 2014; 120 Zhang, Cui, Gao, Bian, Pu, Zhu, Li, Huang (bib53) 2019; 15 Huang, Chuah, Hsieh, Lu (bib14) 2019; 11 Babar, Lokhande, Karade, Pawar, Gang, Pawar, Kim (bib21) 2019; 7 Long, Li, Xiao, Yan, Wang, Chen, Yang (bib25) 2014; 53 Liu, Ai, Li, Fang, Chen, Liu, Du, Zhou, Li, Lo, Tang, Chen, Wang, Xing, Pan (bib62) 2020; 10 Yang, Ou, Yang, Wei, Gao, Yang, Xiong, Dong, Xiao, Zhang (bib46) 2019; 11 Suen, Hung, Quan, Zhang, Xu, Chen (bib3) 2017; 46 Zhang, Liu, Wang, Yao, Wu, Wang, Zhao, Li, Liu (bib29) 2022; 518 Farid, Qiu, Zhao, Song, Mao, Ren, Hao (bib26) 2020; 858 Cai, Bu, Wang, Ho, Yang, Wang (bib11) 2019; 7 Kuang, Zhang, Liu, Tan, Dinh, Yang (bib51) 2020; 10 Du, Fang, Guan, Li, Wang, Zhang (bib45) 2021; 46 Shen, Wang, Qian, Chen, Jiang, Luo, Yin (bib16) 2020; 278 Peng, Huang, Dai, Liu (bib31) 2022; 47 Khan, Rashid, Junaid, Zafar, Faheem, Ahmad (bib59) 2019; 2 Zhu, Zhang, Zhu, Zhang, Lu (bib39) 2020; 562 Chen, Liu, Zi, Chen, Liu, Du, Li, Zhou, Ke, Li, Lo, Kwok, Ip, Chen, Wang, Liu, Pan (bib63) 2022; 65 Yu, Zhou, Huang, Sun, Qin, Bao, Goddard, Chen, Ren (bib32) 2018; 9 Fan, Zou, Duan, Sun (bib61) 2019; 10 Yan, Zhu, Li, Zhang, Zhang, Chen (bib49) 2017; 245 Hu, Zhu, Liang, Wu, Li, Luo, Cui (bib58) 2021; 587 Akbar, Jeon, Kim, Jeong, Yi, Chun (bib23) 2018; 6 Anwar, Khan, Zhang, Djire (bib12) 2021; 46 Zhou, Li, Xu, Jawaid, Mohammed-Ibrahim, Liu, Kuang, Sun (bib4) 2020; 6 Zhao, Shen, Wang, Hocking, Li, Rong, Dastafkan, Su, Zhao (bib44) 2021; 31 Qian, Chen, Luo, Yu, Wang, Jiang, Xu, Feng, Yin (bib40) 2020; 8 Fan, Ji, Zou, Zhang, Zhu, Chen, Daniel, Luo, Yu, Sun (bib55) 2017; 56 Li, Cai, Song, Shen, Wang, Li, Wang, Wang, Tian (bib18) 2020; 339 Babar, Patil, Lee, Karade, Gour, Pawar, Kim (bib20) 2021; 584 Liu, Tong, Qu, Zhu, Zhong, Fang (bib67) 2020; 267 Wang, Wu, Li, Zhao, Zhao, Li, Liu (bib9) 2020; 15 Zhong, Zhang, Tang, Chai, Xu, Cao, Yang, Yang, Kong, Wang, Cheng, Lu, Cheng, Xu, Pan (bib66) 2017; 5 Zhuang, Jia, Liu, Li, Li, Zhang, Wang, Yang, Zhu, Yao (bib10) 2020; 59 Li, Liu, Duan, Wang, Li (bib42) 2020; 41 Ren, Cui, Deng, Bao, Deng (bib6) 2016; 9 Pawar, Aqueel Ahmed, Lee, Babar, Kim, Lee, Kim, Im (bib28) 2021; 4 Yu, Wu, McElhenny, Song, Luo, Zhang, Yu, Chen, Ren (bib22) 2020; 13 Wang, Lin, Wan, Wang (bib19) 2020; 45 Abdullah, Hameed, Zhang, Ma (bib56) 2019; 44 Tang, Liu, Cao, Zheng, Wei, Lam, Lin (bib24) 2022; 47 Zhong, Tang, Wang, Shao, Chai, Wang, Yang, Yang, Wang, Wang, Xu, Pan (bib65) 2018; 269 Zhang, Wang, Cao, Kozlov, García de Arquer, Dinh, Li, Wang, Zheng, Zhang, Wen, Voznyy, Comin, De Luna, Regier, Bi, Alp, Pao, Zheng, Hu, Ji, Li, Zhang, Cavallo, Peng, Sargent (bib41) 2020; 3 Smith, Prevot, Fagan, Zhang, Sedach, Siu, Trudel, Berlinguette (bib5) 2013; 340 Zhou, Yu, Zhu, Sun, Qin, Yu, Bao, Yu, Chen, Ren (bib7) 2018; 11 Kuang, Kenney, Meng, Hung, Liu, Huang, Prasanna, Li, Li, Wang, Lin, McGehee, Sun, Dai (bib2) 2019; 116 Zhu, Liu, Yue, Zhang, Yue, Wang, Yu, Wang, Wang (bib52) 2017; 9 Zhu, Jiang, Liu, Wu, Hou, Tang (bib60) 2020; 12 Zhu, Zhu, Yao, Chen, Hu, Zhu, Liang (bib17) 2020; 828 Wang, Wan, Lin, Wang (bib33) 2019; 12 Hu, Si, Liu, Wang, Feng (bib38) 2020; 44 Abdullah, Hameed, Zhang, Ma (bib50) 2019; 6 Exner, Sohrabnejad-Eskan, Over (bib57) 2018; 8 Babar, Patil, Karade, Gour, Lokhande, Pawar, Kim (bib35) 2021; 13 Abdullah, Hameed, Hu, Zhang, Ma (bib34) 2019; 2 Bhowmik, Kundu, Barman (bib47) 2018; 1 Zhai, Zhang, Wu, Gao, Zhang, Cao, Zhang, Li, Sun, Hou (bib54) 2020; 11 Hsieh, Huang, Chen, Lu (bib13) 2020; 267 Liu, Wang, Wu, Li, Zhao, Zhao, Li (bib37) 2020; 260 Schlapbach, Zuttel (bib1) 2001; 414 Dutta, Indra, Feng, Han, Song (bib30) 2019; 241 Liang, Zou, Nairan, Zhang, Liu, Liu, Hu, Kang, Fan, Yang (bib48) 2020; 13 Wang, Zhou, Lv, Dong, Zhang, Yu, Chi, Wu, Wang, Chai (bib36) 2022; 47 Reier, Oezaslan, Strasser (bib8) 2012; 2 Li, Mao, Wang, Li, Wang, He, Gong, Wang (bib27) 2020; 390 Qu, Yang, Chai, Tang, Shao, Kwok, Yang, Wang, Chua, Wang, Lu, Pan (bib64) 2017; 9 Zhong (10.1016/j.ijhydene.2022.02.211_bib66) 2017; 5 Yan (10.1016/j.ijhydene.2022.02.211_bib49) 2017; 245 Li (10.1016/j.ijhydene.2022.02.211_bib18) 2020; 339 Zhou (10.1016/j.ijhydene.2022.02.211_bib43) 2018; 351 Li (10.1016/j.ijhydene.2022.02.211_bib27) 2020; 390 Anwar (10.1016/j.ijhydene.2022.02.211_bib12) 2021; 46 Dutta (10.1016/j.ijhydene.2022.02.211_bib30) 2019; 241 Zhang (10.1016/j.ijhydene.2022.02.211_bib41) 2020; 3 Wang (10.1016/j.ijhydene.2022.02.211_bib9) 2020; 15 Zhai (10.1016/j.ijhydene.2022.02.211_bib54) 2020; 11 Cai (10.1016/j.ijhydene.2022.02.211_bib11) 2019; 7 Wang (10.1016/j.ijhydene.2022.02.211_bib36) 2022; 47 Yan (10.1016/j.ijhydene.2022.02.211_bib15) 2014; 120 Abdullah (10.1016/j.ijhydene.2022.02.211_bib50) 2019; 6 Qu (10.1016/j.ijhydene.2022.02.211_bib64) 2017; 9 Tang (10.1016/j.ijhydene.2022.02.211_bib24) 2022; 47 Liu (10.1016/j.ijhydene.2022.02.211_bib37) 2020; 260 Hu (10.1016/j.ijhydene.2022.02.211_bib38) 2020; 44 Yu (10.1016/j.ijhydene.2022.02.211_bib22) 2020; 13 Liang (10.1016/j.ijhydene.2022.02.211_bib48) 2020; 13 Fan (10.1016/j.ijhydene.2022.02.211_bib55) 2017; 56 Babar (10.1016/j.ijhydene.2022.02.211_bib35) 2021; 13 Yang (10.1016/j.ijhydene.2022.02.211_bib46) 2019; 11 Huang (10.1016/j.ijhydene.2022.02.211_bib14) 2019; 11 Li (10.1016/j.ijhydene.2022.02.211_bib42) 2020; 41 Ren (10.1016/j.ijhydene.2022.02.211_bib6) 2016; 9 Zhang (10.1016/j.ijhydene.2022.02.211_bib53) 2019; 15 Wang (10.1016/j.ijhydene.2022.02.211_bib19) 2020; 45 Babar (10.1016/j.ijhydene.2022.02.211_bib21) 2019; 7 Liu (10.1016/j.ijhydene.2022.02.211_bib67) 2020; 267 Suen (10.1016/j.ijhydene.2022.02.211_bib3) 2017; 46 Kuang (10.1016/j.ijhydene.2022.02.211_bib2) 2019; 116 Abdullah (10.1016/j.ijhydene.2022.02.211_bib34) 2019; 2 Abdullah (10.1016/j.ijhydene.2022.02.211_bib56) 2019; 44 Exner (10.1016/j.ijhydene.2022.02.211_bib57) 2018; 8 Babar (10.1016/j.ijhydene.2022.02.211_bib20) 2021; 584 Zhu (10.1016/j.ijhydene.2022.02.211_bib39) 2020; 562 Hu (10.1016/j.ijhydene.2022.02.211_bib58) 2021; 587 Liu (10.1016/j.ijhydene.2022.02.211_bib62) 2020; 10 Zhao (10.1016/j.ijhydene.2022.02.211_bib44) 2021; 31 Yu (10.1016/j.ijhydene.2022.02.211_bib32) 2018; 9 Hsieh (10.1016/j.ijhydene.2022.02.211_bib13) 2020; 267 Zhang (10.1016/j.ijhydene.2022.02.211_bib29) 2022; 518 Long (10.1016/j.ijhydene.2022.02.211_bib25) 2014; 53 Zhu (10.1016/j.ijhydene.2022.02.211_bib60) 2020; 12 Pawar (10.1016/j.ijhydene.2022.02.211_bib28) 2021; 4 Wang (10.1016/j.ijhydene.2022.02.211_bib33) 2019; 12 Akbar (10.1016/j.ijhydene.2022.02.211_bib23) 2018; 6 Zhu (10.1016/j.ijhydene.2022.02.211_bib52) 2017; 9 Schlapbach (10.1016/j.ijhydene.2022.02.211_bib1) 2001; 414 Zhu (10.1016/j.ijhydene.2022.02.211_bib17) 2020; 828 Smith (10.1016/j.ijhydene.2022.02.211_bib5) 2013; 340 Du (10.1016/j.ijhydene.2022.02.211_bib45) 2021; 46 Chen (10.1016/j.ijhydene.2022.02.211_bib63) 2022; 65 Reier (10.1016/j.ijhydene.2022.02.211_bib8) 2012; 2 Shen (10.1016/j.ijhydene.2022.02.211_bib16) 2020; 278 Zhou (10.1016/j.ijhydene.2022.02.211_bib7) 2018; 11 Peng (10.1016/j.ijhydene.2022.02.211_bib31) 2022; 47 Bhowmik (10.1016/j.ijhydene.2022.02.211_bib47) 2018; 1 Kuang (10.1016/j.ijhydene.2022.02.211_bib51) 2020; 10 Khan (10.1016/j.ijhydene.2022.02.211_bib59) 2019; 2 Zhong (10.1016/j.ijhydene.2022.02.211_bib65) 2018; 269 Zhuang (10.1016/j.ijhydene.2022.02.211_bib10) 2020; 59 Qian (10.1016/j.ijhydene.2022.02.211_bib40) 2020; 8 Fan (10.1016/j.ijhydene.2022.02.211_bib61) 2019; 10 Zhou (10.1016/j.ijhydene.2022.02.211_bib4) 2020; 6 Farid (10.1016/j.ijhydene.2022.02.211_bib26) 2020; 858 |
References_xml | – volume: 828 start-page: 154465 year: 2020 ident: bib17 article-title: Porous amorphous FeCo alloys as pre-catalysts for promoting the oxygen evolution reaction publication-title: J Alloys Compd contributor: fullname: Liang – volume: 9 start-page: 5959 year: 2017 end-page: 5967 ident: bib64 article-title: Facile synthesis of vanadium-doped Ni publication-title: ACS Appl Mater Interfaces contributor: fullname: Pan – volume: 11 start-page: 24096 year: 2019 end-page: 24106 ident: bib14 article-title: NiFe alloy nanotube Arrays as highly efficient bifunctional electrocatalysts for overall water splitting at high current densities publication-title: ACS Appl Mater Interfaces contributor: fullname: Lu – volume: 6 start-page: 336 year: 2020 end-page: 355 ident: bib4 article-title: Recent advances in non-precious metal-based electrodes for alkaline water electrolysis publication-title: ChemNanoMat contributor: fullname: Sun – volume: 46 start-page: 32284 year: 2021 end-page: 32317 ident: bib12 article-title: Recent development in electrocatalysts for hydrogen production through water electrolysis publication-title: Int J Hydrogen Energy contributor: fullname: Djire – volume: 7 start-page: 10035 year: 2019 end-page: 10043 ident: bib21 article-title: Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis publication-title: ACS Sustainable Chem Eng contributor: fullname: Kim – volume: 10 start-page: 1903571 year: 2019 ident: bib61 article-title: Selectively etching vanadium oxide to modulate surface vacancies of unary metal–based electrocatalysts for high-performance water oxidation publication-title: Adv Energy Mater contributor: fullname: Sun – volume: 260 start-page: 118199 year: 2020 ident: bib37 article-title: 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities publication-title: Appl Catal B Environ contributor: fullname: Li – volume: 45 start-page: 6416 year: 2020 end-page: 6424 ident: bib19 article-title: Autologous growth of Fe-doped Ni(OH) publication-title: Int J Hydrogen Energy contributor: fullname: Wang – volume: 7 start-page: 5069 year: 2019 end-page: 5089 ident: bib11 article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: J Mater Chem A contributor: fullname: Wang – volume: 518 start-page: 230757 year: 2022 ident: bib29 article-title: Rational introduction of S and P in multi-stage electrocatalyst to drive a large-current-density water oxidation reaction and overall water splitting publication-title: J Power Sources contributor: fullname: Liu – volume: 4 start-page: 14169 year: 2021 end-page: 14179 ident: bib28 article-title: Experimental and theoretical insights into transition-metal (Mo, Fe) codoping in a bifunctional nickel phosphide microsphere catalyst for enhanced overall water splitting publication-title: ACS Appl Energy Mater contributor: fullname: Im – volume: 47 start-page: 1016 year: 2022 end-page: 1025 ident: bib36 article-title: Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density publication-title: Int J Hydrogen Energy contributor: fullname: Chai – volume: 267 start-page: 118721 year: 2020 ident: bib67 article-title: Highly improved electrocatalytic activity of NiS publication-title: Appl Catal B Environ contributor: fullname: Fang – volume: 9 start-page: 2551 year: 2018 end-page: 2560 ident: bib32 article-title: High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting publication-title: Nat Commun contributor: fullname: Ren – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: bib3 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem Soc Rev contributor: fullname: Chen – volume: 11 start-page: 2858 year: 2018 end-page: 2864 ident: bib7 article-title: Water splitting by electrolysis at high current densities under 1.6 volts publication-title: Energy Environ Sci contributor: fullname: Ren – volume: 15 start-page: e1904688 year: 2019 ident: bib53 article-title: Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting publication-title: Small contributor: fullname: Huang – volume: 269 start-page: 55 year: 2018 end-page: 61 ident: bib65 article-title: 3D heterostructured pure and N-Doped Ni publication-title: Electrochim Acta contributor: fullname: Pan – volume: 414 start-page: 353 year: 2001 end-page: 358 ident: bib1 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature contributor: fullname: Zuttel – volume: 9 start-page: 123 year: 2016 end-page: 129 ident: bib6 article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation publication-title: Energy Environ Sci contributor: fullname: Deng – volume: 9 start-page: 19807 year: 2017 end-page: 19814 ident: bib52 article-title: Au promoted nickel-iron layered double hydroxide nanoarrays: a modular catalyst enabling high-performance oxygen evolution publication-title: ACS Appl Mater Interfaces contributor: fullname: Wang – volume: 13 start-page: 3439 year: 2020 end-page: 3446 ident: bib22 article-title: Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting publication-title: Energy Environ Sci contributor: fullname: Ren – volume: 8 start-page: 1864 year: 2018 end-page: 1879 ident: bib57 article-title: A universal approach to determine the free energy diagram of an electrocatalytic reaction publication-title: ACS Catal contributor: fullname: Over – volume: 12 start-page: 4038 year: 2019 end-page: 4045 ident: bib33 article-title: NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density publication-title: ChemSusChem contributor: fullname: Wang – volume: 56 start-page: 3289 year: 2017 end-page: 3293 ident: bib55 article-title: Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt publication-title: Angew Chem Int Ed Engl contributor: fullname: Sun – volume: 10 start-page: 2002215 year: 2020 ident: bib51 article-title: Amorphous/crystalline heterostructured cobalt-vanadium-iron (Oxy)hydroxides for highly efficient oxygen evolution reaction publication-title: Adv Energy Mater contributor: fullname: Yang – volume: 41 start-page: 847 year: 2020 end-page: 852 ident: bib42 article-title: Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping publication-title: Chin J Catal contributor: fullname: Li – volume: 587 start-page: 79 year: 2021 end-page: 89 ident: bib58 article-title: Self-supported Ni publication-title: J Colloid Interface Sci contributor: fullname: Cui – volume: 10 year: 2020 ident: bib62 article-title: Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation publication-title: Adv Energy Mater contributor: fullname: Pan – volume: 278 start-page: 119327 year: 2020 ident: bib16 article-title: Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density publication-title: Appl Catal B Environ contributor: fullname: Yin – volume: 562 start-page: 42 year: 2020 end-page: 51 ident: bib39 article-title: N-doped carbon armored metal phosphides grown in-situ on nickel foam as chainmail catalysts toward high efficiency electrolytic water splitting publication-title: J Colloid Interface Sci contributor: fullname: Lu – volume: 340 start-page: 60 year: 2013 end-page: 63 ident: bib5 article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis publication-title: Science contributor: fullname: Berlinguette – volume: 6 start-page: 1900586 year: 2019 ident: bib50 article-title: Ultrasonic-assisted synthesis of amorphous polyelemental hollow nanoparticles as efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: Adv Mater Interfaces contributor: fullname: Ma – volume: 5 start-page: 17954 year: 2017 end-page: 17962 ident: bib66 article-title: Efficient coupling of a hierarchical V publication-title: J Mater Chem contributor: fullname: Pan – volume: 46 start-page: 599 year: 2021 end-page: 608 ident: bib45 article-title: Vanadium doped cobalt phosphide nanorods array as a bifunctional electrode catalyst for efficient and stable overall water splitting publication-title: Int J Hydrogen Energy contributor: fullname: Zhang – volume: 59 start-page: 14664 year: 2020 end-page: 14670 ident: bib10 article-title: Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark publication-title: Angew Chem Int Ed Engl contributor: fullname: Yao – volume: 241 start-page: 521 year: 2019 end-page: 527 ident: bib30 article-title: Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride publication-title: Appl Catal B Environ contributor: fullname: Song – volume: 13 start-page: 52620 year: 2021 end-page: 52628 ident: bib35 article-title: In situ fabrication of nickel–iron oxalate catalysts for electrochemical water oxidation at high current densities publication-title: ACS Appl Mater Interfaces contributor: fullname: Kim – volume: 245 start-page: 770 year: 2017 end-page: 779 ident: bib49 article-title: Highly stable three-dimensional nickel-iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities publication-title: Electrochim Acta contributor: fullname: Chen – volume: 351 start-page: 119 year: 2018 end-page: 126 ident: bib43 article-title: Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance publication-title: Chem Eng J contributor: fullname: Huang – volume: 15 start-page: 1484 year: 2020 end-page: 1492 ident: bib9 article-title: Synergistic assembly of a CoS@NiFe/Ni foam heterostructure electrocatalyst for efficient water oxidation catalysis at large current densities publication-title: Chem Asian J contributor: fullname: Liu – volume: 11 start-page: 23296 year: 2019 end-page: 23303 ident: bib46 article-title: Modulated transition metal-oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts publication-title: Nanoscale contributor: fullname: Zhang – volume: 116 start-page: 6624 year: 2019 end-page: 6629 ident: bib2 article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels publication-title: Proc Natl Acad Sci U S A contributor: fullname: Dai – volume: 53 start-page: 7584 year: 2014 end-page: 7588 ident: bib25 article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction publication-title: Angew Chem Int Ed Engl contributor: fullname: Yang – volume: 47 start-page: 4386 year: 2022 end-page: 4393 ident: bib31 article-title: Uniform cobalt grafted on vanadium nitride as a high efficient oxygen evolution reaction catalyst publication-title: Int J Hydrogen Energy contributor: fullname: Liu – volume: 2 start-page: 3587 year: 2019 end-page: 3594 ident: bib59 article-title: NiO/NiS heterostructures: an efficient and stable electrocatalyst for oxygen evolution reaction publication-title: ACS Appl Energy Mater contributor: fullname: Ahmad – volume: 267 start-page: 118376 year: 2020 ident: bib13 article-title: NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities publication-title: Appl Catal B Environ contributor: fullname: Lu – volume: 858 start-page: 113768 year: 2020 ident: bib26 article-title: Improved OER performance of Co3O4/N-CNTs derived from newly designed ZIF-67/PPy NTs composite publication-title: J Electroanal Chem contributor: fullname: Hao – volume: 339 start-page: 135886 year: 2020 ident: bib18 article-title: Ternary FeCoNi alloy nanoparticles embedded in N-doped carbon nanotubes for efficient oxygen evolution reaction electrocatalysis publication-title: Electrochim Acta contributor: fullname: Tian – volume: 31 start-page: 2100614 year: 2021 ident: bib44 article-title: In situ reconstruction of V-doped Ni publication-title: Adv Funct Mater contributor: fullname: Zhao – volume: 3 start-page: 985 year: 2020 end-page: 992 ident: bib41 article-title: High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics publication-title: Nature Catalysis contributor: fullname: Sargent – volume: 65 start-page: 405 year: 2022 end-page: 414 ident: bib63 article-title: Remarkable synergistic effect in cobalt-iron nitride/alloy nanosheets for robust electrochemical water splitting publication-title: J Energy Chem contributor: fullname: Pan – volume: 6 start-page: 7735 year: 2018 end-page: 7742 ident: bib23 article-title: Bifunctional electrodeposited 3D NiCoSe publication-title: ACS Sustainable Chem Eng contributor: fullname: Chun – volume: 390 start-page: 124556 year: 2020 ident: bib27 article-title: Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting publication-title: Chem Eng J contributor: fullname: Wang – volume: 2 start-page: 8919 year: 2019 end-page: 8929 ident: bib34 article-title: Crystalline multi-metal nanosheets array with enriched oxygen vacancies as efficient and stable bifunctional electrocatalysts for water splitting publication-title: ACS Appl Energy Mater contributor: fullname: Ma – volume: 12 start-page: 3803 year: 2020 end-page: 3811 ident: bib60 article-title: An Fe-V@NiO heterostructure electrocatalyst towards the oxygen evolution reaction publication-title: Nanoscale contributor: fullname: Tang – volume: 584 start-page: 760 year: 2021 end-page: 769 ident: bib20 article-title: Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method publication-title: J Colloid Interface Sci contributor: fullname: Kim – volume: 8 start-page: 12063 year: 2020 end-page: 12071 ident: bib40 article-title: Industrially promising nanowire heterostructure catalyst for enhancing overall water splitting at large current density publication-title: ACS Sustainable Chem Eng contributor: fullname: Yin – volume: 2 start-page: 1765 year: 2012 end-page: 1772 ident: bib8 article-title: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials publication-title: ACS Catal contributor: fullname: Strasser – volume: 44 start-page: 14869 year: 2019 end-page: 14876 ident: bib56 article-title: Nickel doped cobalt - hollow nanoparticles as an efficient electrocatalyst for hydrogen evolution from neutral water publication-title: Int J Hydrogen Energy contributor: fullname: Ma – volume: 13 start-page: 86 year: 2020 end-page: 95 ident: bib48 article-title: Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting publication-title: Energy Environ Sci contributor: fullname: Yang – volume: 11 start-page: 5462 year: 2020 ident: bib54 article-title: Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting publication-title: Nat Commun contributor: fullname: Hou – volume: 120 start-page: 185 year: 2014 end-page: 188 ident: bib15 article-title: Fabrication of hollow spheres FeCo alloy through a hydrothermal reduction method publication-title: Mater Lett contributor: fullname: Wang – volume: 47 start-page: 3013 year: 2022 end-page: 3021 ident: bib24 article-title: Cu publication-title: Int J Hydrogen Energy contributor: fullname: Lin – volume: 44 start-page: 9222 year: 2020 end-page: 9232 ident: bib38 article-title: Iron-nickel hydroxide nanoflake arrays supported on nickel foam with dramatic catalytic properties for the evolution of oxygen at high current densities publication-title: Int J Energy Res contributor: fullname: Feng – volume: 1 start-page: 1200 year: 2018 end-page: 1209 ident: bib47 article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions publication-title: ACS Appl Energy Mater contributor: fullname: Barman – volume: 245 start-page: 770 year: 2017 ident: 10.1016/j.ijhydene.2022.02.211_bib49 article-title: Highly stable three-dimensional nickel-iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.05.200 contributor: fullname: Yan – volume: 9 start-page: 5959 year: 2017 ident: 10.1016/j.ijhydene.2022.02.211_bib64 article-title: Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b13244 contributor: fullname: Qu – volume: 13 start-page: 86 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib48 article-title: Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting publication-title: Energy Environ Sci doi: 10.1039/C9EE02388G contributor: fullname: Liang – volume: 2 start-page: 3587 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib59 article-title: NiO/NiS heterostructures: an efficient and stable electrocatalyst for oxygen evolution reaction publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b00317 contributor: fullname: Khan – volume: 46 start-page: 599 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib45 article-title: Vanadium doped cobalt phosphide nanorods array as a bifunctional electrode catalyst for efficient and stable overall water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.242 contributor: fullname: Du – volume: 53 start-page: 7584 year: 2014 ident: 10.1016/j.ijhydene.2022.02.211_bib25 article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201402822 contributor: fullname: Long – volume: 339 start-page: 135886 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib18 article-title: Ternary FeCoNi alloy nanoparticles embedded in N-doped carbon nanotubes for efficient oxygen evolution reaction electrocatalysis publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.135886 contributor: fullname: Li – volume: 6 start-page: 1900586 issue: 16 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib50 article-title: Ultrasonic-assisted synthesis of amorphous polyelemental hollow nanoparticles as efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: Adv Mater Interfaces doi: 10.1002/admi.201900586 contributor: fullname: Abdullah – volume: 6 start-page: 7735 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib23 article-title: Bifunctional electrodeposited 3D NiCoSe2/nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.8b00644 contributor: fullname: Akbar – volume: 116 start-page: 6624 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib2 article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1900556116 contributor: fullname: Kuang – volume: 47 start-page: 1016 year: 2022 ident: 10.1016/j.ijhydene.2022.02.211_bib36 article-title: Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.117 contributor: fullname: Wang – volume: 858 start-page: 113768 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib26 article-title: Improved OER performance of Co3O4/N-CNTs derived from newly designed ZIF-67/PPy NTs composite publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2019.113768 contributor: fullname: Farid – volume: 390 start-page: 124556 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib27 article-title: Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124556 contributor: fullname: Li – volume: 120 start-page: 185 year: 2014 ident: 10.1016/j.ijhydene.2022.02.211_bib15 article-title: Fabrication of hollow spheres FeCo alloy through a hydrothermal reduction method publication-title: Mater Lett doi: 10.1016/j.matlet.2014.01.084 contributor: fullname: Yan – volume: 65 start-page: 405 year: 2022 ident: 10.1016/j.ijhydene.2022.02.211_bib63 article-title: Remarkable synergistic effect in cobalt-iron nitride/alloy nanosheets for robust electrochemical water splitting publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.05.051 contributor: fullname: Chen – volume: 45 start-page: 6416 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib19 article-title: Autologous growth of Fe-doped Ni(OH)2 nanosheets with low overpotential for oxygen evolution reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.156 contributor: fullname: Wang – volume: 11 start-page: 24096 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib14 article-title: NiFe alloy nanotube Arrays as highly efficient bifunctional electrocatalysts for overall water splitting at high current densities publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b05919 contributor: fullname: Huang – volume: 4 start-page: 14169 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib28 article-title: Experimental and theoretical insights into transition-metal (Mo, Fe) codoping in a bifunctional nickel phosphide microsphere catalyst for enhanced overall water splitting publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.1c02930 contributor: fullname: Pawar – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.ijhydene.2022.02.211_bib3 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem Soc Rev doi: 10.1039/C6CS00328A contributor: fullname: Suen – volume: 9 start-page: 123 year: 2016 ident: 10.1016/j.ijhydene.2022.02.211_bib6 article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation publication-title: Energy Environ Sci doi: 10.1039/C5EE03316K contributor: fullname: Ren – volume: 828 start-page: 154465 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib17 article-title: Porous amorphous FeCo alloys as pre-catalysts for promoting the oxygen evolution reaction publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.154465 contributor: fullname: Zhu – volume: 2 start-page: 1765 year: 2012 ident: 10.1016/j.ijhydene.2022.02.211_bib8 article-title: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials publication-title: ACS Catal doi: 10.1021/cs3003098 contributor: fullname: Reier – volume: 9 start-page: 2551 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib32 article-title: High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting publication-title: Nat Commun doi: 10.1038/s41467-018-04746-z contributor: fullname: Yu – volume: 59 start-page: 14664 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib10 article-title: Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202006546 contributor: fullname: Zhuang – volume: 278 start-page: 119327 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib16 article-title: Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.119327 contributor: fullname: Shen – volume: 11 start-page: 23296 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib46 article-title: Modulated transition metal-oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts publication-title: Nanoscale doi: 10.1039/C9NR08795H contributor: fullname: Yang – volume: 269 start-page: 55 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib65 article-title: 3D heterostructured pure and N-Doped Ni3S2/VS2 nanosheets for high efficient overall water splitting publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.02.131 contributor: fullname: Zhong – volume: 6 start-page: 336 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib4 article-title: Recent advances in non-precious metal-based electrodes for alkaline water electrolysis publication-title: ChemNanoMat doi: 10.1002/cnma.202000010 contributor: fullname: Zhou – volume: 11 start-page: 5462 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib54 article-title: Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting publication-title: Nat Commun doi: 10.1038/s41467-020-19214-w contributor: fullname: Zhai – volume: 340 start-page: 60 year: 2013 ident: 10.1016/j.ijhydene.2022.02.211_bib5 article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis publication-title: Science doi: 10.1126/science.1233638 contributor: fullname: Smith – volume: 260 start-page: 118199 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib37 article-title: 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.118199 contributor: fullname: Liu – volume: 2 start-page: 8919 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib34 article-title: Crystalline multi-metal nanosheets array with enriched oxygen vacancies as efficient and stable bifunctional electrocatalysts for water splitting publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b01944 contributor: fullname: Abdullah – volume: 267 start-page: 118376 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib13 article-title: NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.118376 contributor: fullname: Hsieh – volume: 5 start-page: 17954 year: 2017 ident: 10.1016/j.ijhydene.2022.02.211_bib66 article-title: Efficient coupling of a hierarchical V2O5@Ni3S2hybrid nanoarray for pseudocapacitors and hydrogen production publication-title: J Mater Chem doi: 10.1039/C7TA04755J contributor: fullname: Zhong – volume: 7 start-page: 5069 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib11 article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: J Mater Chem A doi: 10.1039/C8TA11273H contributor: fullname: Cai – volume: 15 start-page: e1904688 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib53 article-title: Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting publication-title: Small doi: 10.1002/smll.201904688 contributor: fullname: Zhang – volume: 13 start-page: 3439 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib22 article-title: Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting publication-title: Energy Environ Sci doi: 10.1039/D0EE00921K contributor: fullname: Yu – volume: 10 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib62 article-title: Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation publication-title: Adv Energy Mater contributor: fullname: Liu – volume: 1 start-page: 1200 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib47 article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.7b00305 contributor: fullname: Bhowmik – volume: 241 start-page: 521 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib30 article-title: Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2018.09.061 contributor: fullname: Dutta – volume: 8 start-page: 1864 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib57 article-title: A universal approach to determine the free energy diagram of an electrocatalytic reaction publication-title: ACS Catal doi: 10.1021/acscatal.7b03142 contributor: fullname: Exner – volume: 56 start-page: 3289 year: 2017 ident: 10.1016/j.ijhydene.2022.02.211_bib55 article-title: Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201611863 contributor: fullname: Fan – volume: 518 start-page: 230757 year: 2022 ident: 10.1016/j.ijhydene.2022.02.211_bib29 article-title: Rational introduction of S and P in multi-stage electrocatalyst to drive a large-current-density water oxidation reaction and overall water splitting publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230757 contributor: fullname: Zhang – volume: 3 start-page: 985 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib41 article-title: High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics publication-title: Nature Catalysis doi: 10.1038/s41929-020-00525-6 contributor: fullname: Zhang – volume: 15 start-page: 1484 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib9 article-title: Synergistic assembly of a CoS@NiFe/Ni foam heterostructure electrocatalyst for efficient water oxidation catalysis at large current densities publication-title: Chem Asian J doi: 10.1002/asia.202000213 contributor: fullname: Wang – volume: 8 start-page: 12063 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib40 article-title: Industrially promising nanowire heterostructure catalyst for enhancing overall water splitting at large current density publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.0c03263 contributor: fullname: Qian – volume: 44 start-page: 14869 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib56 article-title: Nickel doped cobalt - hollow nanoparticles as an efficient electrocatalyst for hydrogen evolution from neutral water publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.076 contributor: fullname: Abdullah – volume: 47 start-page: 4386 year: 2022 ident: 10.1016/j.ijhydene.2022.02.211_bib31 article-title: Uniform cobalt grafted on vanadium nitride as a high efficient oxygen evolution reaction catalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.120 contributor: fullname: Peng – volume: 31 start-page: 2100614 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib44 article-title: In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation publication-title: Adv Funct Mater doi: 10.1002/adfm.202100614 contributor: fullname: Zhao – volume: 10 start-page: 2002215 issue: 43 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib51 article-title: Amorphous/crystalline heterostructured cobalt-vanadium-iron (Oxy)hydroxides for highly efficient oxygen evolution reaction publication-title: Adv Energy Mater doi: 10.1002/aenm.202002215 contributor: fullname: Kuang – volume: 7 start-page: 10035 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib21 article-title: Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.9b01260 contributor: fullname: Babar – volume: 587 start-page: 79 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib58 article-title: Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2020.12.016 contributor: fullname: Hu – volume: 44 start-page: 9222 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib38 article-title: Iron-nickel hydroxide nanoflake arrays supported on nickel foam with dramatic catalytic properties for the evolution of oxygen at high current densities publication-title: Int J Energy Res doi: 10.1002/er.5636 contributor: fullname: Hu – volume: 10 start-page: 1903571 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib61 article-title: Selectively etching vanadium oxide to modulate surface vacancies of unary metal–based electrocatalysts for high-performance water oxidation publication-title: Adv Energy Mater doi: 10.1002/aenm.201903571 contributor: fullname: Fan – volume: 41 start-page: 847 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib42 article-title: Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping publication-title: Chin J Catal doi: 10.1016/S1872-2067(19)63356-5 contributor: fullname: Li – volume: 351 start-page: 119 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib43 article-title: Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance publication-title: Chem Eng J doi: 10.1016/j.cej.2018.06.064 contributor: fullname: Zhou – volume: 12 start-page: 4038 year: 2019 ident: 10.1016/j.ijhydene.2022.02.211_bib33 article-title: NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density publication-title: ChemSusChem doi: 10.1002/cssc.201901439 contributor: fullname: Wang – volume: 562 start-page: 42 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib39 article-title: N-doped carbon armored metal phosphides grown in-situ on nickel foam as chainmail catalysts toward high efficiency electrolytic water splitting publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.12.010 contributor: fullname: Zhu – volume: 47 start-page: 3013 year: 2022 ident: 10.1016/j.ijhydene.2022.02.211_bib24 article-title: Cu2S/Ni3S2 ultrathin nanosheets on Ni foam as a highly efficient electrocatalyst for oxygen evolution reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.244 contributor: fullname: Tang – volume: 13 start-page: 52620 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib35 article-title: In situ fabrication of nickel–iron oxalate catalysts for electrochemical water oxidation at high current densities publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c14742 contributor: fullname: Babar – volume: 414 start-page: 353 year: 2001 ident: 10.1016/j.ijhydene.2022.02.211_bib1 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature doi: 10.1038/35104634 contributor: fullname: Schlapbach – volume: 46 start-page: 32284 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib12 article-title: Recent development in electrocatalysts for hydrogen production through water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.06.191 contributor: fullname: Anwar – volume: 12 start-page: 3803 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib60 article-title: An Fe-V@NiO heterostructure electrocatalyst towards the oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/C9NR08749D contributor: fullname: Zhu – volume: 267 start-page: 118721 year: 2020 ident: 10.1016/j.ijhydene.2022.02.211_bib67 article-title: Highly improved electrocatalytic activity of NiSx: effects of Cr-doping and phase transition publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.118721 contributor: fullname: Liu – volume: 11 start-page: 2858 year: 2018 ident: 10.1016/j.ijhydene.2022.02.211_bib7 article-title: Water splitting by electrolysis at high current densities under 1.6 volts publication-title: Energy Environ Sci doi: 10.1039/C8EE00927A contributor: fullname: Zhou – volume: 9 start-page: 19807 year: 2017 ident: 10.1016/j.ijhydene.2022.02.211_bib52 article-title: Au promoted nickel-iron layered double hydroxide nanoarrays: a modular catalyst enabling high-performance oxygen evolution publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b03033 contributor: fullname: Zhu – volume: 584 start-page: 760 year: 2021 ident: 10.1016/j.ijhydene.2022.02.211_bib20 article-title: Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2020.09.108 contributor: fullname: Babar |
SSID | ssj0017049 |
Score | 2.5049355 |
Snippet | Industrial electrolysis of water is one of the effective strategies for green hydrogen production in the future. Nevertheless, the large-scale applications of... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 14422 |
SubjectTerms | Fe and V co-Doped Ni3S2 High current densities In situ synthesis Oxygen evolution reaction Surface reconstruction |
Title | In situ growth Fe and V co-doped Ni3S2 for efficient oxygen evolution reaction at large current densities |
URI | https://dx.doi.org/10.1016/j.ijhydene.2022.02.211 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPvHNHLym7W5ezbEUS1XopVa8he3urKZIWjQVe_G3O9MkUkHw4DFhF8KXeXzDznwrxBVq3XYyNl5sTOQFGDtP2zChUiV0xP81n-Rxt8UwGoyD28fwsSF69SwMt1VWsb-M6atoXb1pVWi25lnWGlHs5RGcRPERftxhxU8W2yKbbn5-t3nIuKLAtNjj1WtTwtNmNn1eknuzXKZSrN2ppPw9Qa0lnf6u2KnYInTLD9oTDcz3xfaahuCByG5yeMuKBTxRQV08Qx9B5xYewMw8O5ujhWHmjxQQOQVc6UVQmoHZx5IsB_C9sjwg7riacABdwAt3h4MplZvAcos7y64einH_-r438Kr7EzzjS1V4PiEfT9p2okyIykwSlJiE2nVUYKjwQxk5cmfjiIRJcnTfj50hxueQHNmySMuR2MhnOR4LiK0iR3VOOU21NKJOMNJh4KRxNkA0J6JVg5bOS5mMtO4fm6Y1zCnDnLZVSjCfiKTGNv3xw1OK5X_sPf3H3jOxxU98ICTDc7FRvC7wgnhFMblcGc6l2Oze3A2GX186zvA |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RnfzsFrgd22lB4NkYAiF8Bw2yy7s1piCtFq5OJvdxZag4mJB6_tbtJ8ncc32ZlvGbtCpWqWR9qLtK57AUbWUyaMqVQJLfF_5U7yXLdFr94eBrejcFRizWIWxrVV5rF_GdMX0Tp_Us3RrM6SpNqn2OtGcGLhjvCjhr_G1gOnn0VGXfn87vPgUc6BabXnlq-MCU8qyeRpTv7t9DKFcOKdgvPfM9RK1mntsO2cLsL18ot2WQnTPba1IiK4z5JOCq9J9gaPVFFnT9BCUKmBB9BTz0xnaKCX-H0BxE4BF4IRlGdg-jEn0wF8z00PiDwuRhxAZfDs2sNBL6WbwLged6e7esCGrZtBs-3lFyh42uci83yCPhrXzFjoEIUex8gxDpVtiEBT5Ye8bsmftSUWxsnTfT-ymiifRfJk41RaDlk5naZ4xCAygjzVWmEVFdOIKsa6CgPLtTUBoj5m1QI0OVvqZMiigWwiC5ilg1nWhCSYj1lcYCt__HFJwfyPvSf_2HvJNtqD-67sdnp3p2zTvXGnQzw8Y-Xs5Q3PiWRk44uFEX0BdZTQkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+growth+Fe+and+V+co-doped+Ni3S2+for+efficient+oxygen+evolution+reaction+at+large+current+densities&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Liu%2C+Leran&rft.au=Zhang%2C+Yijie&rft.au=Wang%2C+Jinwei&rft.au=Yao%2C+Rui&rft.date=2022-04-15&rft.issn=0360-3199&rft.volume=47&rft.issue=32&rft.spage=14422&rft.epage=14431&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.02.211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_02_211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |