Cerium doping of Ti-Al-N coatings for excellent thermal stability and oxidation resistance

Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research activities to further enhance their oxidation resistance and thermal stability. The addition of reactive elements, such as Cerium, can signific...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 326; pp. 165 - 172
Main Authors Asanuma, H., Polcik, P., Kolozsvari, S., Klimashin, F.F., Riedl, H., Mayrhofer, P.H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2017
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2017.07.037

Cover

Loading…
Abstract Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research activities to further enhance their oxidation resistance and thermal stability. The addition of reactive elements, such as Cerium, can significantly improve especially the oxidation resistance of various materials. Therefore, we study in detail the impact of Ce (2 at.% alloyed to powder metallurgically prepared Ti0.50Al0.50 targets) on growth processes, structure, mechanical properties, thermal stability, and oxidation resistance of magnetron sputtered Ti1−x−yAlxCeyN coatings prepared with DC bias potentials of Ubias=−25, −50, −75, and −100V. The deposition rate is significantly increased by a factor of ~1.75 (Ubias=−25V) to 1.45 (Ubias=−100V) when using Ti0.49Al0.49Ce0.02 instead of Ti0.50Al0.50 targets. Furthermore, also the hardness of the resulting single phase face centered cubic Ti0.43Al0.55Ce0.02N is with ~35GPa above that of Ti0.42Al0.58N with ~34GPa, for coatings on polycrystalline Al2O3 and Ubias=−50V. All temperature dependent characteristics of Ti0.42Al0.58N are improved significantly by the addition of Cerium. Wurtzite-structured AlN formation within Ti0.43Al0.55Ce0.02N can only be detected at Ta=1100°C, about 200°C higher as for Ti0.42Al0.58N. Their peak-hardness, due to spinodal decomposition of the supersaturated cubic phase is ~37.0GPa with Ta=900°C, as compared to 34.6GPa with Ta=800°C for Ti0.42Al0.58N. Additionally, even after exposure to ambient air at 950°C for 3h, still >50% of the Ti0.43Al0.55Ce0.02N coating is intact (below the ~1.2μm thin oxide scale), whereas Ti0.42Al0.58N is already fully oxidized. Based on our results we can conclude, that Ce-doping improves the deposition characteristics and mechanical properties as well as thermal stabilities (incl. oxidation resistance) of Ti–Al–N, to be used as protective coatings for a wide range of high-demanding applications. •Ce-doped Ti0.5Al0.5 targets allow for 1.75 higher deposition rates.•The hardness, as deposited as well as after annealing at 900°C, of Ti-Al-N is imporved by doping with Ce.•The formation of hexagonal AlN upon annealing, is postponed from 900 to 1100°C, by doping Ce to Ti-Al-N.•Ce allows for the formation of dense and well-adherent oxide scales, which can effectively retard the oxidation kinetics of Ti-Al-N.
AbstractList Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research activities to further enhance their oxidation resistance and thermal stability. The addition of reactive elements, such as Cerium, can significantly improve especially the oxidation resistance of various materials. Therefore, we study in detail the impact of Ce (2 at.% alloyed to powder metallurgically prepared Ti0.50Al0.50 targets) on growth processes, structure, mechanical properties, thermal stability, and oxidation resistance of magnetron sputtered Ti1−x−yAlxCeyN coatings prepared with DC bias potentials of Ubias=−25, −50, −75, and −100V. The deposition rate is significantly increased by a factor of ~1.75 (Ubias=−25V) to 1.45 (Ubias=−100V) when using Ti0.49Al0.49Ce0.02 instead of Ti0.50Al0.50 targets. Furthermore, also the hardness of the resulting single phase face centered cubic Ti0.43Al0.55Ce0.02N is with ~35GPa above that of Ti0.42Al0.58N with ~34GPa, for coatings on polycrystalline Al2O3 and Ubias=−50V. All temperature dependent characteristics of Ti0.42Al0.58N are improved significantly by the addition of Cerium. Wurtzite-structured AlN formation within Ti0.43Al0.55Ce0.02N can only be detected at Ta=1100°C, about 200°C higher as for Ti0.42Al0.58N. Their peak-hardness, due to spinodal decomposition of the supersaturated cubic phase is ~37.0GPa with Ta=900°C, as compared to 34.6GPa with Ta=800°C for Ti0.42Al0.58N. Additionally, even after exposure to ambient air at 950°C for 3h, still >50% of the Ti0.43Al0.55Ce0.02N coating is intact (below the ~1.2μm thin oxide scale), whereas Ti0.42Al0.58N is already fully oxidized. Based on our results we can conclude, that Ce-doping improves the deposition characteristics and mechanical properties as well as thermal stabilities (incl. oxidation resistance) of Ti–Al–N, to be used as protective coatings for a wide range of high-demanding applications. •Ce-doped Ti0.5Al0.5 targets allow for 1.75 higher deposition rates.•The hardness, as deposited as well as after annealing at 900°C, of Ti-Al-N is imporved by doping with Ce.•The formation of hexagonal AlN upon annealing, is postponed from 900 to 1100°C, by doping Ce to Ti-Al-N.•Ce allows for the formation of dense and well-adherent oxide scales, which can effectively retard the oxidation kinetics of Ti-Al-N.
Author Klimashin, F.F.
Polcik, P.
Mayrhofer, P.H.
Asanuma, H.
Riedl, H.
Kolozsvari, S.
Author_xml – sequence: 1
  givenname: H.
  surname: Asanuma
  fullname: Asanuma, H.
  email: asanuma.hidetoschi@tuwien.ac.at
  organization: Mitsubishi Materials Corporation, 1-3-2, Otemachi, Chiyoda-ku, Tokyo, Japan
– sequence: 2
  givenname: P.
  surname: Polcik
  fullname: Polcik, P.
  organization: Plansee Composite Materials GmbH, D-86983 Lechbruck am See, Germany
– sequence: 3
  givenname: S.
  surname: Kolozsvari
  fullname: Kolozsvari, S.
  organization: Plansee Composite Materials GmbH, D-86983 Lechbruck am See, Germany
– sequence: 4
  givenname: F.F.
  surname: Klimashin
  fullname: Klimashin, F.F.
  organization: Institute of Materials Science and Technology, TU Wien, A-1060 Vienna, Austria
– sequence: 5
  givenname: H.
  surname: Riedl
  fullname: Riedl, H.
  organization: Institute of Materials Science and Technology, TU Wien, A-1060 Vienna, Austria
– sequence: 6
  givenname: P.H.
  surname: Mayrhofer
  fullname: Mayrhofer, P.H.
  organization: Institute of Materials Science and Technology, TU Wien, A-1060 Vienna, Austria
BookMark eNqFUE1LAzEUDFLBtvoXJH9g12Szu9kFD5biFxS91IuXkE1eNGW7KUkq7b83tXrxUhh48N7M8GYmaDS4ARC6piSnhNY3qzxsvVFOxrwglOckgfEzNKYNbzPGSj5CY1JUPGtaXlygSQgrQhKzLcfofQ7ebtdYu40dPrAzeGmzWZ-94INhWgVsnMewU9D3MEQcP8GvZY9DlJ3tbdxjOWjsdlYnuhuwh2DTbVBwic6N7ANc_c4penu4X86fssXr4_N8tsgUo0XMmK7qum4kp4XWpqJd13DWNpyYsjCdqTpJmwo0UYbrRraElJoVPDETjRtN2BTdHn2VdyF4MELZ-PNM9NL2ghJx6EmsxF9P4tCTIAmMJ3n9T77xdi39_rTw7iiEFO7LghdBWUjBtfWgotDOnrL4Bsjiiuc
CitedBy_id crossref_primary_10_1016_j_corsci_2019_108102
crossref_primary_10_1115_1_4039135
crossref_primary_10_1016_j_matdes_2023_111722
crossref_primary_10_1016_j_surfcoat_2019_05_018
crossref_primary_10_1016_j_matdes_2025_113803
crossref_primary_10_1016_j_apsusc_2023_158245
crossref_primary_10_1016_j_surfcoat_2023_129428
crossref_primary_10_1016_j_tsf_2019_05_009
crossref_primary_10_1016_j_solener_2024_112922
crossref_primary_10_1016_j_wear_2020_203389
crossref_primary_10_1016_j_ceramint_2023_10_177
crossref_primary_10_1016_j_mtcomm_2022_103373
crossref_primary_10_1016_j_pmatsci_2024_101323
crossref_primary_10_1016_j_surfcoat_2023_130266
crossref_primary_10_1016_j_tsf_2019_04_014
crossref_primary_10_1038_s41598_018_24242_0
crossref_primary_10_1016_j_matchemphys_2018_05_061
crossref_primary_10_1016_j_surfcoat_2021_127162
crossref_primary_10_1016_j_vacuum_2019_05_016
Cites_doi 10.1116/1.573713
10.1063/1.3524502
10.1016/S0257-8972(00)01080-X
10.1063/1.3610451
10.1016/j.scriptamat.2013.01.039
10.1016/0040-6090(91)90262-V
10.1016/0026-2692(95)00097-6
10.3139/146.101570
10.1016/S0257-8972(98)00550-7
10.1016/j.tsf.2016.01.039
10.1016/j.surfcoat.2015.01.042
10.1007/978-1-4419-9872-9_1
10.1557/JMR.1992.1564
10.1063/1.1608464
10.1016/j.surfcoat.2005.08.132
10.1016/S0257-8972(99)00491-0
10.1063/1.3208065
10.1016/j.jallcom.2008.08.133
10.1103/PhysRevB.85.064101
10.1016/j.tsf.2014.06.043
10.1016/j.surfcoat.2017.01.053
10.1016/0921-5093(89)90730-2
10.1016/j.tsf.2009.04.056
10.1016/j.scriptamat.2016.06.030
10.1179/sur.1998.14.1.37
10.1116/1.573708
10.1016/j.surfcoat.2003.09.037
10.1016/j.surfcoat.2014.10.024
10.1016/j.surfcoat.2013.07.030
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.surfcoat.2017.07.037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 172
ExternalDocumentID 10_1016_j_surfcoat_2017_07_037
S0257897217307272
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
ID FETCH-LOGICAL-c312t-3d56668a712ddf51bb8739870f42fbf5ba185ed0cf7d8a9004d327df58737fd03
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Tue Jul 01 03:07:36 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Fri Feb 23 02:25:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cerium
Oxidation resistance
Ti–Al–N
Lanthanides
Thermal stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-3d56668a712ddf51bb8739870f42fbf5ba185ed0cf7d8a9004d327df58737fd03
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_surfcoat_2017_07_037
crossref_primary_10_1016_j_surfcoat_2017_07_037
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2017_07_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-15
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Surface & coatings technology
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Chen, Pei, Du, Liu, Yue (bb0060) 2014; 565
Pint (bb0080) 2003
Münz (bb0005) 1986; 4
Tsutomu, Hiroshi (bb0120) 1991; 195
Fox-Rabinovich, Beake, Endrino, Veldhuis, Parkinson, Shuster (bb0155) 2006; 200
Tasnádi, Abrikosov, Rogström, Almer, Johansson, Odén (bb0145) 2010; 97
Riedl, Koller, Munnik, Hutter, Mendez Martin, Rachbauer (bb0140) 2016; 603
Prengel, Jindal, Wendt, Santhanam, Hegde, Penich (bb0100) 2001; 139
Danek, Fernandes, Cavaleiro, Polcar (bb0065) 2017; 313
Oliver, Pharr (bb0130) 1992; 7
Riedl, Holec, Rachbauer, Polcik, Hollerweger, Paulitsch (bb0045) 2013; 235
Suzuki, Huang, Ikuhara (bb0110) 1998; 107
Knotek, Böhmer, Leyendecker (bb0010) 1986; 4
Koller, Hollerweger, Sabitzer, Rachbauer, Kolozsvári, Paulitsch (bb0050) 2014; 259
Beckers, Höglund, Baehtz, Martins, Persson, Hultman (bb0025) 2009; 106
Saito, Önay, Maruyama (bb0070) 1993; IV
Hahn, Bartosik, Soler, Kirchlechner, Dehm, Mayrhofer (bb0030) 2016; 124
Mayrhofer, Hultman, Schneider, Staron, Clemens (bb0015) 2007; 98
A.C. Fischer-Cripps, Nanoindentation, (2011) Nanoindentation, pр. 1–279, Springer, New York.
Nikolić, Radić, Minić, Ristić (bb0090) 1996; 27
Kimura, Hasegawa, Yamada, Suzuki (bb0115) 1999; 120–121
Smith, Münz, Donohue, Petrov, Greene (bb0105) 1998; 14
Whittle, Stringer (bb0075) 1980; 295
Weber, Fontaine, Scheib, Bock (bb0095) 2004; 177
Schlögl, Kirchlechner, Paulitsch, Keckes, Mayrhofer (bb0040) 2013; 68
Glatz, Hollerweger, Polcik, Rachbauer, Paulitsch, Mayrhofer (bb0055) 2015; 266
Holec, Friák, Neugebauer, Mayrhofer (bb0150) 2012; 85
Rachbauer, Massl, Stergar, Holec, Kiener, Keckes (bb0020) 2011; 110
Chen, Moser, Du, Mayrhofer (bb0135) 2009; 517
Stringer (bb0085) 1989; 120–121
Cano, Restrepo, Ruden (bb0160) 2009
Mayrhofer, Hörling, Karlsson, Sjölén, Larsson, Mitterer (bb0165) 2003; 83
Stueber, Holleck, Leiste, Seemann, Ulrich, Ziebert (bb0035) 2009; 483
Nikolić (10.1016/j.surfcoat.2017.07.037_bb0090) 1996; 27
Weber (10.1016/j.surfcoat.2017.07.037_bb0095) 2004; 177
Pint (10.1016/j.surfcoat.2017.07.037_bb0080) 2003
Münz (10.1016/j.surfcoat.2017.07.037_bb0005) 1986; 4
Smith (10.1016/j.surfcoat.2017.07.037_bb0105) 1998; 14
Holec (10.1016/j.surfcoat.2017.07.037_bb0150) 2012; 85
Rachbauer (10.1016/j.surfcoat.2017.07.037_bb0020) 2011; 110
Riedl (10.1016/j.surfcoat.2017.07.037_bb0045) 2013; 235
Glatz (10.1016/j.surfcoat.2017.07.037_bb0055) 2015; 266
Xu (10.1016/j.surfcoat.2017.07.037_bb0060) 2014; 565
Koller (10.1016/j.surfcoat.2017.07.037_bb0050) 2014; 259
Beckers (10.1016/j.surfcoat.2017.07.037_bb0025) 2009; 106
Stringer (10.1016/j.surfcoat.2017.07.037_bb0085) 1989; 120–121
Cano (10.1016/j.surfcoat.2017.07.037_bb0160) 2009
10.1016/j.surfcoat.2017.07.037_bb0125
Mayrhofer (10.1016/j.surfcoat.2017.07.037_bb0165) 2003; 83
Hahn (10.1016/j.surfcoat.2017.07.037_bb0030) 2016; 124
Stueber (10.1016/j.surfcoat.2017.07.037_bb0035) 2009; 483
Suzuki (10.1016/j.surfcoat.2017.07.037_bb0110) 1998; 107
Mayrhofer (10.1016/j.surfcoat.2017.07.037_bb0015) 2007; 98
Saito (10.1016/j.surfcoat.2017.07.037_bb0070) 1993; IV
Tasnádi (10.1016/j.surfcoat.2017.07.037_bb0145) 2010; 97
Danek (10.1016/j.surfcoat.2017.07.037_bb0065) 2017; 313
Whittle (10.1016/j.surfcoat.2017.07.037_bb0075) 1980; 295
Fox-Rabinovich (10.1016/j.surfcoat.2017.07.037_bb0155) 2006; 200
Prengel (10.1016/j.surfcoat.2017.07.037_bb0100) 2001; 139
Knotek (10.1016/j.surfcoat.2017.07.037_bb0010) 1986; 4
Kimura (10.1016/j.surfcoat.2017.07.037_bb0115) 1999; 120–121
Oliver (10.1016/j.surfcoat.2017.07.037_bb0130) 1992; 7
Tsutomu (10.1016/j.surfcoat.2017.07.037_bb0120) 1991; 195
Riedl (10.1016/j.surfcoat.2017.07.037_bb0140) 2016; 603
Chen (10.1016/j.surfcoat.2017.07.037_bb0135) 2009; 517
Schlögl (10.1016/j.surfcoat.2017.07.037_bb0040) 2013; 68
References_xml – volume: IV
  year: 1993
  ident: bb0070
  article-title: The reactive element effect (REE) in oxidation of alloys
  publication-title: Le J. Phys.
– volume: 107
  start-page: 41
  year: 1998
  end-page: 47
  ident: bb0110
  article-title: Microstructures and grain boundaries of (Ti,Al)N films
  publication-title: Surf. Coat. Technol.
– volume: 85
  start-page: 64101
  year: 2012
  ident: bb0150
  article-title: Trends in the elastic response of binary early transition metal nitrides
  publication-title: Phys. Rev. B
– volume: 295
  year: 1980
  ident: bb0075
  article-title: Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions
  publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.
– volume: 517
  start-page: 6635
  year: 2009
  end-page: 6641
  ident: bb0135
  article-title: Compositional and structural evolution of sputtered Ti-Al-N
  publication-title: Thin Solid Films
– volume: 4
  start-page: 2717
  year: 1986
  ident: bb0005
  article-title: Titanium aluminum nitride films: a new alternative to TiN coatings
  publication-title: J. Vac. Sci. Technol. A
– volume: 235
  start-page: 174
  year: 2013
  end-page: 180
  ident: bb0045
  article-title: Phase stability, mechanical properties and thermal stability of Y alloyed Ti–Al–N coatings
  publication-title: Surf. Coat. Technol.
– volume: 266
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0055
  article-title: Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings
  publication-title: Surf. Coat. Technol.
– year: 2009
  ident: bb0160
  article-title: The effect of substrate temperatures on tribological behavior of Ti-Al-N coating deposited by magnetron sputtering
  publication-title: Rev. Soc.
– volume: 313
  start-page: 158
  year: 2017
  end-page: 167
  ident: bb0065
  article-title: Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films
  publication-title: Surf. Coat. Technol.
– volume: 98
  start-page: 1054
  year: 2007
  end-page: 1059
  ident: bb0015
  article-title: Spinodal decomposition of cubic Ti
  publication-title: Int. J. Mater. Res.
– volume: 139
  start-page: 25
  year: 2001
  end-page: 34
  ident: bb0100
  article-title: A new class of high performance PVD coatings for carbide cutting tools
  publication-title: Surf. Coat. Technol.
– volume: 195
  start-page: 99
  year: 1991
  end-page: 110
  ident: bb0120
  article-title: Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method
  publication-title: Thin Solid Films
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  ident: bb0130
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
– volume: 124
  start-page: 67
  year: 2016
  end-page: 70
  ident: bb0030
  article-title: Superlattice effect for enhanced fracture toughness of hard coatings
  publication-title: Scr. Mater.
– volume: 14
  start-page: 37
  year: 1998
  end-page: 42
  ident: bb0105
  article-title: Improved Ti
  publication-title: Surf. Eng.
– volume: 97
  start-page: 231902
  year: 2010
  ident: bb0145
  article-title: Significant elastic anisotropy in Ti
  publication-title: Appl. Phys. Lett.
– volume: 603
  start-page: 39
  year: 2016
  end-page: 49
  ident: bb0140
  article-title: Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti–Al–N thin films
  publication-title: Thin Solid Films
– volume: 483
  start-page: 321
  year: 2009
  end-page: 333
  ident: bb0035
  article-title: Concepts for the design of advanced nanoscale PVD multilayer protective thin films
  publication-title: J. Alloys Compd.
– volume: 110
  start-page: 23515
  year: 2011
  ident: bb0020
  article-title: Decomposition pathways in age hardening of Ti-Al-N films
  publication-title: J. Appl. Phys.
– volume: 200
  start-page: 5738
  year: 2006
  end-page: 5742
  ident: bb0155
  article-title: Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings
  publication-title: Surf. Coat. Technol.
– volume: 565
  start-page: 25
  year: 2014
  end-page: 31
  ident: bb0060
  article-title: Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings
  publication-title: Thin Solid Films
– volume: 120–121
  start-page: 129
  year: 1989
  end-page: 137
  ident: bb0085
  article-title: The reactive element effect in high-temperature corrosion
  publication-title: Mater. Sci. Eng. A
– reference: A.C. Fischer-Cripps, Nanoindentation, (2011) Nanoindentation, pр. 1–279, Springer, New York.
– volume: 120–121
  start-page: 438
  year: 1999
  end-page: 441
  ident: bb0115
  article-title: Effects of Al content on hardness, lattice parameter and microstructure of Ti
  publication-title: Surf. Coat. Technol.
– volume: 4
  start-page: 2695
  year: 1986
  end-page: 2700
  ident: bb0010
  article-title: On structure and properties of sputtered Ti and Al based hard compound films
  publication-title: J. Vac. Sci. Technol. A
– volume: 68
  start-page: 917
  year: 2013
  end-page: 920
  ident: bb0040
  article-title: Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings
  publication-title: Scr. Mater.
– volume: 27
  start-page: 93
  year: 1996
  end-page: 96
  ident: bb0090
  article-title: The dependence of the work function of rare earth metals on their electron structure
  publication-title: Microelectron. J.
– start-page: 9
  year: 2003
  end-page: 19
  ident: bb0080
  article-title: Progress in understanding the reactive element effect since the whittle and stringer literature review
  publication-title: Proc. John Stringer Symp. High Temp. Corros. Citeseer
– volume: 177
  start-page: 227
  year: 2004
  end-page: 232
  ident: bb0095
  article-title: Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties
  publication-title: Surf. Coat. Technol.
– volume: 106
  start-page: 64915
  year: 2009
  ident: bb0025
  article-title: The influence of substrate temperature and Al mobility on the microstructural evolution of magnetron sputtered ternary Ti–Al–N thin films
  publication-title: J. Appl. Phys.
– volume: 259
  start-page: 599
  year: 2014
  end-page: 607
  ident: bb0050
  article-title: Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings
  publication-title: Surf. Coat. Technol.
– volume: 83
  start-page: 2049
  year: 2003
  ident: bb0165
  article-title: Self-organized nanostructures in the Ti–Al–N system
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 2717
  year: 1986
  ident: 10.1016/j.surfcoat.2017.07.037_bb0005
  article-title: Titanium aluminum nitride films: a new alternative to TiN coatings
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.573713
– volume: 97
  start-page: 231902
  year: 2010
  ident: 10.1016/j.surfcoat.2017.07.037_bb0145
  article-title: Significant elastic anisotropy in Ti1-xAlxNalloys
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3524502
– volume: 139
  start-page: 25
  year: 2001
  ident: 10.1016/j.surfcoat.2017.07.037_bb0100
  article-title: A new class of high performance PVD coatings for carbide cutting tools
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(00)01080-X
– volume: 110
  start-page: 23515
  year: 2011
  ident: 10.1016/j.surfcoat.2017.07.037_bb0020
  article-title: Decomposition pathways in age hardening of Ti-Al-N films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3610451
– volume: 68
  start-page: 917
  year: 2013
  ident: 10.1016/j.surfcoat.2017.07.037_bb0040
  article-title: Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2013.01.039
– volume: IV
  issue: 3
  year: 1993
  ident: 10.1016/j.surfcoat.2017.07.037_bb0070
  article-title: The reactive element effect (REE) in oxidation of alloys
  publication-title: Le J. Phys.
– start-page: 9
  year: 2003
  ident: 10.1016/j.surfcoat.2017.07.037_bb0080
  article-title: Progress in understanding the reactive element effect since the whittle and stringer literature review
– volume: 195
  start-page: 99
  year: 1991
  ident: 10.1016/j.surfcoat.2017.07.037_bb0120
  article-title: Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(91)90262-V
– volume: 27
  start-page: 93
  year: 1996
  ident: 10.1016/j.surfcoat.2017.07.037_bb0090
  article-title: The dependence of the work function of rare earth metals on their electron structure
  publication-title: Microelectron. J.
  doi: 10.1016/0026-2692(95)00097-6
– volume: 98
  start-page: 1054
  year: 2007
  ident: 10.1016/j.surfcoat.2017.07.037_bb0015
  article-title: Spinodal decomposition of cubic Ti1−xAlxN: Comparison between experiments and modeling
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.101570
– volume: 295
  year: 1980
  ident: 10.1016/j.surfcoat.2017.07.037_bb0075
  article-title: Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions
  publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.
– volume: 107
  start-page: 41
  year: 1998
  ident: 10.1016/j.surfcoat.2017.07.037_bb0110
  article-title: Microstructures and grain boundaries of (Ti,Al)N films
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(98)00550-7
– volume: 603
  start-page: 39
  year: 2016
  ident: 10.1016/j.surfcoat.2017.07.037_bb0140
  article-title: Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti–Al–N thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.01.039
– volume: 266
  start-page: 1
  year: 2015
  ident: 10.1016/j.surfcoat.2017.07.037_bb0055
  article-title: Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.01.042
– ident: 10.1016/j.surfcoat.2017.07.037_bb0125
  doi: 10.1007/978-1-4419-9872-9_1
– volume: 7
  start-page: 1564
  year: 1992
  ident: 10.1016/j.surfcoat.2017.07.037_bb0130
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 83
  start-page: 2049
  year: 2003
  ident: 10.1016/j.surfcoat.2017.07.037_bb0165
  article-title: Self-organized nanostructures in the Ti–Al–N system
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1608464
– volume: 200
  start-page: 5738
  year: 2006
  ident: 10.1016/j.surfcoat.2017.07.037_bb0155
  article-title: Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.08.132
– volume: 120–121
  start-page: 438
  year: 1999
  ident: 10.1016/j.surfcoat.2017.07.037_bb0115
  article-title: Effects of Al content on hardness, lattice parameter and microstructure of Ti1-xAlxN
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(99)00491-0
– volume: 106
  start-page: 64915
  year: 2009
  ident: 10.1016/j.surfcoat.2017.07.037_bb0025
  article-title: The influence of substrate temperature and Al mobility on the microstructural evolution of magnetron sputtered ternary Ti–Al–N thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3208065
– year: 2009
  ident: 10.1016/j.surfcoat.2017.07.037_bb0160
  article-title: The effect of substrate temperatures on tribological behavior of Ti-Al-N coating deposited by magnetron sputtering
  publication-title: Rev. Soc.
– volume: 483
  start-page: 321
  year: 2009
  ident: 10.1016/j.surfcoat.2017.07.037_bb0035
  article-title: Concepts for the design of advanced nanoscale PVD multilayer protective thin films
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.08.133
– volume: 85
  start-page: 64101
  year: 2012
  ident: 10.1016/j.surfcoat.2017.07.037_bb0150
  article-title: Trends in the elastic response of binary early transition metal nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.064101
– volume: 565
  start-page: 25
  year: 2014
  ident: 10.1016/j.surfcoat.2017.07.037_bb0060
  article-title: Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.06.043
– volume: 313
  start-page: 158
  year: 2017
  ident: 10.1016/j.surfcoat.2017.07.037_bb0065
  article-title: Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.01.053
– volume: 120–121
  start-page: 129
  year: 1989
  ident: 10.1016/j.surfcoat.2017.07.037_bb0085
  article-title: The reactive element effect in high-temperature corrosion
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(89)90730-2
– volume: 517
  start-page: 6635
  year: 2009
  ident: 10.1016/j.surfcoat.2017.07.037_bb0135
  article-title: Compositional and structural evolution of sputtered Ti-Al-N
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.04.056
– volume: 124
  start-page: 67
  year: 2016
  ident: 10.1016/j.surfcoat.2017.07.037_bb0030
  article-title: Superlattice effect for enhanced fracture toughness of hard coatings
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.06.030
– volume: 14
  start-page: 37
  year: 1998
  ident: 10.1016/j.surfcoat.2017.07.037_bb0105
  article-title: Improved Ti1−xAlxN PVD coatings for dry high speed cutting operations
  publication-title: Surf. Eng.
  doi: 10.1179/sur.1998.14.1.37
– volume: 4
  start-page: 2695
  year: 1986
  ident: 10.1016/j.surfcoat.2017.07.037_bb0010
  article-title: On structure and properties of sputtered Ti and Al based hard compound films
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.573708
– volume: 177
  start-page: 227
  year: 2004
  ident: 10.1016/j.surfcoat.2017.07.037_bb0095
  article-title: Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2003.09.037
– volume: 259
  start-page: 599
  year: 2014
  ident: 10.1016/j.surfcoat.2017.07.037_bb0050
  article-title: Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.10.024
– volume: 235
  start-page: 174
  year: 2013
  ident: 10.1016/j.surfcoat.2017.07.037_bb0045
  article-title: Phase stability, mechanical properties and thermal stability of Y alloyed Ti–Al–N coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.07.030
SSID ssj0001794
Score 2.3331108
Snippet Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 165
SubjectTerms Cerium
Lanthanides
Oxidation resistance
Thermal stability
Ti–Al–N
Title Cerium doping of Ti-Al-N coatings for excellent thermal stability and oxidation resistance
URI https://dx.doi.org/10.1016/j.surfcoat.2017.07.037
Volume 326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaFWsj7IHr2t289rkWIqlKvRiC8VLyGZ3oaVNS2mhXvztzuShFYQehBySsJMNk8nMl803M4Q8yCiUyriC2cxw5gdKMhVzyyBWCJHJUFlTEGQHYX_kv4yDcYN061wYpFVWvr_06YW3rs44lTad5WTivHG0Niw-A0aKvxMxg92XSOt7_PyheaDBFessAXhjGL2TJTwF_7Sy2SJFTqWQRRFP7If-V4DaCTq9M3JaoUXaKW_onDRM3iRH3bpJW5Oc7NQTvCDvXdjZzKkusqDowtLhhHVmbEBxelwTp4BRqdkWy_X5miL6m8MEABELkuwHTXNNF9tJ2WmJwrc44ktQyiUZ9Z6G3T6rmiewzBPumnkagFoYpVK4WttAKBVJL4a30_quVTZQKURqo3lmpY7SGN4V7bkSRsIwaTX3rshBvsjNNaE2FjrVKbehdX0ZB0rzOOJpbOHiJrS8RYJaY0lWVRbHBhezpKaQTZNa0wlqOuGwebJFnG-5ZVlbY69EXD-Q5JeVJBAA9sje_EP2lhzjEcYsEdyRg_VqY-4BjKxVu7C2NjnsPL_2B196COEo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED7adEg7lD7puxq6Ckt-yR6DaXFfWZpA6GIsS4KExgkhhfbf9-RHSKGQoeDB2DrLnE93n873ALgTUSikdjk1hWbUD6SgMmaGoq3gvBChNLoKkO2H6dB_GgWjLUjaXBgbVtno_lqnV9q6ueI03HTm47Hzxqy02eIzKKT2d-I27NjqVH4HdnqPz2l_pZCtzFWulgAVMhKsJQpPUEUtTDHLbVglF1UdT9sS_S8btWZ3Hg5gvwGMpFe_0yFs6fIIuknbp-0I9tZKCh7De4Inn1OiqkQoMjNkMKa9D9ondnrrFicIU4n-qjz25ZJYADjFCRAlVnGy3yQvFZl9jetmSwS34xZiIl9OYPhwP0hS2vRPoIXH3SX1FGK1MMoFd5UyAZcyEl6MC9T4rpEmkDkaa61YYYSK8hiXi_JcgSNxmDCKeafQKWelPgNiYq5ylTMTGtcXcSAViyOWxwYfrkPDziFoOZYVTXFx2-PiI2ujyCZZy-nMcjpjeHjiHJwV3bwur7GRIm4_SPZLUDK0ARtoL_5BewvddPD6kr089p8vYdfesSaMB1fQWS4-9TVik6W8aWTvBzRF49k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerium+doping+of+Ti-Al-N+coatings+for+excellent+thermal+stability+and+oxidation+resistance&rft.jtitle=Surface+%26+coatings+technology&rft.au=Asanuma%2C+H.&rft.au=Polcik%2C+P.&rft.au=Kolozsvari%2C+S.&rft.au=Klimashin%2C+F.F.&rft.date=2017-10-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=326&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1016%2Fj.surfcoat.2017.07.037&rft.externalDocID=S0257897217307272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon