Cerium doping of Ti-Al-N coatings for excellent thermal stability and oxidation resistance
Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research activities to further enhance their oxidation resistance and thermal stability. The addition of reactive elements, such as Cerium, can signific...
Saved in:
Published in | Surface & coatings technology Vol. 326; pp. 165 - 172 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 1879-3347 |
DOI | 10.1016/j.surfcoat.2017.07.037 |
Cover
Loading…
Abstract | Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research activities to further enhance their oxidation resistance and thermal stability. The addition of reactive elements, such as Cerium, can significantly improve especially the oxidation resistance of various materials. Therefore, we study in detail the impact of Ce (2 at.% alloyed to powder metallurgically prepared Ti0.50Al0.50 targets) on growth processes, structure, mechanical properties, thermal stability, and oxidation resistance of magnetron sputtered Ti1−x−yAlxCeyN coatings prepared with DC bias potentials of Ubias=−25, −50, −75, and −100V. The deposition rate is significantly increased by a factor of ~1.75 (Ubias=−25V) to 1.45 (Ubias=−100V) when using Ti0.49Al0.49Ce0.02 instead of Ti0.50Al0.50 targets. Furthermore, also the hardness of the resulting single phase face centered cubic Ti0.43Al0.55Ce0.02N is with ~35GPa above that of Ti0.42Al0.58N with ~34GPa, for coatings on polycrystalline Al2O3 and Ubias=−50V.
All temperature dependent characteristics of Ti0.42Al0.58N are improved significantly by the addition of Cerium. Wurtzite-structured AlN formation within Ti0.43Al0.55Ce0.02N can only be detected at Ta=1100°C, about 200°C higher as for Ti0.42Al0.58N. Their peak-hardness, due to spinodal decomposition of the supersaturated cubic phase is ~37.0GPa with Ta=900°C, as compared to 34.6GPa with Ta=800°C for Ti0.42Al0.58N. Additionally, even after exposure to ambient air at 950°C for 3h, still >50% of the Ti0.43Al0.55Ce0.02N coating is intact (below the ~1.2μm thin oxide scale), whereas Ti0.42Al0.58N is already fully oxidized.
Based on our results we can conclude, that Ce-doping improves the deposition characteristics and mechanical properties as well as thermal stabilities (incl. oxidation resistance) of Ti–Al–N, to be used as protective coatings for a wide range of high-demanding applications.
•Ce-doped Ti0.5Al0.5 targets allow for 1.75 higher deposition rates.•The hardness, as deposited as well as after annealing at 900°C, of Ti-Al-N is imporved by doping with Ce.•The formation of hexagonal AlN upon annealing, is postponed from 900 to 1100°C, by doping Ce to Ti-Al-N.•Ce allows for the formation of dense and well-adherent oxide scales, which can effectively retard the oxidation kinetics of Ti-Al-N. |
---|---|
AbstractList | Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research activities to further enhance their oxidation resistance and thermal stability. The addition of reactive elements, such as Cerium, can significantly improve especially the oxidation resistance of various materials. Therefore, we study in detail the impact of Ce (2 at.% alloyed to powder metallurgically prepared Ti0.50Al0.50 targets) on growth processes, structure, mechanical properties, thermal stability, and oxidation resistance of magnetron sputtered Ti1−x−yAlxCeyN coatings prepared with DC bias potentials of Ubias=−25, −50, −75, and −100V. The deposition rate is significantly increased by a factor of ~1.75 (Ubias=−25V) to 1.45 (Ubias=−100V) when using Ti0.49Al0.49Ce0.02 instead of Ti0.50Al0.50 targets. Furthermore, also the hardness of the resulting single phase face centered cubic Ti0.43Al0.55Ce0.02N is with ~35GPa above that of Ti0.42Al0.58N with ~34GPa, for coatings on polycrystalline Al2O3 and Ubias=−50V.
All temperature dependent characteristics of Ti0.42Al0.58N are improved significantly by the addition of Cerium. Wurtzite-structured AlN formation within Ti0.43Al0.55Ce0.02N can only be detected at Ta=1100°C, about 200°C higher as for Ti0.42Al0.58N. Their peak-hardness, due to spinodal decomposition of the supersaturated cubic phase is ~37.0GPa with Ta=900°C, as compared to 34.6GPa with Ta=800°C for Ti0.42Al0.58N. Additionally, even after exposure to ambient air at 950°C for 3h, still >50% of the Ti0.43Al0.55Ce0.02N coating is intact (below the ~1.2μm thin oxide scale), whereas Ti0.42Al0.58N is already fully oxidized.
Based on our results we can conclude, that Ce-doping improves the deposition characteristics and mechanical properties as well as thermal stabilities (incl. oxidation resistance) of Ti–Al–N, to be used as protective coatings for a wide range of high-demanding applications.
•Ce-doped Ti0.5Al0.5 targets allow for 1.75 higher deposition rates.•The hardness, as deposited as well as after annealing at 900°C, of Ti-Al-N is imporved by doping with Ce.•The formation of hexagonal AlN upon annealing, is postponed from 900 to 1100°C, by doping Ce to Ti-Al-N.•Ce allows for the formation of dense and well-adherent oxide scales, which can effectively retard the oxidation kinetics of Ti-Al-N. |
Author | Klimashin, F.F. Polcik, P. Mayrhofer, P.H. Asanuma, H. Riedl, H. Kolozsvari, S. |
Author_xml | – sequence: 1 givenname: H. surname: Asanuma fullname: Asanuma, H. email: asanuma.hidetoschi@tuwien.ac.at organization: Mitsubishi Materials Corporation, 1-3-2, Otemachi, Chiyoda-ku, Tokyo, Japan – sequence: 2 givenname: P. surname: Polcik fullname: Polcik, P. organization: Plansee Composite Materials GmbH, D-86983 Lechbruck am See, Germany – sequence: 3 givenname: S. surname: Kolozsvari fullname: Kolozsvari, S. organization: Plansee Composite Materials GmbH, D-86983 Lechbruck am See, Germany – sequence: 4 givenname: F.F. surname: Klimashin fullname: Klimashin, F.F. organization: Institute of Materials Science and Technology, TU Wien, A-1060 Vienna, Austria – sequence: 5 givenname: H. surname: Riedl fullname: Riedl, H. organization: Institute of Materials Science and Technology, TU Wien, A-1060 Vienna, Austria – sequence: 6 givenname: P.H. surname: Mayrhofer fullname: Mayrhofer, P.H. organization: Institute of Materials Science and Technology, TU Wien, A-1060 Vienna, Austria |
BookMark | eNqFUE1LAzEUDFLBtvoXJH9g12Szu9kFD5biFxS91IuXkE1eNGW7KUkq7b83tXrxUhh48N7M8GYmaDS4ARC6piSnhNY3qzxsvVFOxrwglOckgfEzNKYNbzPGSj5CY1JUPGtaXlygSQgrQhKzLcfofQ7ebtdYu40dPrAzeGmzWZ-94INhWgVsnMewU9D3MEQcP8GvZY9DlJ3tbdxjOWjsdlYnuhuwh2DTbVBwic6N7ANc_c4penu4X86fssXr4_N8tsgUo0XMmK7qum4kp4XWpqJd13DWNpyYsjCdqTpJmwo0UYbrRraElJoVPDETjRtN2BTdHn2VdyF4MELZ-PNM9NL2ghJx6EmsxF9P4tCTIAmMJ3n9T77xdi39_rTw7iiEFO7LghdBWUjBtfWgotDOnrL4Bsjiiuc |
CitedBy_id | crossref_primary_10_1016_j_corsci_2019_108102 crossref_primary_10_1115_1_4039135 crossref_primary_10_1016_j_matdes_2023_111722 crossref_primary_10_1016_j_surfcoat_2019_05_018 crossref_primary_10_1016_j_matdes_2025_113803 crossref_primary_10_1016_j_apsusc_2023_158245 crossref_primary_10_1016_j_surfcoat_2023_129428 crossref_primary_10_1016_j_tsf_2019_05_009 crossref_primary_10_1016_j_solener_2024_112922 crossref_primary_10_1016_j_wear_2020_203389 crossref_primary_10_1016_j_ceramint_2023_10_177 crossref_primary_10_1016_j_mtcomm_2022_103373 crossref_primary_10_1016_j_pmatsci_2024_101323 crossref_primary_10_1016_j_surfcoat_2023_130266 crossref_primary_10_1016_j_tsf_2019_04_014 crossref_primary_10_1038_s41598_018_24242_0 crossref_primary_10_1016_j_matchemphys_2018_05_061 crossref_primary_10_1016_j_surfcoat_2021_127162 crossref_primary_10_1016_j_vacuum_2019_05_016 |
Cites_doi | 10.1116/1.573713 10.1063/1.3524502 10.1016/S0257-8972(00)01080-X 10.1063/1.3610451 10.1016/j.scriptamat.2013.01.039 10.1016/0040-6090(91)90262-V 10.1016/0026-2692(95)00097-6 10.3139/146.101570 10.1016/S0257-8972(98)00550-7 10.1016/j.tsf.2016.01.039 10.1016/j.surfcoat.2015.01.042 10.1007/978-1-4419-9872-9_1 10.1557/JMR.1992.1564 10.1063/1.1608464 10.1016/j.surfcoat.2005.08.132 10.1016/S0257-8972(99)00491-0 10.1063/1.3208065 10.1016/j.jallcom.2008.08.133 10.1103/PhysRevB.85.064101 10.1016/j.tsf.2014.06.043 10.1016/j.surfcoat.2017.01.053 10.1016/0921-5093(89)90730-2 10.1016/j.tsf.2009.04.056 10.1016/j.scriptamat.2016.06.030 10.1179/sur.1998.14.1.37 10.1116/1.573708 10.1016/j.surfcoat.2003.09.037 10.1016/j.surfcoat.2014.10.024 10.1016/j.surfcoat.2013.07.030 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.surfcoat.2017.07.037 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
EndPage | 172 |
ExternalDocumentID | 10_1016_j_surfcoat_2017_07_037 S0257897217307272 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG SSH WUQ |
ID | FETCH-LOGICAL-c312t-3d56668a712ddf51bb8739870f42fbf5ba185ed0cf7d8a9004d327df58737fd03 |
IEDL.DBID | .~1 |
ISSN | 0257-8972 |
IngestDate | Tue Jul 01 03:07:36 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Fri Feb 23 02:25:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cerium Oxidation resistance Ti–Al–N Lanthanides Thermal stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-3d56668a712ddf51bb8739870f42fbf5ba185ed0cf7d8a9004d327df58737fd03 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_surfcoat_2017_07_037 crossref_primary_10_1016_j_surfcoat_2017_07_037 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2017_07_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-15 |
PublicationDateYYYYMMDD | 2017-10-15 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Chen, Pei, Du, Liu, Yue (bb0060) 2014; 565 Pint (bb0080) 2003 Münz (bb0005) 1986; 4 Tsutomu, Hiroshi (bb0120) 1991; 195 Fox-Rabinovich, Beake, Endrino, Veldhuis, Parkinson, Shuster (bb0155) 2006; 200 Tasnádi, Abrikosov, Rogström, Almer, Johansson, Odén (bb0145) 2010; 97 Riedl, Koller, Munnik, Hutter, Mendez Martin, Rachbauer (bb0140) 2016; 603 Prengel, Jindal, Wendt, Santhanam, Hegde, Penich (bb0100) 2001; 139 Danek, Fernandes, Cavaleiro, Polcar (bb0065) 2017; 313 Oliver, Pharr (bb0130) 1992; 7 Riedl, Holec, Rachbauer, Polcik, Hollerweger, Paulitsch (bb0045) 2013; 235 Suzuki, Huang, Ikuhara (bb0110) 1998; 107 Knotek, Böhmer, Leyendecker (bb0010) 1986; 4 Koller, Hollerweger, Sabitzer, Rachbauer, Kolozsvári, Paulitsch (bb0050) 2014; 259 Beckers, Höglund, Baehtz, Martins, Persson, Hultman (bb0025) 2009; 106 Saito, Önay, Maruyama (bb0070) 1993; IV Hahn, Bartosik, Soler, Kirchlechner, Dehm, Mayrhofer (bb0030) 2016; 124 Mayrhofer, Hultman, Schneider, Staron, Clemens (bb0015) 2007; 98 A.C. Fischer-Cripps, Nanoindentation, (2011) Nanoindentation, pр. 1–279, Springer, New York. Nikolić, Radić, Minić, Ristić (bb0090) 1996; 27 Kimura, Hasegawa, Yamada, Suzuki (bb0115) 1999; 120–121 Smith, Münz, Donohue, Petrov, Greene (bb0105) 1998; 14 Whittle, Stringer (bb0075) 1980; 295 Weber, Fontaine, Scheib, Bock (bb0095) 2004; 177 Schlögl, Kirchlechner, Paulitsch, Keckes, Mayrhofer (bb0040) 2013; 68 Glatz, Hollerweger, Polcik, Rachbauer, Paulitsch, Mayrhofer (bb0055) 2015; 266 Holec, Friák, Neugebauer, Mayrhofer (bb0150) 2012; 85 Rachbauer, Massl, Stergar, Holec, Kiener, Keckes (bb0020) 2011; 110 Chen, Moser, Du, Mayrhofer (bb0135) 2009; 517 Stringer (bb0085) 1989; 120–121 Cano, Restrepo, Ruden (bb0160) 2009 Mayrhofer, Hörling, Karlsson, Sjölén, Larsson, Mitterer (bb0165) 2003; 83 Stueber, Holleck, Leiste, Seemann, Ulrich, Ziebert (bb0035) 2009; 483 Nikolić (10.1016/j.surfcoat.2017.07.037_bb0090) 1996; 27 Weber (10.1016/j.surfcoat.2017.07.037_bb0095) 2004; 177 Pint (10.1016/j.surfcoat.2017.07.037_bb0080) 2003 Münz (10.1016/j.surfcoat.2017.07.037_bb0005) 1986; 4 Smith (10.1016/j.surfcoat.2017.07.037_bb0105) 1998; 14 Holec (10.1016/j.surfcoat.2017.07.037_bb0150) 2012; 85 Rachbauer (10.1016/j.surfcoat.2017.07.037_bb0020) 2011; 110 Riedl (10.1016/j.surfcoat.2017.07.037_bb0045) 2013; 235 Glatz (10.1016/j.surfcoat.2017.07.037_bb0055) 2015; 266 Xu (10.1016/j.surfcoat.2017.07.037_bb0060) 2014; 565 Koller (10.1016/j.surfcoat.2017.07.037_bb0050) 2014; 259 Beckers (10.1016/j.surfcoat.2017.07.037_bb0025) 2009; 106 Stringer (10.1016/j.surfcoat.2017.07.037_bb0085) 1989; 120–121 Cano (10.1016/j.surfcoat.2017.07.037_bb0160) 2009 10.1016/j.surfcoat.2017.07.037_bb0125 Mayrhofer (10.1016/j.surfcoat.2017.07.037_bb0165) 2003; 83 Hahn (10.1016/j.surfcoat.2017.07.037_bb0030) 2016; 124 Stueber (10.1016/j.surfcoat.2017.07.037_bb0035) 2009; 483 Suzuki (10.1016/j.surfcoat.2017.07.037_bb0110) 1998; 107 Mayrhofer (10.1016/j.surfcoat.2017.07.037_bb0015) 2007; 98 Saito (10.1016/j.surfcoat.2017.07.037_bb0070) 1993; IV Tasnádi (10.1016/j.surfcoat.2017.07.037_bb0145) 2010; 97 Danek (10.1016/j.surfcoat.2017.07.037_bb0065) 2017; 313 Whittle (10.1016/j.surfcoat.2017.07.037_bb0075) 1980; 295 Fox-Rabinovich (10.1016/j.surfcoat.2017.07.037_bb0155) 2006; 200 Prengel (10.1016/j.surfcoat.2017.07.037_bb0100) 2001; 139 Knotek (10.1016/j.surfcoat.2017.07.037_bb0010) 1986; 4 Kimura (10.1016/j.surfcoat.2017.07.037_bb0115) 1999; 120–121 Oliver (10.1016/j.surfcoat.2017.07.037_bb0130) 1992; 7 Tsutomu (10.1016/j.surfcoat.2017.07.037_bb0120) 1991; 195 Riedl (10.1016/j.surfcoat.2017.07.037_bb0140) 2016; 603 Chen (10.1016/j.surfcoat.2017.07.037_bb0135) 2009; 517 Schlögl (10.1016/j.surfcoat.2017.07.037_bb0040) 2013; 68 |
References_xml | – volume: IV year: 1993 ident: bb0070 article-title: The reactive element effect (REE) in oxidation of alloys publication-title: Le J. Phys. – volume: 107 start-page: 41 year: 1998 end-page: 47 ident: bb0110 article-title: Microstructures and grain boundaries of (Ti,Al)N films publication-title: Surf. Coat. Technol. – volume: 85 start-page: 64101 year: 2012 ident: bb0150 article-title: Trends in the elastic response of binary early transition metal nitrides publication-title: Phys. Rev. B – volume: 295 year: 1980 ident: bb0075 article-title: Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. – volume: 517 start-page: 6635 year: 2009 end-page: 6641 ident: bb0135 article-title: Compositional and structural evolution of sputtered Ti-Al-N publication-title: Thin Solid Films – volume: 4 start-page: 2717 year: 1986 ident: bb0005 article-title: Titanium aluminum nitride films: a new alternative to TiN coatings publication-title: J. Vac. Sci. Technol. A – volume: 235 start-page: 174 year: 2013 end-page: 180 ident: bb0045 article-title: Phase stability, mechanical properties and thermal stability of Y alloyed Ti–Al–N coatings publication-title: Surf. Coat. Technol. – volume: 266 start-page: 1 year: 2015 end-page: 9 ident: bb0055 article-title: Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings publication-title: Surf. Coat. Technol. – year: 2009 ident: bb0160 article-title: The effect of substrate temperatures on tribological behavior of Ti-Al-N coating deposited by magnetron sputtering publication-title: Rev. Soc. – volume: 313 start-page: 158 year: 2017 end-page: 167 ident: bb0065 article-title: Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films publication-title: Surf. Coat. Technol. – volume: 98 start-page: 1054 year: 2007 end-page: 1059 ident: bb0015 article-title: Spinodal decomposition of cubic Ti publication-title: Int. J. Mater. Res. – volume: 139 start-page: 25 year: 2001 end-page: 34 ident: bb0100 article-title: A new class of high performance PVD coatings for carbide cutting tools publication-title: Surf. Coat. Technol. – volume: 195 start-page: 99 year: 1991 end-page: 110 ident: bb0120 article-title: Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method publication-title: Thin Solid Films – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: bb0130 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. – volume: 124 start-page: 67 year: 2016 end-page: 70 ident: bb0030 article-title: Superlattice effect for enhanced fracture toughness of hard coatings publication-title: Scr. Mater. – volume: 14 start-page: 37 year: 1998 end-page: 42 ident: bb0105 article-title: Improved Ti publication-title: Surf. Eng. – volume: 97 start-page: 231902 year: 2010 ident: bb0145 article-title: Significant elastic anisotropy in Ti publication-title: Appl. Phys. Lett. – volume: 603 start-page: 39 year: 2016 end-page: 49 ident: bb0140 article-title: Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti–Al–N thin films publication-title: Thin Solid Films – volume: 483 start-page: 321 year: 2009 end-page: 333 ident: bb0035 article-title: Concepts for the design of advanced nanoscale PVD multilayer protective thin films publication-title: J. Alloys Compd. – volume: 110 start-page: 23515 year: 2011 ident: bb0020 article-title: Decomposition pathways in age hardening of Ti-Al-N films publication-title: J. Appl. Phys. – volume: 200 start-page: 5738 year: 2006 end-page: 5742 ident: bb0155 article-title: Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings publication-title: Surf. Coat. Technol. – volume: 565 start-page: 25 year: 2014 end-page: 31 ident: bb0060 article-title: Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings publication-title: Thin Solid Films – volume: 120–121 start-page: 129 year: 1989 end-page: 137 ident: bb0085 article-title: The reactive element effect in high-temperature corrosion publication-title: Mater. Sci. Eng. A – reference: A.C. Fischer-Cripps, Nanoindentation, (2011) Nanoindentation, pр. 1–279, Springer, New York. – volume: 120–121 start-page: 438 year: 1999 end-page: 441 ident: bb0115 article-title: Effects of Al content on hardness, lattice parameter and microstructure of Ti publication-title: Surf. Coat. Technol. – volume: 4 start-page: 2695 year: 1986 end-page: 2700 ident: bb0010 article-title: On structure and properties of sputtered Ti and Al based hard compound films publication-title: J. Vac. Sci. Technol. A – volume: 68 start-page: 917 year: 2013 end-page: 920 ident: bb0040 article-title: Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings publication-title: Scr. Mater. – volume: 27 start-page: 93 year: 1996 end-page: 96 ident: bb0090 article-title: The dependence of the work function of rare earth metals on their electron structure publication-title: Microelectron. J. – start-page: 9 year: 2003 end-page: 19 ident: bb0080 article-title: Progress in understanding the reactive element effect since the whittle and stringer literature review publication-title: Proc. John Stringer Symp. High Temp. Corros. Citeseer – volume: 177 start-page: 227 year: 2004 end-page: 232 ident: bb0095 article-title: Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties publication-title: Surf. Coat. Technol. – volume: 106 start-page: 64915 year: 2009 ident: bb0025 article-title: The influence of substrate temperature and Al mobility on the microstructural evolution of magnetron sputtered ternary Ti–Al–N thin films publication-title: J. Appl. Phys. – volume: 259 start-page: 599 year: 2014 end-page: 607 ident: bb0050 article-title: Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings publication-title: Surf. Coat. Technol. – volume: 83 start-page: 2049 year: 2003 ident: bb0165 article-title: Self-organized nanostructures in the Ti–Al–N system publication-title: Appl. Phys. Lett. – volume: 4 start-page: 2717 year: 1986 ident: 10.1016/j.surfcoat.2017.07.037_bb0005 article-title: Titanium aluminum nitride films: a new alternative to TiN coatings publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.573713 – volume: 97 start-page: 231902 year: 2010 ident: 10.1016/j.surfcoat.2017.07.037_bb0145 article-title: Significant elastic anisotropy in Ti1-xAlxNalloys publication-title: Appl. Phys. Lett. doi: 10.1063/1.3524502 – volume: 139 start-page: 25 year: 2001 ident: 10.1016/j.surfcoat.2017.07.037_bb0100 article-title: A new class of high performance PVD coatings for carbide cutting tools publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(00)01080-X – volume: 110 start-page: 23515 year: 2011 ident: 10.1016/j.surfcoat.2017.07.037_bb0020 article-title: Decomposition pathways in age hardening of Ti-Al-N films publication-title: J. Appl. Phys. doi: 10.1063/1.3610451 – volume: 68 start-page: 917 year: 2013 ident: 10.1016/j.surfcoat.2017.07.037_bb0040 article-title: Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2013.01.039 – volume: IV issue: 3 year: 1993 ident: 10.1016/j.surfcoat.2017.07.037_bb0070 article-title: The reactive element effect (REE) in oxidation of alloys publication-title: Le J. Phys. – start-page: 9 year: 2003 ident: 10.1016/j.surfcoat.2017.07.037_bb0080 article-title: Progress in understanding the reactive element effect since the whittle and stringer literature review – volume: 195 start-page: 99 year: 1991 ident: 10.1016/j.surfcoat.2017.07.037_bb0120 article-title: Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method publication-title: Thin Solid Films doi: 10.1016/0040-6090(91)90262-V – volume: 27 start-page: 93 year: 1996 ident: 10.1016/j.surfcoat.2017.07.037_bb0090 article-title: The dependence of the work function of rare earth metals on their electron structure publication-title: Microelectron. J. doi: 10.1016/0026-2692(95)00097-6 – volume: 98 start-page: 1054 year: 2007 ident: 10.1016/j.surfcoat.2017.07.037_bb0015 article-title: Spinodal decomposition of cubic Ti1−xAlxN: Comparison between experiments and modeling publication-title: Int. J. Mater. Res. doi: 10.3139/146.101570 – volume: 295 year: 1980 ident: 10.1016/j.surfcoat.2017.07.037_bb0075 article-title: Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. – volume: 107 start-page: 41 year: 1998 ident: 10.1016/j.surfcoat.2017.07.037_bb0110 article-title: Microstructures and grain boundaries of (Ti,Al)N films publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(98)00550-7 – volume: 603 start-page: 39 year: 2016 ident: 10.1016/j.surfcoat.2017.07.037_bb0140 article-title: Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti–Al–N thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.01.039 – volume: 266 start-page: 1 year: 2015 ident: 10.1016/j.surfcoat.2017.07.037_bb0055 article-title: Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.01.042 – ident: 10.1016/j.surfcoat.2017.07.037_bb0125 doi: 10.1007/978-1-4419-9872-9_1 – volume: 7 start-page: 1564 year: 1992 ident: 10.1016/j.surfcoat.2017.07.037_bb0130 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 83 start-page: 2049 year: 2003 ident: 10.1016/j.surfcoat.2017.07.037_bb0165 article-title: Self-organized nanostructures in the Ti–Al–N system publication-title: Appl. Phys. Lett. doi: 10.1063/1.1608464 – volume: 200 start-page: 5738 year: 2006 ident: 10.1016/j.surfcoat.2017.07.037_bb0155 article-title: Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.08.132 – volume: 120–121 start-page: 438 year: 1999 ident: 10.1016/j.surfcoat.2017.07.037_bb0115 article-title: Effects of Al content on hardness, lattice parameter and microstructure of Ti1-xAlxN publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(99)00491-0 – volume: 106 start-page: 64915 year: 2009 ident: 10.1016/j.surfcoat.2017.07.037_bb0025 article-title: The influence of substrate temperature and Al mobility on the microstructural evolution of magnetron sputtered ternary Ti–Al–N thin films publication-title: J. Appl. Phys. doi: 10.1063/1.3208065 – year: 2009 ident: 10.1016/j.surfcoat.2017.07.037_bb0160 article-title: The effect of substrate temperatures on tribological behavior of Ti-Al-N coating deposited by magnetron sputtering publication-title: Rev. Soc. – volume: 483 start-page: 321 year: 2009 ident: 10.1016/j.surfcoat.2017.07.037_bb0035 article-title: Concepts for the design of advanced nanoscale PVD multilayer protective thin films publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.08.133 – volume: 85 start-page: 64101 year: 2012 ident: 10.1016/j.surfcoat.2017.07.037_bb0150 article-title: Trends in the elastic response of binary early transition metal nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.064101 – volume: 565 start-page: 25 year: 2014 ident: 10.1016/j.surfcoat.2017.07.037_bb0060 article-title: Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.06.043 – volume: 313 start-page: 158 year: 2017 ident: 10.1016/j.surfcoat.2017.07.037_bb0065 article-title: Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.01.053 – volume: 120–121 start-page: 129 year: 1989 ident: 10.1016/j.surfcoat.2017.07.037_bb0085 article-title: The reactive element effect in high-temperature corrosion publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(89)90730-2 – volume: 517 start-page: 6635 year: 2009 ident: 10.1016/j.surfcoat.2017.07.037_bb0135 article-title: Compositional and structural evolution of sputtered Ti-Al-N publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.04.056 – volume: 124 start-page: 67 year: 2016 ident: 10.1016/j.surfcoat.2017.07.037_bb0030 article-title: Superlattice effect for enhanced fracture toughness of hard coatings publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.06.030 – volume: 14 start-page: 37 year: 1998 ident: 10.1016/j.surfcoat.2017.07.037_bb0105 article-title: Improved Ti1−xAlxN PVD coatings for dry high speed cutting operations publication-title: Surf. Eng. doi: 10.1179/sur.1998.14.1.37 – volume: 4 start-page: 2695 year: 1986 ident: 10.1016/j.surfcoat.2017.07.037_bb0010 article-title: On structure and properties of sputtered Ti and Al based hard compound films publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.573708 – volume: 177 start-page: 227 year: 2004 ident: 10.1016/j.surfcoat.2017.07.037_bb0095 article-title: Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2003.09.037 – volume: 259 start-page: 599 year: 2014 ident: 10.1016/j.surfcoat.2017.07.037_bb0050 article-title: Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.10.024 – volume: 235 start-page: 174 year: 2013 ident: 10.1016/j.surfcoat.2017.07.037_bb0045 article-title: Phase stability, mechanical properties and thermal stability of Y alloyed Ti–Al–N coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.07.030 |
SSID | ssj0001794 |
Score | 2.3331108 |
Snippet | Ti–Al–N thin films are well established due to their outstanding thermo-mechanical properties. Nevertheless, this system is still a subject of many research... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 165 |
SubjectTerms | Cerium Lanthanides Oxidation resistance Thermal stability Ti–Al–N |
Title | Cerium doping of Ti-Al-N coatings for excellent thermal stability and oxidation resistance |
URI | https://dx.doi.org/10.1016/j.surfcoat.2017.07.037 |
Volume | 326 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaFWsj7IHr2t289rkWIqlKvRiC8VLyGZ3oaVNS2mhXvztzuShFYQehBySsJMNk8nMl803M4Q8yCiUyriC2cxw5gdKMhVzyyBWCJHJUFlTEGQHYX_kv4yDcYN061wYpFVWvr_06YW3rs44lTad5WTivHG0Niw-A0aKvxMxg92XSOt7_PyheaDBFessAXhjGL2TJTwF_7Sy2SJFTqWQRRFP7If-V4DaCTq9M3JaoUXaKW_onDRM3iRH3bpJW5Oc7NQTvCDvXdjZzKkusqDowtLhhHVmbEBxelwTp4BRqdkWy_X5miL6m8MEABELkuwHTXNNF9tJ2WmJwrc44ktQyiUZ9Z6G3T6rmiewzBPumnkagFoYpVK4WttAKBVJL4a30_quVTZQKURqo3lmpY7SGN4V7bkSRsIwaTX3rshBvsjNNaE2FjrVKbehdX0ZB0rzOOJpbOHiJrS8RYJaY0lWVRbHBhezpKaQTZNa0wlqOuGwebJFnG-5ZVlbY69EXD-Q5JeVJBAA9sje_EP2lhzjEcYsEdyRg_VqY-4BjKxVu7C2NjnsPL_2B196COEo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED7adEg7lD7puxq6Ckt-yR6DaXFfWZpA6GIsS4KExgkhhfbf9-RHSKGQoeDB2DrLnE93n873ALgTUSikdjk1hWbUD6SgMmaGoq3gvBChNLoKkO2H6dB_GgWjLUjaXBgbVtno_lqnV9q6ueI03HTm47Hzxqy02eIzKKT2d-I27NjqVH4HdnqPz2l_pZCtzFWulgAVMhKsJQpPUEUtTDHLbVglF1UdT9sS_S8btWZ3Hg5gvwGMpFe_0yFs6fIIuknbp-0I9tZKCh7De4Inn1OiqkQoMjNkMKa9D9ondnrrFicIU4n-qjz25ZJYADjFCRAlVnGy3yQvFZl9jetmSwS34xZiIl9OYPhwP0hS2vRPoIXH3SX1FGK1MMoFd5UyAZcyEl6MC9T4rpEmkDkaa61YYYSK8hiXi_JcgSNxmDCKeafQKWelPgNiYq5ylTMTGtcXcSAViyOWxwYfrkPDziFoOZYVTXFx2-PiI2ujyCZZy-nMcjpjeHjiHJwV3bwur7GRIm4_SPZLUDK0ARtoL_5BewvddPD6kr089p8vYdfesSaMB1fQWS4-9TVik6W8aWTvBzRF49k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerium+doping+of+Ti-Al-N+coatings+for+excellent+thermal+stability+and+oxidation+resistance&rft.jtitle=Surface+%26+coatings+technology&rft.au=Asanuma%2C+H.&rft.au=Polcik%2C+P.&rft.au=Kolozsvari%2C+S.&rft.au=Klimashin%2C+F.F.&rft.date=2017-10-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=326&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1016%2Fj.surfcoat.2017.07.037&rft.externalDocID=S0257897217307272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |