Multi-target association algorithm of AIS-radar tracks using graph matching-based deep neural network

Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as multiple targets, complicated target movement patterns, and asynchronous track information, causing inaccurate and inefficient track correlat...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 266; p. 112208
Main Authors Yang, Yipu, Yang, Fan, Sun, Liguo, Xiang, Ti, Lv, Pin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as multiple targets, complicated target movement patterns, and asynchronous track information, causing inaccurate and inefficient track correlation. Therefore, this research focuses on the optimization problem of AIS and radar track association in dense scenes. Time-series data of tracks are transformed into the distribution features in a graph, which is free from the close dependence of the traditional algorithm on the pre-processing of the time alignment. To this end, an end-to-end deep network pipeline based on graph matching is proposed to overcome the influence of the above factors. It involves a multiscale point-level feature extractor to embed local features. Meanwhile, we devise a cluster-level graph neural network(GNN) with self-cross attention, which can look for global cues that help us disambiguate the correct correlation from complex tracks. Graph matching is estimated by tackling a differentiable optimal transport problem, which minimizes the transport cost and then achieves global optimal track association. Experiments show that the proposed method outperforms other approaches and achieves an ideal score(the precision rate and the recall rate are 0.941 and 0.91, respectively) in our built dataset. •An end-to-end deep network pipeline based on graph matching is proposed.•Time-series data of tracks are transformed into distribution features in the graph.•Graph neural network with self-cross attention distinguishes different tracks.•AIS and radar tracks association is formulated as an optimal transport problem.•Dataset about multi-target track association is available for end-to-end training.
AbstractList Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as multiple targets, complicated target movement patterns, and asynchronous track information, causing inaccurate and inefficient track correlation. Therefore, this research focuses on the optimization problem of AIS and radar track association in dense scenes. Time-series data of tracks are transformed into the distribution features in a graph, which is free from the close dependence of the traditional algorithm on the pre-processing of the time alignment. To this end, an end-to-end deep network pipeline based on graph matching is proposed to overcome the influence of the above factors. It involves a multiscale point-level feature extractor to embed local features. Meanwhile, we devise a cluster-level graph neural network(GNN) with self-cross attention, which can look for global cues that help us disambiguate the correct correlation from complex tracks. Graph matching is estimated by tackling a differentiable optimal transport problem, which minimizes the transport cost and then achieves global optimal track association. Experiments show that the proposed method outperforms other approaches and achieves an ideal score(the precision rate and the recall rate are 0.941 and 0.91, respectively) in our built dataset. •An end-to-end deep network pipeline based on graph matching is proposed.•Time-series data of tracks are transformed into distribution features in the graph.•Graph neural network with self-cross attention distinguishes different tracks.•AIS and radar tracks association is formulated as an optimal transport problem.•Dataset about multi-target track association is available for end-to-end training.
ArticleNumber 112208
Author Yang, Yipu
Sun, Liguo
Xiang, Ti
Yang, Fan
Lv, Pin
Author_xml – sequence: 1
  givenname: Yipu
  surname: Yang
  fullname: Yang, Yipu
  organization: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, 300400, China
– sequence: 2
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  email: yangfan@hebut.edu.cn
  organization: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, 300400, China
– sequence: 3
  givenname: Liguo
  surname: Sun
  fullname: Sun, Liguo
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 4
  givenname: Ti
  surname: Xiang
  fullname: Xiang, Ti
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 5
  givenname: Pin
  surname: Lv
  fullname: Lv, Pin
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
BookMark eNqFkM1KAzEUhYMoWKuvIHmBqTeZdmYKLpTiT0Fxoa7DneRmmnY6KUmq-PZOrW7cdHU4i-_A-c7Ycec7YuxSwEiAKK6WI68JO-qakQQpR0JICdURG4iqzLOJnFTHbAAgp1kFojplZzEuAaAoIB8wet62yWUJQ0OJY4xeO0zOdxzbxgeXFmvuLb-dv2YBDQaeAupV5NvouoY3ATcLvsakF33NaoxkuCHa8I62Ads-0qcPq3N2YrGNdPGbQ_Z-f_c2e8yeXh7ms9unTOdCpixHbU1Vi9oKkEYIKMtCTMZUlMbW1ur-li3HUEEJWGpTGhjX01yOUVJBKHQ-ZMV-VwcfYyCrNsGtMXwpAWonSy3Vnyy1k6X2snrw-h-oXfrx0P917WH8Zo9Tf-7DUVBRO-o0GRdIJ2W8OzTxDYITjhs
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_117848
crossref_primary_10_1007_s13132_023_01533_0
crossref_primary_10_1016_j_oceaneng_2023_116133
crossref_primary_10_1016_j_oceaneng_2023_114198
crossref_primary_10_1016_j_apor_2024_104348
crossref_primary_10_1109_MGRS_2024_3493972
crossref_primary_10_21595_jme_2024_24304
crossref_primary_10_1016_j_oceaneng_2024_118353
crossref_primary_10_3390_jmse12060890
crossref_primary_10_3390_s24113458
crossref_primary_10_3390_jmse12101883
crossref_primary_10_1016_j_oceaneng_2024_118953
crossref_primary_10_1109_LSP_2024_3398267
crossref_primary_10_1016_j_ijtst_2024_03_001
crossref_primary_10_1016_j_engappai_2025_110128
Cites_doi 10.1016/j.oceaneng.2020.108182
10.1016/j.proeng.2011.08.267
10.1016/j.eswa.2021.114975
10.1016/j.oceaneng.2021.108803
10.1017/S0373463318000188
10.1007/s10107-020-01503-3
10.1561/2200000073
10.1016/j.oceaneng.2021.109380
10.1016/j.oceaneng.2020.108215
10.1109/TCBB.2019.2936851
10.1016/j.actaastro.2005.12.016
10.1016/j.oceaneng.2020.106936
10.1155/2014/294657
10.3390/rs9121261
10.1109/TPAMI.2015.2408346
10.1016/j.oceaneng.2020.108086
10.3390/rs13030472
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2022.112208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2022_112208
S0029801822015219
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c312t-3acfd8b1bf102d110776154e67dfbffc208f7408070a7cd7d04b9324a2e6ea1c3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Tue Jul 01 02:15:01 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radar track association
Automatic identification system (AIS)
Optimal transport
Graph neural network
Graph matching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-3acfd8b1bf102d110776154e67dfbffc208f7408070a7cd7d04b9324a2e6ea1c3
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2022_112208
crossref_citationtrail_10_1016_j_oceaneng_2022_112208
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shechtman, Irani (b37) 2007
Wei, Xie, Zhang (b44) 2020; 216
Eriksen, Hoye, Narheim, Meland (b10) 2006; 58
Liu, Zhu, Yamada, Yang (b27) 2020
Rong, Teixeira, Guedes Soares (b33) 2020; 198
Chen, Liu, Achuthan, Zhang (b4) 2020; 218
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b41) 2017
Trzciński, Komorowski, Dabala, Czarnota, Kurzejamski, Lynen (b40) 2018
Yang, Li, Yue (b48) 2014; 15
Emmens, Amrit, Abdi, Ghosh (b9) 2021
Zhu, Han (b51) 2014; 2014
Liu, Liu, Zhou, Zhao, Wan, Liu (b25) 2020; 218
Kazimierski, Stateczny (b18) 2013
Shi, Jiao (b38) 2016; 12
Peyr, Cuturi (b30) 2019; 11
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b13) 2017
Sarlin, DeTone, Malisiewicz, Rabinovich (b35) 2020
Kazimierski (b17) 2017
Qi, Su, Mo, Guibas (b31) 2017
Liu, Liu, Qian, Wang (b24) 2021; 18
Jiang, Sun, Zhou, Guan, He (b15) 2016
Dong, Guan, Wang, He (b8) 2014; 36
Rol’inek, Swoboda, Zietlow, Paulus, Martius (b32) 2020
Xie, Liu, Zhou, Wang (b46) 2021; PP
Li, Wang (b21) 2008; 21
Zhang, Wang, Jiang, An, Yang (b49) 2021; 235
Zhao, Shi, Yang (b50) 2018; 71
Zhu, Peng (b52) 2016; 42
Nicosia, Bianconi, Latora, Barthelemy (b29) 2013; 111 5
Cuturi (b7) 2013
Liu, Xu, Yao, Deng, Liu (b26) 2017
Su, Wang, Shi, Zeng, Sun, Luo, Gu (b39) 2015; 37
Li, Lin, Tegawend, Bissyand, Klein, Traon (b20) 2018
Chen, Pan, Jiang, Huo, Long (b6) 2019
Xu, Li, Chen (b47) 2017
Gehring, Auli, Grangier, Yarats, Dauphin (b12) 2017
Liang, Liu, Li, Xiao, Liu, Lu (b22) 2021; 225
Kazimierski (b16) 2013
Lei, Luo, Yau, Gu (b19) 2018
Huang, Liu, Gill (b14) 2017; 9
Sahal, Said, Kadir, Hidayat, Bilfaqih, Alkaff (b34) 2021
Luo, Shen, Zhou, Zhang, Yao, Li, Fang, Quan (b28) 2019
Chen, Chen, Zhou (b3) 2019
Fu, Liu, Luo, Wang (b11) 2021
Chen, Liu, Xu, Pan, Xing (b5) 2021; 13
Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b42) 2018
Chakrabarty, Khanna (b2) 2021; 188
Liu (b23) 2016
Seo, Lee, Jung, Han, Cho (b36) 2018
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez (b1) 2018
Xiaorui, Changchuan (b45) 2011; 15
Wang, Fang (b43) 2013; 33
Emmens (10.1016/j.oceaneng.2022.112208_b9) 2021
Shi (10.1016/j.oceaneng.2022.112208_b38) 2016; 12
Huang (10.1016/j.oceaneng.2022.112208_b14) 2017; 9
Li (10.1016/j.oceaneng.2022.112208_b20) 2018
Li (10.1016/j.oceaneng.2022.112208_b21) 2008; 21
Kazimierski (10.1016/j.oceaneng.2022.112208_b18) 2013
Vaswani (10.1016/j.oceaneng.2022.112208_b41) 2017
Zhang (10.1016/j.oceaneng.2022.112208_b49) 2021; 235
Yang (10.1016/j.oceaneng.2022.112208_b48) 2014; 15
Lei (10.1016/j.oceaneng.2022.112208_b19) 2018
Nicosia (10.1016/j.oceaneng.2022.112208_b29) 2013; 111 5
Rol’inek (10.1016/j.oceaneng.2022.112208_b32) 2020
Seo (10.1016/j.oceaneng.2022.112208_b36) 2018
Shechtman (10.1016/j.oceaneng.2022.112208_b37) 2007
Peyr (10.1016/j.oceaneng.2022.112208_b30) 2019; 11
Chen (10.1016/j.oceaneng.2022.112208_b4) 2020; 218
Eriksen (10.1016/j.oceaneng.2022.112208_b10) 2006; 58
Gehring (10.1016/j.oceaneng.2022.112208_b12) 2017
Zhu (10.1016/j.oceaneng.2022.112208_b51) 2014; 2014
Gilmer (10.1016/j.oceaneng.2022.112208_b13) 2017
Liu (10.1016/j.oceaneng.2022.112208_b27) 2020
Sarlin (10.1016/j.oceaneng.2022.112208_b35) 2020
Chen (10.1016/j.oceaneng.2022.112208_b3) 2019
Qi (10.1016/j.oceaneng.2022.112208_b31) 2017
Chen (10.1016/j.oceaneng.2022.112208_b6) 2019
Xiaorui (10.1016/j.oceaneng.2022.112208_b45) 2011; 15
Wei (10.1016/j.oceaneng.2022.112208_b44) 2020; 216
Zhao (10.1016/j.oceaneng.2022.112208_b50) 2018; 71
Liu (10.1016/j.oceaneng.2022.112208_b25) 2020; 218
Luo (10.1016/j.oceaneng.2022.112208_b28) 2019
Chakrabarty (10.1016/j.oceaneng.2022.112208_b2) 2021; 188
Battaglia (10.1016/j.oceaneng.2022.112208_b1) 2018
Dong (10.1016/j.oceaneng.2022.112208_b8) 2014; 36
Fu (10.1016/j.oceaneng.2022.112208_b11) 2021
Trzciński (10.1016/j.oceaneng.2022.112208_b40) 2018
Liu (10.1016/j.oceaneng.2022.112208_b24) 2021; 18
Kazimierski (10.1016/j.oceaneng.2022.112208_b16) 2013
Su (10.1016/j.oceaneng.2022.112208_b39) 2015; 37
Cuturi (10.1016/j.oceaneng.2022.112208_b7) 2013
Jiang (10.1016/j.oceaneng.2022.112208_b15) 2016
Wang (10.1016/j.oceaneng.2022.112208_b43) 2013; 33
Sahal (10.1016/j.oceaneng.2022.112208_b34) 2021
Kazimierski (10.1016/j.oceaneng.2022.112208_b17) 2017
Xu (10.1016/j.oceaneng.2022.112208_b47) 2017
Liu (10.1016/j.oceaneng.2022.112208_b26) 2017
Xie (10.1016/j.oceaneng.2022.112208_b46) 2021; PP
Liu (10.1016/j.oceaneng.2022.112208_b23) 2016
Velickovic (10.1016/j.oceaneng.2022.112208_b42) 2018
Zhu (10.1016/j.oceaneng.2022.112208_b52) 2016; 42
Chen (10.1016/j.oceaneng.2022.112208_b5) 2021; 13
Liang (10.1016/j.oceaneng.2022.112208_b22) 2021; 225
Rong (10.1016/j.oceaneng.2022.112208_b33) 2020; 198
References_xml – year: 2018
  ident: b36
  article-title: Attentive semantic alignment with offset-aware correlation kernels
– volume: 188
  start-page: 395
  year: 2021
  end-page: 407
  ident: b2
  article-title: Better and simpler error analysis of the Sinkhorn-Knopp algorithm for matrix scaling
  publication-title: Math. Program.
– volume: 11
  start-page: 355
  year: 2019
  end-page: 607
  ident: b30
  article-title: Computational optimal transport
  publication-title: Found. Trends Mach. Learn.
– volume: PP
  year: 2021
  ident: b46
  article-title: A deep local patch matching network for cell tracking in microscopy image sequences without registration.
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– year: 2018
  ident: b42
  article-title: Graph attention networks
– start-page: 1
  year: 2016
  end-page: 5
  ident: b15
  article-title: A multi-target joint estimation method for radar calibration based on real-time AIS data
  publication-title: 2016 CIE International Conference on Radar (RADAR)
– start-page: 1
  year: 2013
  end-page: 9
  ident: b7
  article-title: Sinkhorn distances: Lightspeed computation of optimal transport
  publication-title: Advances in Neural Information Processing Systems, Vol. 26
– start-page: 2522
  year: 2019
  end-page: 2531
  ident: b28
  article-title: ContextDesc: Local descriptor augmentation with cross-modality context
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 13
  start-page: 472
  year: 2021
  ident: b5
  article-title: PointNet++ network architecture with individual point level and global features on centroid for ALS point cloud classification
  publication-title: Remote Sens.
– volume: 42
  start-page: 225
  year: 2016
  end-page: 232
  ident: b52
  article-title: Analysis and improvement of track association algorithm with fuzzy synthetic decision
  publication-title: Comput. Eng.
– start-page: 205
  year: 2018
  end-page: 216
  ident: b20
  article-title: Extracting statistical graph features for accurate and efficient time series classification
  publication-title: EDBT, Vol. 19
– volume: 21
  start-page: 44
  year: 2008
  end-page: 46
  ident: b21
  article-title: Research into improved nearest neighbor track correlation algorithm
  publication-title: Electron. Sci. Technol.
– year: 2020
  ident: b32
  article-title: Deep graph matching via blackbox differentiation of combinatorial solvers
  publication-title: ECCV
– start-page: 1482
  year: 2019
  end-page: 1486
  ident: b3
  article-title: Research on AIS and radar information fusion method based on distributed Kalman
  publication-title: 2019 5th International Conference on Transportation Information and Safety (ICTIS)
– volume: 58
  start-page: 537
  year: 2006
  end-page: 549
  ident: b10
  article-title: Maritime traffic monitoring using a space-based AIS receiver
  publication-title: Acta Astronaut.
– volume: 198
  year: 2020
  ident: b33
  article-title: Data mining approach to shipping route characterization and anomaly detection based on AIS data
  publication-title: Ocean Eng.
– volume: 71
  start-page: 1210
  year: 2018
  end-page: 1230
  ident: b50
  article-title: Ship trajectories pre-processing based on AIS data
  publication-title: J. Navig.
– year: 2017
  ident: b12
  article-title: Convolutional sequence to sequence learning
  publication-title: ICML
– volume: 33
  start-page: 1476
  year: 2013
  end-page: 1480
  ident: b43
  article-title: Track correlation algorithm based on modified Kohonen neural network
  publication-title: J. Comput. Appl.
– start-page: 8889
  year: 2021
  end-page: 8898
  ident: b11
  article-title: Robust point cloud registration framework based on deep graph matching
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2017
  ident: b13
  article-title: Neural message passing for quantum chemistry
– volume: 12
  start-page: 9
  year: 2016
  end-page: 13
  ident: b38
  article-title: Multi radar data fusion based on AIS for real-time measurement of radar performance
  publication-title: Mod. Comput.
– start-page: 270
  year: 2013
  end-page: 275
  ident: b16
  article-title: Problems of data fusion of tracking radar and AIS for the needs of integrated navigation systems at sea
  publication-title: 2013 14th International Radar Symposium (IRS), Vol. 1
– start-page: 1
  year: 2018
  end-page: 22
  ident: b19
  article-title: Geometric understanding of deep learning
– volume: 9
  start-page: 1261
  year: 2017
  ident: b14
  article-title: Ocean wind and wave measurements using X-Band marine radar: A comprehensive review
  publication-title: Remote Sens.
– year: 2018
  ident: b40
  article-title: SConE: Siamese constellation embedding descriptor for image matching
– volume: 111 5
  year: 2013
  ident: b29
  article-title: Growing multiplex networks
  publication-title: Phys. Rev. Lett.
– year: 2017
  ident: b41
  article-title: Attention is all you need
– volume: 218
  year: 2020
  ident: b4
  article-title: A ship movement classification based on automatic identification system (AIS) data using convolutional neural network
  publication-title: Ocean Eng.
– volume: 2014
  start-page: 294657:1
  year: 2014
  end-page: 294657:8
  ident: b51
  article-title: Track-to-track association based on structural similarity in the presence of sensor biases
  publication-title: J. Appl. Math.
– volume: 235
  year: 2021
  ident: b49
  article-title: Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey
  publication-title: Ocean Eng.
– volume: 218
  year: 2020
  ident: b25
  article-title: AIS data-driven approach to estimate navigable capacity of busy waterways focusing on ships entering and leaving port
  publication-title: Ocean Eng.
– volume: 36
  start-page: 1939
  year: 2014
  ident: b8
  article-title: Global optimal track association algorithm based on sequential modified grey association degree
  publication-title: J. Electron. Inf. Technol.
– year: 2017
  ident: b26
  article-title: Data association of AIS and radar based on multi-factor fuzzy judgment and gray correlation grade
  publication-title: CSPS
– volume: 15
  start-page: 30
  year: 2014
  end-page: 33
  ident: b48
  article-title: A track association algorithm on intutionistic fuzzy bi-threshold
  publication-title: J. Air Force Eng. Univ. (Nat. Sci. Ed.)
– start-page: 1
  year: 2019
  end-page: 8
  ident: b6
  article-title: DAGCN: Dual attention graph convolutional networks
  publication-title: 2019 International Joint Conference on Neural Networks (IJCNN)
– volume: 37
  start-page: 2246
  year: 2015
  end-page: 2259
  ident: b39
  article-title: Optimal mass transport for shape matching and comparison
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 33
  year: 2016
  end-page: 43
  ident: b23
  article-title: Study on Fusion Processing Method for Target Tracks from RADAR and AIS
– start-page: 258
  year: 2021
  end-page: 263
  ident: b34
  article-title: Tracking position of airborne target on SPx-radar-simulator using probabilistic data association filter
  publication-title: 2021 13th International Conference on Information & Communication Technology and System (ICTS)
– year: 2021
  ident: b9
  article-title: The promises and perils of automatic identification system data
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 1060
  year: 2021
  end-page: 1069
  ident: b24
  article-title: DeepSeed local graph matching for densely packed cells tracking
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 216
  year: 2020
  ident: b44
  article-title: AIS trajectory simplification algorithm considering ship behaviours
  publication-title: Ocean Eng.
– start-page: 4462
  year: 2020
  end-page: 4471
  ident: b27
  article-title: Semantic correspondence as an optimal transport problem
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: b1
  article-title: Relational inductive biases, deep learning, and graph networks
– start-page: 77
  year: 2017
  end-page: 85
  ident: b31
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 960
  year: 2017
  end-page: 964
  ident: b47
  article-title: Survey of track association of radar and AIS
  publication-title: 2017 2nd International Conference on Image, Vision and Computing (ICIVC)
– start-page: 1
  year: 2007
  end-page: 8
  ident: b37
  article-title: Matching local self-similarities across images and videos
  publication-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 15
  start-page: 1441
  year: 2011
  end-page: 1445
  ident: b45
  article-title: A preliminary study on targets association algorithm of radar and AIS using BP neural network
  publication-title: Procedia Eng.
– start-page: 4937
  year: 2020
  end-page: 4946
  ident: b35
  article-title: SuperGlue: Learning feature matching with graph neural networks
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2017
  end-page: 10
  ident: b17
  article-title: Verification of neural approach to radar-AIS tracks association for maneuvering targets based on kinematic spatial information
  publication-title: 2017 18th International Radar Symposium (IRS)
– volume: 225
  year: 2021
  ident: b22
  article-title: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation
  publication-title: Ocean Eng.
– start-page: 1
  year: 2013
  end-page: 6
  ident: b18
  article-title: Fusion of data from AIS and tracking radar for the needs of ECDIS
  publication-title: 2013 Signal Processing Symposium (SPS)
– volume: 218
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b4
  article-title: A ship movement classification based on automatic identification system (AIS) data using convolutional neural network
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108182
– start-page: 33
  year: 2016
  ident: 10.1016/j.oceaneng.2022.112208_b23
– volume: 15
  start-page: 1441
  year: 2011
  ident: 10.1016/j.oceaneng.2022.112208_b45
  article-title: A preliminary study on targets association algorithm of radar and AIS using BP neural network
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.08.267
– year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b9
  article-title: The promises and perils of automatic identification system data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114975
– volume: 42
  start-page: 225
  year: 2016
  ident: 10.1016/j.oceaneng.2022.112208_b52
  article-title: Analysis and improvement of track association algorithm with fuzzy synthetic decision
  publication-title: Comput. Eng.
– volume: 111 5
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112208_b29
  article-title: Growing multiplex networks
  publication-title: Phys. Rev. Lett.
– volume: 225
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b22
  article-title: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108803
– start-page: 8889
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b11
  article-title: Robust point cloud registration framework based on deep graph matching
– start-page: 258
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b34
  article-title: Tracking position of airborne target on SPx-radar-simulator using probabilistic data association filter
– year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b12
  article-title: Convolutional sequence to sequence learning
– volume: 71
  start-page: 1210
  year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b50
  article-title: Ship trajectories pre-processing based on AIS data
  publication-title: J. Navig.
  doi: 10.1017/S0373463318000188
– start-page: 1
  year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b19
– year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b13
– volume: 36
  start-page: 1939
  year: 2014
  ident: 10.1016/j.oceaneng.2022.112208_b8
  article-title: Global optimal track association algorithm based on sequential modified grey association degree
  publication-title: J. Electron. Inf. Technol.
– volume: 15
  start-page: 30
  year: 2014
  ident: 10.1016/j.oceaneng.2022.112208_b48
  article-title: A track association algorithm on intutionistic fuzzy bi-threshold
  publication-title: J. Air Force Eng. Univ. (Nat. Sci. Ed.)
– start-page: 2522
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112208_b28
  article-title: ContextDesc: Local descriptor augmentation with cross-modality context
– start-page: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112208_b6
  article-title: DAGCN: Dual attention graph convolutional networks
– start-page: 1482
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112208_b3
  article-title: Research on AIS and radar information fusion method based on distributed Kalman
– volume: 188
  start-page: 395
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b2
  article-title: Better and simpler error analysis of the Sinkhorn-Knopp algorithm for matrix scaling
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01503-3
– volume: 11
  start-page: 355
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112208_b30
  article-title: Computational optimal transport
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000073
– year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b40
– volume: 235
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b49
  article-title: Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109380
– start-page: 960
  year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b47
  article-title: Survey of track association of radar and AIS
– start-page: 4462
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b27
  article-title: Semantic correspondence as an optimal transport problem
– start-page: 77
  year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b31
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b32
  article-title: Deep graph matching via blackbox differentiation of combinatorial solvers
– volume: 33
  start-page: 1476
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112208_b43
  article-title: Track correlation algorithm based on modified Kohonen neural network
  publication-title: J. Comput. Appl.
– volume: PP
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b46
  article-title: A deep local patch matching network for cell tracking in microscopy image sequences without registration.
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 205
  year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b20
  article-title: Extracting statistical graph features for accurate and efficient time series classification
– start-page: 4937
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b35
  article-title: SuperGlue: Learning feature matching with graph neural networks
– start-page: 1
  year: 2016
  ident: 10.1016/j.oceaneng.2022.112208_b15
  article-title: A multi-target joint estimation method for radar calibration based on real-time AIS data
– volume: 21
  start-page: 44
  year: 2008
  ident: 10.1016/j.oceaneng.2022.112208_b21
  article-title: Research into improved nearest neighbor track correlation algorithm
  publication-title: Electron. Sci. Technol.
– start-page: 1
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112208_b18
  article-title: Fusion of data from AIS and tracking radar for the needs of ECDIS
– volume: 218
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b25
  article-title: AIS data-driven approach to estimate navigable capacity of busy waterways focusing on ships entering and leaving port
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108215
– start-page: 270
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112208_b16
  article-title: Problems of data fusion of tracking radar and AIS for the needs of integrated navigation systems at sea
– start-page: 1
  year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b17
  article-title: Verification of neural approach to radar-AIS tracks association for maneuvering targets based on kinematic spatial information
– year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b1
– volume: 18
  start-page: 1060
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b24
  article-title: DeepSeed local graph matching for densely packed cells tracking
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2936851
– year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b42
– year: 2018
  ident: 10.1016/j.oceaneng.2022.112208_b36
– volume: 58
  start-page: 537
  year: 2006
  ident: 10.1016/j.oceaneng.2022.112208_b10
  article-title: Maritime traffic monitoring using a space-based AIS receiver
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2005.12.016
– volume: 198
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b33
  article-title: Data mining approach to shipping route characterization and anomaly detection based on AIS data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.106936
– year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b41
– volume: 2014
  start-page: 294657:1
  year: 2014
  ident: 10.1016/j.oceaneng.2022.112208_b51
  article-title: Track-to-track association based on structural similarity in the presence of sensor biases
  publication-title: J. Appl. Math.
  doi: 10.1155/2014/294657
– volume: 9
  start-page: 1261
  year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b14
  article-title: Ocean wind and wave measurements using X-Band marine radar: A comprehensive review
  publication-title: Remote Sens.
  doi: 10.3390/rs9121261
– year: 2017
  ident: 10.1016/j.oceaneng.2022.112208_b26
  article-title: Data association of AIS and radar based on multi-factor fuzzy judgment and gray correlation grade
– start-page: 1
  year: 2007
  ident: 10.1016/j.oceaneng.2022.112208_b37
  article-title: Matching local self-similarities across images and videos
– start-page: 1
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112208_b7
  article-title: Sinkhorn distances: Lightspeed computation of optimal transport
– volume: 37
  start-page: 2246
  year: 2015
  ident: 10.1016/j.oceaneng.2022.112208_b39
  article-title: Optimal mass transport for shape matching and comparison
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2408346
– volume: 216
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112208_b44
  article-title: AIS trajectory simplification algorithm considering ship behaviours
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108086
– volume: 12
  start-page: 9
  year: 2016
  ident: 10.1016/j.oceaneng.2022.112208_b38
  article-title: Multi radar data fusion based on AIS for real-time measurement of radar performance
  publication-title: Mod. Comput.
– volume: 13
  start-page: 472
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112208_b5
  article-title: PointNet++ network architecture with individual point level and global features on centroid for ALS point cloud classification
  publication-title: Remote Sens.
  doi: 10.3390/rs13030472
SSID ssj0006603
Score 2.4383717
Snippet Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112208
SubjectTerms Automatic identification system (AIS)
Graph matching
Graph neural network
Optimal transport
Radar track association
Title Multi-target association algorithm of AIS-radar tracks using graph matching-based deep neural network
URI https://dx.doi.org/10.1016/j.oceaneng.2022.112208
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXlQQnYrzx8jBa7Y2TZvuOIZjU5gHHexW8nNuzG6UevVvN68_3ATBg8eGvpC-hPe9wvd9Qei-r5kVknPCdSgJU3FIJA0DEkmpfeUAJioJstNoPGOP83DeQMNaCwO0yqr2lzW9qNbVSK_KZm-7XILGl_ZdfXUI5wEIgYiPMQ6nvPu5o3lEkRfUNA94e08lvOo6iBCpSRfuP5FSUNNQuGbyN4DaA53RKTqpukU8KBd0hhombaGjPQ_BFjp-htkr4-lzZApFLSkJ3ljsko_FerHJlvnbO95YPJi8kExokeE8A5U9Bv77AhezYNfEFgxLAhCnsTZmi8H30q0kLVnjF2g2engdjkl1lQJRgU9zEghldSx9aV1DoeGfj7tWhpmIayutVe67LWeue-Se4Epz7THpOjsmqImM8FVwiZrpJjVXwIWyPHaj4HDOVCCE9KjbYtnXcQBmbG0U1vlLVOUzDtddrJOaULZK6rwnkPekzHsb9b7jtqXTxp8R_Xp7kh9nJnFw8Efs9T9ib9AhPAGpxQ9vUTPPPsyda01y2SnOXgcdDCZP4-kXOrzkWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOfCQEC1UlOccynG6yWSSSQ4cKqDapa8DrdRbmOeyVcmuQhDi0j_VP4idR7tISD1UvSbyaOSx_NnS588AW4WTQRuluHKp4dLmKTciTXhmjIstAkzWEWQPs_GJ_HKanq7A5TALQ7TKPvd3Ob3N1v2XUe_N0WI2oxlfUWB-RYSLCISKnlm55__8xr7t54fJJ3zk90Lsfj7-OOb9agFuk1g0PNE2uNzEJiDAOuqBsJ1Ppc-UCyYEK6I8KInVlIq0sk65SBqsdKQWPvM6tgmeew_uS0wXtDZh--KaV5JlUTLwSuh6S2PJZ9uISbry1RQbUyFofEfQXsv_IeISyu0-hSd9ecp2Og-swYqv1uHRkmjhOjw-otN7petn4NsRXt4xypm-fm2mz6fzetZ8_8Hmge1MvvJaO12zpqaxfkaE-ylrT2FYNbeUTk6Y6pjzfsFIaBNvUnU09edwcicO3oDVal75F0S-CirHrySpLm2itYkExpQpXJ6Q-tsmpIP_StsLm9N-jfNyYLCdlYPfS_J72fl9E0ZXdotO2uNGi2J4nvKfIC0Rf26wfXkL23fwYHx8sF_uTw73XsFD-kOMmjh9DatN_cu_wbqoMW_bOGTw7a4D_y-GaCBR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-target+association+algorithm+of+AIS-radar+tracks+using+graph+matching-based+deep+neural+network&rft.jtitle=Ocean+engineering&rft.au=Yang%2C+Yipu&rft.au=Yang%2C+Fan&rft.au=Sun%2C+Liguo&rft.au=Xiang%2C+Ti&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=266&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112208&rft.externalDocID=S0029801822015219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon