Multi-target association algorithm of AIS-radar tracks using graph matching-based deep neural network
Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as multiple targets, complicated target movement patterns, and asynchronous track information, causing inaccurate and inefficient track correlat...
Saved in:
Published in | Ocean engineering Vol. 266; p. 112208 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as multiple targets, complicated target movement patterns, and asynchronous track information, causing inaccurate and inefficient track correlation. Therefore, this research focuses on the optimization problem of AIS and radar track association in dense scenes. Time-series data of tracks are transformed into the distribution features in a graph, which is free from the close dependence of the traditional algorithm on the pre-processing of the time alignment. To this end, an end-to-end deep network pipeline based on graph matching is proposed to overcome the influence of the above factors. It involves a multiscale point-level feature extractor to embed local features. Meanwhile, we devise a cluster-level graph neural network(GNN) with self-cross attention, which can look for global cues that help us disambiguate the correct correlation from complex tracks. Graph matching is estimated by tackling a differentiable optimal transport problem, which minimizes the transport cost and then achieves global optimal track association. Experiments show that the proposed method outperforms other approaches and achieves an ideal score(the precision rate and the recall rate are 0.941 and 0.91, respectively) in our built dataset.
•An end-to-end deep network pipeline based on graph matching is proposed.•Time-series data of tracks are transformed into distribution features in the graph.•Graph neural network with self-cross attention distinguishes different tracks.•AIS and radar tracks association is formulated as an optimal transport problem.•Dataset about multi-target track association is available for end-to-end training. |
---|---|
AbstractList | Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as multiple targets, complicated target movement patterns, and asynchronous track information, causing inaccurate and inefficient track correlation. Therefore, this research focuses on the optimization problem of AIS and radar track association in dense scenes. Time-series data of tracks are transformed into the distribution features in a graph, which is free from the close dependence of the traditional algorithm on the pre-processing of the time alignment. To this end, an end-to-end deep network pipeline based on graph matching is proposed to overcome the influence of the above factors. It involves a multiscale point-level feature extractor to embed local features. Meanwhile, we devise a cluster-level graph neural network(GNN) with self-cross attention, which can look for global cues that help us disambiguate the correct correlation from complex tracks. Graph matching is estimated by tackling a differentiable optimal transport problem, which minimizes the transport cost and then achieves global optimal track association. Experiments show that the proposed method outperforms other approaches and achieves an ideal score(the precision rate and the recall rate are 0.941 and 0.91, respectively) in our built dataset.
•An end-to-end deep network pipeline based on graph matching is proposed.•Time-series data of tracks are transformed into distribution features in the graph.•Graph neural network with self-cross attention distinguishes different tracks.•AIS and radar tracks association is formulated as an optimal transport problem.•Dataset about multi-target track association is available for end-to-end training. |
ArticleNumber | 112208 |
Author | Yang, Yipu Sun, Liguo Xiang, Ti Yang, Fan Lv, Pin |
Author_xml | – sequence: 1 givenname: Yipu surname: Yang fullname: Yang, Yipu organization: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, 300400, China – sequence: 2 givenname: Fan surname: Yang fullname: Yang, Fan email: yangfan@hebut.edu.cn organization: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, 300400, China – sequence: 3 givenname: Liguo surname: Sun fullname: Sun, Liguo organization: Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 4 givenname: Ti surname: Xiang fullname: Xiang, Ti organization: Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 5 givenname: Pin surname: Lv fullname: Lv, Pin organization: Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China |
BookMark | eNqFkM1KAzEUhYMoWKuvIHmBqTeZdmYKLpTiT0Fxoa7DneRmmnY6KUmq-PZOrW7cdHU4i-_A-c7Ycec7YuxSwEiAKK6WI68JO-qakQQpR0JICdURG4iqzLOJnFTHbAAgp1kFojplZzEuAaAoIB8wet62yWUJQ0OJY4xeO0zOdxzbxgeXFmvuLb-dv2YBDQaeAupV5NvouoY3ATcLvsakF33NaoxkuCHa8I62Ads-0qcPq3N2YrGNdPGbQ_Z-f_c2e8yeXh7ms9unTOdCpixHbU1Vi9oKkEYIKMtCTMZUlMbW1ur-li3HUEEJWGpTGhjX01yOUVJBKHQ-ZMV-VwcfYyCrNsGtMXwpAWonSy3Vnyy1k6X2snrw-h-oXfrx0P917WH8Zo9Tf-7DUVBRO-o0GRdIJ2W8OzTxDYITjhs |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_117848 crossref_primary_10_1007_s13132_023_01533_0 crossref_primary_10_1016_j_oceaneng_2023_116133 crossref_primary_10_1016_j_oceaneng_2023_114198 crossref_primary_10_1016_j_apor_2024_104348 crossref_primary_10_1109_MGRS_2024_3493972 crossref_primary_10_21595_jme_2024_24304 crossref_primary_10_1016_j_oceaneng_2024_118353 crossref_primary_10_3390_jmse12060890 crossref_primary_10_3390_s24113458 crossref_primary_10_3390_jmse12101883 crossref_primary_10_1016_j_oceaneng_2024_118953 crossref_primary_10_1109_LSP_2024_3398267 crossref_primary_10_1016_j_ijtst_2024_03_001 crossref_primary_10_1016_j_engappai_2025_110128 |
Cites_doi | 10.1016/j.oceaneng.2020.108182 10.1016/j.proeng.2011.08.267 10.1016/j.eswa.2021.114975 10.1016/j.oceaneng.2021.108803 10.1017/S0373463318000188 10.1007/s10107-020-01503-3 10.1561/2200000073 10.1016/j.oceaneng.2021.109380 10.1016/j.oceaneng.2020.108215 10.1109/TCBB.2019.2936851 10.1016/j.actaastro.2005.12.016 10.1016/j.oceaneng.2020.106936 10.1155/2014/294657 10.3390/rs9121261 10.1109/TPAMI.2015.2408346 10.1016/j.oceaneng.2020.108086 10.3390/rs13030472 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.112208 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2022_112208 S0029801822015219 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c312t-3acfd8b1bf102d110776154e67dfbffc208f7408070a7cd7d04b9324a2e6ea1c3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:15:01 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Fri Feb 23 02:40:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Radar track association Automatic identification system (AIS) Optimal transport Graph neural network Graph matching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-3acfd8b1bf102d110776154e67dfbffc208f7408070a7cd7d04b9324a2e6ea1c3 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2022_112208 crossref_citationtrail_10_1016_j_oceaneng_2022_112208 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shechtman, Irani (b37) 2007 Wei, Xie, Zhang (b44) 2020; 216 Eriksen, Hoye, Narheim, Meland (b10) 2006; 58 Liu, Zhu, Yamada, Yang (b27) 2020 Rong, Teixeira, Guedes Soares (b33) 2020; 198 Chen, Liu, Achuthan, Zhang (b4) 2020; 218 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b41) 2017 Trzciński, Komorowski, Dabala, Czarnota, Kurzejamski, Lynen (b40) 2018 Yang, Li, Yue (b48) 2014; 15 Emmens, Amrit, Abdi, Ghosh (b9) 2021 Zhu, Han (b51) 2014; 2014 Liu, Liu, Zhou, Zhao, Wan, Liu (b25) 2020; 218 Kazimierski, Stateczny (b18) 2013 Shi, Jiao (b38) 2016; 12 Peyr, Cuturi (b30) 2019; 11 Gilmer, Schoenholz, Riley, Vinyals, Dahl (b13) 2017 Sarlin, DeTone, Malisiewicz, Rabinovich (b35) 2020 Kazimierski (b17) 2017 Qi, Su, Mo, Guibas (b31) 2017 Liu, Liu, Qian, Wang (b24) 2021; 18 Jiang, Sun, Zhou, Guan, He (b15) 2016 Dong, Guan, Wang, He (b8) 2014; 36 Rol’inek, Swoboda, Zietlow, Paulus, Martius (b32) 2020 Xie, Liu, Zhou, Wang (b46) 2021; PP Li, Wang (b21) 2008; 21 Zhang, Wang, Jiang, An, Yang (b49) 2021; 235 Zhao, Shi, Yang (b50) 2018; 71 Zhu, Peng (b52) 2016; 42 Nicosia, Bianconi, Latora, Barthelemy (b29) 2013; 111 5 Cuturi (b7) 2013 Liu, Xu, Yao, Deng, Liu (b26) 2017 Su, Wang, Shi, Zeng, Sun, Luo, Gu (b39) 2015; 37 Li, Lin, Tegawend, Bissyand, Klein, Traon (b20) 2018 Chen, Pan, Jiang, Huo, Long (b6) 2019 Xu, Li, Chen (b47) 2017 Gehring, Auli, Grangier, Yarats, Dauphin (b12) 2017 Liang, Liu, Li, Xiao, Liu, Lu (b22) 2021; 225 Kazimierski (b16) 2013 Lei, Luo, Yau, Gu (b19) 2018 Huang, Liu, Gill (b14) 2017; 9 Sahal, Said, Kadir, Hidayat, Bilfaqih, Alkaff (b34) 2021 Luo, Shen, Zhou, Zhang, Yao, Li, Fang, Quan (b28) 2019 Chen, Chen, Zhou (b3) 2019 Fu, Liu, Luo, Wang (b11) 2021 Chen, Liu, Xu, Pan, Xing (b5) 2021; 13 Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b42) 2018 Chakrabarty, Khanna (b2) 2021; 188 Liu (b23) 2016 Seo, Lee, Jung, Han, Cho (b36) 2018 Battaglia, Hamrick, Bapst, Sanchez-Gonzalez (b1) 2018 Xiaorui, Changchuan (b45) 2011; 15 Wang, Fang (b43) 2013; 33 Emmens (10.1016/j.oceaneng.2022.112208_b9) 2021 Shi (10.1016/j.oceaneng.2022.112208_b38) 2016; 12 Huang (10.1016/j.oceaneng.2022.112208_b14) 2017; 9 Li (10.1016/j.oceaneng.2022.112208_b20) 2018 Li (10.1016/j.oceaneng.2022.112208_b21) 2008; 21 Kazimierski (10.1016/j.oceaneng.2022.112208_b18) 2013 Vaswani (10.1016/j.oceaneng.2022.112208_b41) 2017 Zhang (10.1016/j.oceaneng.2022.112208_b49) 2021; 235 Yang (10.1016/j.oceaneng.2022.112208_b48) 2014; 15 Lei (10.1016/j.oceaneng.2022.112208_b19) 2018 Nicosia (10.1016/j.oceaneng.2022.112208_b29) 2013; 111 5 Rol’inek (10.1016/j.oceaneng.2022.112208_b32) 2020 Seo (10.1016/j.oceaneng.2022.112208_b36) 2018 Shechtman (10.1016/j.oceaneng.2022.112208_b37) 2007 Peyr (10.1016/j.oceaneng.2022.112208_b30) 2019; 11 Chen (10.1016/j.oceaneng.2022.112208_b4) 2020; 218 Eriksen (10.1016/j.oceaneng.2022.112208_b10) 2006; 58 Gehring (10.1016/j.oceaneng.2022.112208_b12) 2017 Zhu (10.1016/j.oceaneng.2022.112208_b51) 2014; 2014 Gilmer (10.1016/j.oceaneng.2022.112208_b13) 2017 Liu (10.1016/j.oceaneng.2022.112208_b27) 2020 Sarlin (10.1016/j.oceaneng.2022.112208_b35) 2020 Chen (10.1016/j.oceaneng.2022.112208_b3) 2019 Qi (10.1016/j.oceaneng.2022.112208_b31) 2017 Chen (10.1016/j.oceaneng.2022.112208_b6) 2019 Xiaorui (10.1016/j.oceaneng.2022.112208_b45) 2011; 15 Wei (10.1016/j.oceaneng.2022.112208_b44) 2020; 216 Zhao (10.1016/j.oceaneng.2022.112208_b50) 2018; 71 Liu (10.1016/j.oceaneng.2022.112208_b25) 2020; 218 Luo (10.1016/j.oceaneng.2022.112208_b28) 2019 Chakrabarty (10.1016/j.oceaneng.2022.112208_b2) 2021; 188 Battaglia (10.1016/j.oceaneng.2022.112208_b1) 2018 Dong (10.1016/j.oceaneng.2022.112208_b8) 2014; 36 Fu (10.1016/j.oceaneng.2022.112208_b11) 2021 Trzciński (10.1016/j.oceaneng.2022.112208_b40) 2018 Liu (10.1016/j.oceaneng.2022.112208_b24) 2021; 18 Kazimierski (10.1016/j.oceaneng.2022.112208_b16) 2013 Su (10.1016/j.oceaneng.2022.112208_b39) 2015; 37 Cuturi (10.1016/j.oceaneng.2022.112208_b7) 2013 Jiang (10.1016/j.oceaneng.2022.112208_b15) 2016 Wang (10.1016/j.oceaneng.2022.112208_b43) 2013; 33 Sahal (10.1016/j.oceaneng.2022.112208_b34) 2021 Kazimierski (10.1016/j.oceaneng.2022.112208_b17) 2017 Xu (10.1016/j.oceaneng.2022.112208_b47) 2017 Liu (10.1016/j.oceaneng.2022.112208_b26) 2017 Xie (10.1016/j.oceaneng.2022.112208_b46) 2021; PP Liu (10.1016/j.oceaneng.2022.112208_b23) 2016 Velickovic (10.1016/j.oceaneng.2022.112208_b42) 2018 Zhu (10.1016/j.oceaneng.2022.112208_b52) 2016; 42 Chen (10.1016/j.oceaneng.2022.112208_b5) 2021; 13 Liang (10.1016/j.oceaneng.2022.112208_b22) 2021; 225 Rong (10.1016/j.oceaneng.2022.112208_b33) 2020; 198 |
References_xml | – year: 2018 ident: b36 article-title: Attentive semantic alignment with offset-aware correlation kernels – volume: 188 start-page: 395 year: 2021 end-page: 407 ident: b2 article-title: Better and simpler error analysis of the Sinkhorn-Knopp algorithm for matrix scaling publication-title: Math. Program. – volume: 11 start-page: 355 year: 2019 end-page: 607 ident: b30 article-title: Computational optimal transport publication-title: Found. Trends Mach. Learn. – volume: PP year: 2021 ident: b46 article-title: A deep local patch matching network for cell tracking in microscopy image sequences without registration. publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – year: 2018 ident: b42 article-title: Graph attention networks – start-page: 1 year: 2016 end-page: 5 ident: b15 article-title: A multi-target joint estimation method for radar calibration based on real-time AIS data publication-title: 2016 CIE International Conference on Radar (RADAR) – start-page: 1 year: 2013 end-page: 9 ident: b7 article-title: Sinkhorn distances: Lightspeed computation of optimal transport publication-title: Advances in Neural Information Processing Systems, Vol. 26 – start-page: 2522 year: 2019 end-page: 2531 ident: b28 article-title: ContextDesc: Local descriptor augmentation with cross-modality context publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 13 start-page: 472 year: 2021 ident: b5 article-title: PointNet++ network architecture with individual point level and global features on centroid for ALS point cloud classification publication-title: Remote Sens. – volume: 42 start-page: 225 year: 2016 end-page: 232 ident: b52 article-title: Analysis and improvement of track association algorithm with fuzzy synthetic decision publication-title: Comput. Eng. – start-page: 205 year: 2018 end-page: 216 ident: b20 article-title: Extracting statistical graph features for accurate and efficient time series classification publication-title: EDBT, Vol. 19 – volume: 21 start-page: 44 year: 2008 end-page: 46 ident: b21 article-title: Research into improved nearest neighbor track correlation algorithm publication-title: Electron. Sci. Technol. – year: 2020 ident: b32 article-title: Deep graph matching via blackbox differentiation of combinatorial solvers publication-title: ECCV – start-page: 1482 year: 2019 end-page: 1486 ident: b3 article-title: Research on AIS and radar information fusion method based on distributed Kalman publication-title: 2019 5th International Conference on Transportation Information and Safety (ICTIS) – volume: 58 start-page: 537 year: 2006 end-page: 549 ident: b10 article-title: Maritime traffic monitoring using a space-based AIS receiver publication-title: Acta Astronaut. – volume: 198 year: 2020 ident: b33 article-title: Data mining approach to shipping route characterization and anomaly detection based on AIS data publication-title: Ocean Eng. – volume: 71 start-page: 1210 year: 2018 end-page: 1230 ident: b50 article-title: Ship trajectories pre-processing based on AIS data publication-title: J. Navig. – year: 2017 ident: b12 article-title: Convolutional sequence to sequence learning publication-title: ICML – volume: 33 start-page: 1476 year: 2013 end-page: 1480 ident: b43 article-title: Track correlation algorithm based on modified Kohonen neural network publication-title: J. Comput. Appl. – start-page: 8889 year: 2021 end-page: 8898 ident: b11 article-title: Robust point cloud registration framework based on deep graph matching publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2017 ident: b13 article-title: Neural message passing for quantum chemistry – volume: 12 start-page: 9 year: 2016 end-page: 13 ident: b38 article-title: Multi radar data fusion based on AIS for real-time measurement of radar performance publication-title: Mod. Comput. – start-page: 270 year: 2013 end-page: 275 ident: b16 article-title: Problems of data fusion of tracking radar and AIS for the needs of integrated navigation systems at sea publication-title: 2013 14th International Radar Symposium (IRS), Vol. 1 – start-page: 1 year: 2018 end-page: 22 ident: b19 article-title: Geometric understanding of deep learning – volume: 9 start-page: 1261 year: 2017 ident: b14 article-title: Ocean wind and wave measurements using X-Band marine radar: A comprehensive review publication-title: Remote Sens. – year: 2018 ident: b40 article-title: SConE: Siamese constellation embedding descriptor for image matching – volume: 111 5 year: 2013 ident: b29 article-title: Growing multiplex networks publication-title: Phys. Rev. Lett. – year: 2017 ident: b41 article-title: Attention is all you need – volume: 218 year: 2020 ident: b4 article-title: A ship movement classification based on automatic identification system (AIS) data using convolutional neural network publication-title: Ocean Eng. – volume: 2014 start-page: 294657:1 year: 2014 end-page: 294657:8 ident: b51 article-title: Track-to-track association based on structural similarity in the presence of sensor biases publication-title: J. Appl. Math. – volume: 235 year: 2021 ident: b49 article-title: Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey publication-title: Ocean Eng. – volume: 218 year: 2020 ident: b25 article-title: AIS data-driven approach to estimate navigable capacity of busy waterways focusing on ships entering and leaving port publication-title: Ocean Eng. – volume: 36 start-page: 1939 year: 2014 ident: b8 article-title: Global optimal track association algorithm based on sequential modified grey association degree publication-title: J. Electron. Inf. Technol. – year: 2017 ident: b26 article-title: Data association of AIS and radar based on multi-factor fuzzy judgment and gray correlation grade publication-title: CSPS – volume: 15 start-page: 30 year: 2014 end-page: 33 ident: b48 article-title: A track association algorithm on intutionistic fuzzy bi-threshold publication-title: J. Air Force Eng. Univ. (Nat. Sci. Ed.) – start-page: 1 year: 2019 end-page: 8 ident: b6 article-title: DAGCN: Dual attention graph convolutional networks publication-title: 2019 International Joint Conference on Neural Networks (IJCNN) – volume: 37 start-page: 2246 year: 2015 end-page: 2259 ident: b39 article-title: Optimal mass transport for shape matching and comparison publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 33 year: 2016 end-page: 43 ident: b23 article-title: Study on Fusion Processing Method for Target Tracks from RADAR and AIS – start-page: 258 year: 2021 end-page: 263 ident: b34 article-title: Tracking position of airborne target on SPx-radar-simulator using probabilistic data association filter publication-title: 2021 13th International Conference on Information & Communication Technology and System (ICTS) – year: 2021 ident: b9 article-title: The promises and perils of automatic identification system data publication-title: Expert Syst. Appl. – volume: 18 start-page: 1060 year: 2021 end-page: 1069 ident: b24 article-title: DeepSeed local graph matching for densely packed cells tracking publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 216 year: 2020 ident: b44 article-title: AIS trajectory simplification algorithm considering ship behaviours publication-title: Ocean Eng. – start-page: 4462 year: 2020 end-page: 4471 ident: b27 article-title: Semantic correspondence as an optimal transport problem publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2018 ident: b1 article-title: Relational inductive biases, deep learning, and graph networks – start-page: 77 year: 2017 end-page: 85 ident: b31 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 960 year: 2017 end-page: 964 ident: b47 article-title: Survey of track association of radar and AIS publication-title: 2017 2nd International Conference on Image, Vision and Computing (ICIVC) – start-page: 1 year: 2007 end-page: 8 ident: b37 article-title: Matching local self-similarities across images and videos publication-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition – volume: 15 start-page: 1441 year: 2011 end-page: 1445 ident: b45 article-title: A preliminary study on targets association algorithm of radar and AIS using BP neural network publication-title: Procedia Eng. – start-page: 4937 year: 2020 end-page: 4946 ident: b35 article-title: SuperGlue: Learning feature matching with graph neural networks publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1 year: 2017 end-page: 10 ident: b17 article-title: Verification of neural approach to radar-AIS tracks association for maneuvering targets based on kinematic spatial information publication-title: 2017 18th International Radar Symposium (IRS) – volume: 225 year: 2021 ident: b22 article-title: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation publication-title: Ocean Eng. – start-page: 1 year: 2013 end-page: 6 ident: b18 article-title: Fusion of data from AIS and tracking radar for the needs of ECDIS publication-title: 2013 Signal Processing Symposium (SPS) – volume: 218 year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b4 article-title: A ship movement classification based on automatic identification system (AIS) data using convolutional neural network publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108182 – start-page: 33 year: 2016 ident: 10.1016/j.oceaneng.2022.112208_b23 – volume: 15 start-page: 1441 year: 2011 ident: 10.1016/j.oceaneng.2022.112208_b45 article-title: A preliminary study on targets association algorithm of radar and AIS using BP neural network publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.08.267 – year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b9 article-title: The promises and perils of automatic identification system data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114975 – volume: 42 start-page: 225 year: 2016 ident: 10.1016/j.oceaneng.2022.112208_b52 article-title: Analysis and improvement of track association algorithm with fuzzy synthetic decision publication-title: Comput. Eng. – volume: 111 5 year: 2013 ident: 10.1016/j.oceaneng.2022.112208_b29 article-title: Growing multiplex networks publication-title: Phys. Rev. Lett. – volume: 225 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b22 article-title: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108803 – start-page: 8889 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b11 article-title: Robust point cloud registration framework based on deep graph matching – start-page: 258 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b34 article-title: Tracking position of airborne target on SPx-radar-simulator using probabilistic data association filter – year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b12 article-title: Convolutional sequence to sequence learning – volume: 71 start-page: 1210 year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b50 article-title: Ship trajectories pre-processing based on AIS data publication-title: J. Navig. doi: 10.1017/S0373463318000188 – start-page: 1 year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b19 – year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b13 – volume: 36 start-page: 1939 year: 2014 ident: 10.1016/j.oceaneng.2022.112208_b8 article-title: Global optimal track association algorithm based on sequential modified grey association degree publication-title: J. Electron. Inf. Technol. – volume: 15 start-page: 30 year: 2014 ident: 10.1016/j.oceaneng.2022.112208_b48 article-title: A track association algorithm on intutionistic fuzzy bi-threshold publication-title: J. Air Force Eng. Univ. (Nat. Sci. Ed.) – start-page: 2522 year: 2019 ident: 10.1016/j.oceaneng.2022.112208_b28 article-title: ContextDesc: Local descriptor augmentation with cross-modality context – start-page: 1 year: 2019 ident: 10.1016/j.oceaneng.2022.112208_b6 article-title: DAGCN: Dual attention graph convolutional networks – start-page: 1482 year: 2019 ident: 10.1016/j.oceaneng.2022.112208_b3 article-title: Research on AIS and radar information fusion method based on distributed Kalman – volume: 188 start-page: 395 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b2 article-title: Better and simpler error analysis of the Sinkhorn-Knopp algorithm for matrix scaling publication-title: Math. Program. doi: 10.1007/s10107-020-01503-3 – volume: 11 start-page: 355 year: 2019 ident: 10.1016/j.oceaneng.2022.112208_b30 article-title: Computational optimal transport publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000073 – year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b40 – volume: 235 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b49 article-title: Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109380 – start-page: 960 year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b47 article-title: Survey of track association of radar and AIS – start-page: 4462 year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b27 article-title: Semantic correspondence as an optimal transport problem – start-page: 77 year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b31 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation – year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b32 article-title: Deep graph matching via blackbox differentiation of combinatorial solvers – volume: 33 start-page: 1476 year: 2013 ident: 10.1016/j.oceaneng.2022.112208_b43 article-title: Track correlation algorithm based on modified Kohonen neural network publication-title: J. Comput. Appl. – volume: PP year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b46 article-title: A deep local patch matching network for cell tracking in microscopy image sequences without registration. publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – start-page: 205 year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b20 article-title: Extracting statistical graph features for accurate and efficient time series classification – start-page: 4937 year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b35 article-title: SuperGlue: Learning feature matching with graph neural networks – start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2022.112208_b15 article-title: A multi-target joint estimation method for radar calibration based on real-time AIS data – volume: 21 start-page: 44 year: 2008 ident: 10.1016/j.oceaneng.2022.112208_b21 article-title: Research into improved nearest neighbor track correlation algorithm publication-title: Electron. Sci. Technol. – start-page: 1 year: 2013 ident: 10.1016/j.oceaneng.2022.112208_b18 article-title: Fusion of data from AIS and tracking radar for the needs of ECDIS – volume: 218 year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b25 article-title: AIS data-driven approach to estimate navigable capacity of busy waterways focusing on ships entering and leaving port publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108215 – start-page: 270 year: 2013 ident: 10.1016/j.oceaneng.2022.112208_b16 article-title: Problems of data fusion of tracking radar and AIS for the needs of integrated navigation systems at sea – start-page: 1 year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b17 article-title: Verification of neural approach to radar-AIS tracks association for maneuvering targets based on kinematic spatial information – year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b1 – volume: 18 start-page: 1060 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b24 article-title: DeepSeed local graph matching for densely packed cells tracking publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2936851 – year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b42 – year: 2018 ident: 10.1016/j.oceaneng.2022.112208_b36 – volume: 58 start-page: 537 year: 2006 ident: 10.1016/j.oceaneng.2022.112208_b10 article-title: Maritime traffic monitoring using a space-based AIS receiver publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2005.12.016 – volume: 198 year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b33 article-title: Data mining approach to shipping route characterization and anomaly detection based on AIS data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.106936 – year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b41 – volume: 2014 start-page: 294657:1 year: 2014 ident: 10.1016/j.oceaneng.2022.112208_b51 article-title: Track-to-track association based on structural similarity in the presence of sensor biases publication-title: J. Appl. Math. doi: 10.1155/2014/294657 – volume: 9 start-page: 1261 year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b14 article-title: Ocean wind and wave measurements using X-Band marine radar: A comprehensive review publication-title: Remote Sens. doi: 10.3390/rs9121261 – year: 2017 ident: 10.1016/j.oceaneng.2022.112208_b26 article-title: Data association of AIS and radar based on multi-factor fuzzy judgment and gray correlation grade – start-page: 1 year: 2007 ident: 10.1016/j.oceaneng.2022.112208_b37 article-title: Matching local self-similarities across images and videos – start-page: 1 year: 2013 ident: 10.1016/j.oceaneng.2022.112208_b7 article-title: Sinkhorn distances: Lightspeed computation of optimal transport – volume: 37 start-page: 2246 year: 2015 ident: 10.1016/j.oceaneng.2022.112208_b39 article-title: Optimal mass transport for shape matching and comparison publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2408346 – volume: 216 year: 2020 ident: 10.1016/j.oceaneng.2022.112208_b44 article-title: AIS trajectory simplification algorithm considering ship behaviours publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108086 – volume: 12 start-page: 9 year: 2016 ident: 10.1016/j.oceaneng.2022.112208_b38 article-title: Multi radar data fusion based on AIS for real-time measurement of radar performance publication-title: Mod. Comput. – volume: 13 start-page: 472 year: 2021 ident: 10.1016/j.oceaneng.2022.112208_b5 article-title: PointNet++ network architecture with individual point level and global features on centroid for ALS point cloud classification publication-title: Remote Sens. doi: 10.3390/rs13030472 |
SSID | ssj0006603 |
Score | 2.4383717 |
Snippet | Automatic Identification System(AIS) and radar track association is a challenging subject in dense scenes in which there are some undesirable factors, such as... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112208 |
SubjectTerms | Automatic identification system (AIS) Graph matching Graph neural network Optimal transport Radar track association |
Title | Multi-target association algorithm of AIS-radar tracks using graph matching-based deep neural network |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.112208 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXlQQnYrzx8jBa7Y2TZvuOIZjU5gHHexW8nNuzG6UevVvN68_3ATBg8eGvpC-hPe9wvd9Qei-r5kVknPCdSgJU3FIJA0DEkmpfeUAJioJstNoPGOP83DeQMNaCwO0yqr2lzW9qNbVSK_KZm-7XILGl_ZdfXUI5wEIgYiPMQ6nvPu5o3lEkRfUNA94e08lvOo6iBCpSRfuP5FSUNNQuGbyN4DaA53RKTqpukU8KBd0hhombaGjPQ_BFjp-htkr4-lzZApFLSkJ3ljsko_FerHJlvnbO95YPJi8kExokeE8A5U9Bv77AhezYNfEFgxLAhCnsTZmi8H30q0kLVnjF2g2engdjkl1lQJRgU9zEghldSx9aV1DoeGfj7tWhpmIayutVe67LWeue-Se4Epz7THpOjsmqImM8FVwiZrpJjVXwIWyPHaj4HDOVCCE9KjbYtnXcQBmbG0U1vlLVOUzDtddrJOaULZK6rwnkPekzHsb9b7jtqXTxp8R_Xp7kh9nJnFw8Efs9T9ib9AhPAGpxQ9vUTPPPsyda01y2SnOXgcdDCZP4-kXOrzkWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOfCQEC1UlOccynG6yWSSSQ4cKqDapa8DrdRbmOeyVcmuQhDi0j_VP4idR7tISD1UvSbyaOSx_NnS588AW4WTQRuluHKp4dLmKTciTXhmjIstAkzWEWQPs_GJ_HKanq7A5TALQ7TKPvd3Ob3N1v2XUe_N0WI2oxlfUWB-RYSLCISKnlm55__8xr7t54fJJ3zk90Lsfj7-OOb9agFuk1g0PNE2uNzEJiDAOuqBsJ1Ppc-UCyYEK6I8KInVlIq0sk65SBqsdKQWPvM6tgmeew_uS0wXtDZh--KaV5JlUTLwSuh6S2PJZ9uISbry1RQbUyFofEfQXsv_IeISyu0-hSd9ecp2Og-swYqv1uHRkmjhOjw-otN7petn4NsRXt4xypm-fm2mz6fzetZ8_8Hmge1MvvJaO12zpqaxfkaE-ylrT2FYNbeUTk6Y6pjzfsFIaBNvUnU09edwcicO3oDVal75F0S-CirHrySpLm2itYkExpQpXJ6Q-tsmpIP_StsLm9N-jfNyYLCdlYPfS_J72fl9E0ZXdotO2uNGi2J4nvKfIC0Rf26wfXkL23fwYHx8sF_uTw73XsFD-kOMmjh9DatN_cu_wbqoMW_bOGTw7a4D_y-GaCBR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-target+association+algorithm+of+AIS-radar+tracks+using+graph+matching-based+deep+neural+network&rft.jtitle=Ocean+engineering&rft.au=Yang%2C+Yipu&rft.au=Yang%2C+Fan&rft.au=Sun%2C+Liguo&rft.au=Xiang%2C+Ti&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=266&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112208&rft.externalDocID=S0029801822015219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |