On elliptic curves with p-isogenies over quadratic fields

Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of mathematics Vol. 75; no. 3; pp. 945 - 964
Main Author Michaud-Jacobs, Philippe
Format Journal Article
LanguageEnglish
Published Canada Canadian Mathematical Society 01.06.2023
Cambridge University Press
Subjects
Online AccessGet full text
ISSN0008-414X
1496-4279
DOI10.4153/S0008414X22000244

Cover

Abstract Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields.
AbstractList Let K be a number field. For which primes p does there exist an elliptic curve \(E / K\) admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields.
Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K -rational p -isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p . We prove results both for families of quadratic fields and for specific quadratic fields.
Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields.
Author Michaud-Jacobs, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0001-9415-8519
  surname: Michaud-Jacobs
  fullname: Michaud-Jacobs, Philippe
  email: p.rodgers@warwick.ac.uk
  organization: Mathematics Institute, University of Warwick, Coventry, United Kingdom
BookMark eNp1UElLAzEUDlLBafUHeBvwHM02S45S3KDQgwreQpJ5U1OmM9NkpuK_N0MLHsTTW77lPb45mrVdCwhdU3IraMbvXgkhpaDig7HYMSHOUEKFzLFghZyhZILxhF-geQjbOPI8owmS6zaFpnH94GxqR3-AkH654TPtsQvdBloXF90BfLofdeX1RKsdNFW4ROe1bgJcneoCvT8-vC2f8Wr99LK8X2HLKRswl0wYDjnPcw3xQ7CZqbQ0QAwzUhhiS14ww8vKyKJmvAItSGaIAKOl1IQv0M3Rt_fdfoQwqG03-jaeVKyktCxYQXlk0SPL-i4ED7Xqvdtp_60oUVNC6k9CUcNPGr0z3lUb-LX-X_UDmr1pVw
Cites_doi 10.1112/S0010437X14007957
10.1007/BF01232025
10.2140/ant.2015.9.875
10.1007/BF01231195
10.1093/imrn/rnac134
10.4064/aa210812-2-4
10.4171/RMI/1269
10.1007/s40993-019-0153-2
10.1006/jsco.1996.0125
10.1007/BF01390348
10.5802/jtnb.894
10.2140/ant.2016.10.1147
10.1090/mcom/3805
10.1090/mcom/3547
10.1112/S1461157015000157
10.4064/aa152-4-1
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society
The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society
– notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7SC
7XB
8FD
8FE
8FG
8FK
8FQ
8FV
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.4153/S0008414X22000244
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Central Korea
CBCA Complete
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4279
EndPage 964
ExternalDocumentID 10_4153_S0008414X22000244
GroupedDBID --Z
-~X
09C
09E
186
3O-
69Q
6TJ
8FQ
AABWE
AAEED
AAGFV
AAIKC
AAMNW
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABEFU
ABGDZ
ABJNI
ABMYL
ABUWG
ABXAU
ABZCX
ABZEH
ACGFO
ACIPV
ACKIV
ACNCT
ACQFJ
ACYZP
ACZWT
ADDNB
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEBPU
AENCP
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHRGI
AI.
AIOIP
AJCYY
AJPFC
ALEEW
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARAPS
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IKXGN
IOO
JHPGK
K7-
KCGVB
KFECR
L7B
LW7
MVM
NHB
NZEOI
OHT
OK1
P2P
RCA
RCD
ROL
S10
UHB
VH1
WFFJZ
XJT
XOL
XSW
YYP
ZKB
ZMEZD
0R~
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
ADIYS
ADXHL
AECCQ
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
3V.
7SC
7XB
8FD
8FE
8FG
8FK
AZQEC
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c312t-3924b3e6366ae841ec5bda9be0b2b94b0c8372b38db97f23dea405b04eba99a03
IEDL.DBID IKXGN
ISSN 0008-414X
IngestDate Sat Jul 26 02:27:28 EDT 2025
Tue Jul 01 03:04:18 EDT 2025
Wed Mar 13 05:50:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 11G05
isogeny
Galois representation
11F80
11G18
irreducibility
modular curve
Elliptic curve
quadratic field
Language English
License https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-3924b3e6366ae841ec5bda9be0b2b94b0c8372b38db97f23dea405b04eba99a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9415-8519
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0008414X22000244/type/journal_article
PQID 2811872713
PQPubID 4573634
PageCount 20
ParticipantIDs proquest_journals_2811872713
crossref_primary_10_4153_S0008414X22000244
cambridge_journals_10_4153_S0008414X22000244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
PublicationTitle Canadian journal of mathematics
PublicationTitleAlternate Can. J. Math.-J. Can. Math
PublicationYear 2023
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – name: Canadian Mathematical Society
– name: Cambridge University Press
References 2015; 151
1995; 97
2012; 152
2015; 27
2019; 5
2015; 18
1978; 44
1997; 24
2016; 10
1992; 109
2015; 9
1990; 100
2021; 90
2022; 38
2022; 203
S0008414X22000244_r20
S0008414X22000244_r19
S0008414X22000244_r18
S0008414X22000244_r9
S0008414X22000244_r7
S0008414X22000244_r11
S0008414X22000244_r10
S0008414X22000244_r8
S0008414X22000244_r13
S0008414X22000244_r5
S0008414X22000244_r12
S0008414X22000244_r6
S0008414X22000244_r3
S0008414X22000244_r15
S0008414X22000244_r4
Momose (S0008414X22000244_r17) 1995; 97
S0008414X22000244_r14
S0008414X22000244_r1
S0008414X22000244_r2
S0008414X22000244_r16
References_xml – volume: 10
  start-page: 1147
  issue: 6
  year: 2016
  end-page: 1172
  article-title: Modular elliptic curves over real abelian fields and the generalized Fermat equation $\ {x}^{2\ell }+{y}^{2m} = {z}^p$
  publication-title: Algebra Number Theory
– volume: 18
  start-page: 578
  issue: 1
  year: 2015
  end-page: 602
  article-title: Hyperelliptic modular curves ${X}_0(n)$ and isogenies of elliptic curves over quadratic fields
  publication-title: LMS J. Comput. and Math.
– volume: 151
  start-page: 1395
  issue: 8
  year: 2015
  end-page: 1415
  article-title: The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields
  publication-title: Compos. Math.
– volume: 24
  start-page: 235
  issue: 3–4
  year: 1997
  end-page: 265
  article-title: The magma algebra system. I. The user language
  publication-title: J. Symb. Comput.
– volume: 9
  start-page: 875
  issue: 4
  year: 2015
  end-page: 895
  article-title: Fermat’s last theorem over some small real quadratic fields
  publication-title: Algebra Number Theory
– volume: 203
  start-page: 319
  issue: 4
  year: 2022
  end-page: 352
  article-title: Fermat’s last theorem and modular curves over real quadratic fields
  publication-title: Acta Arith.
– volume: 27
  start-page: 67
  issue: 1
  year: 2015
  end-page: 76
  article-title: Criteria for irreducibility of mod $p$ representations of Frey curves
  publication-title: J. Théor. Nombres Bordeaux
– volume: 5
  start-page: 1
  issue: 15
  year: 2019
  end-page: 27
  article-title: Shifted powers in Lucas–Lehmer sequences
  publication-title: Res. Number Theory
– volume: 90
  start-page: 321
  issue: 327
  year: 2021
  end-page: 343
  article-title: Quadratic points on modular curves with infinite Mordell–Weil group
  publication-title: Math. Comput.
– volume: 100
  start-page: 431
  issue: 2
  year: 1990
  end-page: 476
  article-title: On modular representations of $Gal\left(\overline{\mathbb{Q}}/ \mathbb{Q}\right)$ arising from modular forms
  publication-title: Invent. Math.
– volume: 38
  start-page: 1
  issue: 1
  year: 2022
  end-page: 32
  article-title: Global methods for the symplectic type of congruences between elliptic curves
  publication-title: Rev. Mat. Iberoam.
– volume: 44
  start-page: 129
  issue: 2
  year: 1978
  end-page: 162
  article-title: Rational isogenies of prime degree
  publication-title: Invent. Math.
– volume: 97
  start-page: 329
  issue: 3
  year: 1995
  end-page: 348
  article-title: Isogenies of prime degree over number fields
  publication-title: Compos. Math.
– volume: 152
  start-page: 323
  issue: 4
  year: 2012
  end-page: 348
  article-title: Points on quadratic twists of $\ {X}_0(N)$
  publication-title: Acta Arith.
– volume: 109
  start-page: 221
  issue: 1
  year: 1992
  end-page: 229
  article-title: Torsion points on elliptic curves and q-coefficients of modular forms
  publication-title: Invent. Math.
– ident: S0008414X22000244_r11
  doi: 10.1112/S0010437X14007957
– ident: S0008414X22000244_r14
  doi: 10.1007/BF01232025
– ident: S0008414X22000244_r13
  doi: 10.2140/ant.2015.9.875
– ident: S0008414X22000244_r20
  doi: 10.1007/BF01231195
– ident: S0008414X22000244_r2
  doi: 10.1093/imrn/rnac134
– ident: S0008414X22000244_r16
  doi: 10.4064/aa210812-2-4
– ident: S0008414X22000244_r8
  doi: 10.4171/RMI/1269
– ident: S0008414X22000244_r9
– ident: S0008414X22000244_r4
  doi: 10.1007/s40993-019-0153-2
– ident: S0008414X22000244_r10
– ident: S0008414X22000244_r3
  doi: 10.1093/imrn/rnac134
– ident: S0008414X22000244_r5
  doi: 10.1006/jsco.1996.0125
– ident: S0008414X22000244_r15
  doi: 10.1007/BF01390348
– ident: S0008414X22000244_r12
  doi: 10.5802/jtnb.894
– ident: S0008414X22000244_r1
  doi: 10.2140/ant.2016.10.1147
– ident: S0008414X22000244_r18
  doi: 10.1090/mcom/3805
– ident: S0008414X22000244_r6
  doi: 10.1090/mcom/3547
– ident: S0008414X22000244_r7
  doi: 10.1112/S1461157015000157
– volume: 97
  start-page: 329
  year: 1995
  ident: S0008414X22000244_r17
  article-title: Isogenies of prime degree over number fields
  publication-title: Compos. Math.
– ident: S0008414X22000244_r19
  doi: 10.4064/aa152-4-1
SSID ssj0003651
Score 2.3197107
Snippet Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K-rational p-isogeny? Although we have an answer to this...
Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K -rational p -isogeny? Although we have an answer to this...
Let K be a number field. For which primes p does there exist an elliptic curve \(E / K\) admitting a K-rational p-isogeny? Although we have an answer to this...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 945
SubjectTerms Curves
Fields (mathematics)
Hypotheses
Number theory
Questions
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQDlwQkR0SdolJ4QQY0IaXJi0WxXnIXHpxrrx-3HabmNC2qWHNqoq27X9OY4_Qm5tagQAopMA2jHpIGNgDF56WqVGIw4KESgO37PBSL6N03FTcCubtsqlT6wctZvYWCN_4CoSY3PEVI_TbxZZo-LuakOhsUv2uhhpop2r_uvKE4ssbRjzFJNdOa53NTFkiXhCOFHxHo9nVTDG_Z2tsBmjNl10FXf6R-SwSRjpU63hY7LjixNyMFxNWy1Pif4oaJyriX-_pXYx-_EljfVVOmVf5QQtBNEwja2a9HthXFS5pVXnWnlGRv2Xz-cBaygRmBVdPmeYzUgQPhNZZjx-v7cpOKPBJ8BBS0gsAk4OQjnQvcCF8wYzMkikB6O1ScQ5aRWTwl8Q6qCX4QqpuFEyQKqD4D50ZfAqdSFL2-R-JZC8MewyR8wQ5Zf_k1-b3C1llk_rQRnbFneWUl2_eq3hy-2Pr8h-JH2vG7Y6pDWfLfw1pgZzuKn0_wtveLPH
  priority: 102
  providerName: ProQuest
Title On elliptic curves with p-isogenies over quadratic fields
URI https://www.cambridge.org/core/product/identifier/S0008414X22000244/type/journal_article
https://www.proquest.com/docview/2811872713
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTwwIaKmtpPaIyBaHqIgRKVskS92pC5taVp-P-cmLSAkJJZM1sX6crm7z74HwHkWGYFI7CRHbQNpMQ7QGHp0tYqMJh6Ue6L4NIjvhvIhiZINSFa1MD6tct3jYHmTv5yPNi3bn7ZHtsyhcTNf4xsq2ZEJ99Um5KXa_tCyXX2CtAJ-E-oUM3ToD6jfPyb9wdpKiziqpumpwEspbzzJnYnfkr_3Xfjpv36a76VP6u3CThVMsqtyE3uw4cb7sP207sRaHIB-HjPfc5MsQ8ayxezDFcyfvbJpMCompD3ElJlP42TvC2O9OmRsmdVWHMKwd_t2cxdU4xKCTHT4PKBIR6JwsYhj42j_LovQGo0uRI5aYpgRGeUolEXdzbmwzlC0hqF0aLQ2oTiC2ngydsfALHZjWiEVN0rmGOlccJd3ZO5UZPM4asDlGpC0QrxIiU94_NJf-DXgYoVZOi2baPy1uLlC9Us0V34sOidGffK_V5_Clh8QXyZ3NaE2ny3cGYURc2zBpur1W1C_vh28vLYq_fgEtqPEPg
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB3RcGh7QECLCNCyB3qpatXeXTu7B4RKIUqApFUFUm5mx7uWeskHTqj6p_iNzMZ2IELKjYsP9moPz88z89bzAXCUxUYgkjrJUdtAWkwCNIYuLa1io0kH5V4o9vpJ50ZeDOLBGjzUtTA-rbK2iXNDbUeZPyP_zpUfjM1JU52MJ4GfGuX_rtYjNEpaXLr__0iyFcfdM3q_Xzhvn1__7ATVVIEgExGfBhQQSBQuEUlinJKRy2K0RqMLkaOWGGak2TgKZVG3ci6sMxTUYCgdGq1NKGjfN7AufUVrA9ZPz_u__yxsv0jiakafCmQkB-V_VHKSwtckh8rf4746hrzq824Oy15x2SnMPV17EzaqEJX9KDm1BWtuuA3ve4v-rsUH0L-GzHfyJHuTsWx2d-8K5k902Tj4W4yIk6S_mU8OZZOZsZ5kGZvnyhUf4eZV4NqBxnA0dLvALLYSWiEVN0rmGOtccJdHMncqtnkSN-HbApC0-pSKlFSKxy99gV8TvtaYpeOyNceqxQc1qk9bP3Fqb_XjQ3jbue5dpVfd_uU-vPMj58t0sQNoTO9m7hMFJlP8XLGBwe1rE_ARz2Xy1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKr2UBXaqtvS4gNcKqJNbCexD6iqWJbHAuVQpL2lntiWetkH2QX1r_XXMd4kC6tK3LjkkFg-TD77m8-eB8BumRqBSOrEo7aRtJhFaAw9cq1So0kH-SAULy6zk2t5NkyHa_CvzYUJYZXtnrjYqO24DGfkXa5CY2xOmqrrm7CIq17_-2QahQ5S4aa1badRQ2Tg_t6RfKsOTnv0r_c47x_9OjyJmg4DUSkSPovIOZAoXCayzDglE1emaI1GFyNHLTEuSb9xFMqizj0X1hlycDCWDo3WJhY07wvYyEWug_BT_eMlC4gsbbr1qUgmcljfqBJdipCdHKvwjoc8GeLXx3UdVvlxlR4WnNd_C28aZ5X9qNG1CWtutAWvL5aVXqt3oH-OWKjpSTtPycr5za2rWDjbZZPoTzUmdJISZyFMlE3nxga4lWwRNVe9h-tnMdYHWB-NR-4jMIt5RiOk4kZJj6n2gjufSO9Uan2WdmB_aZCiWVRVQXol2K_4z34d-NbarJjURTqeGrzdWvVh6gd0fXr68w68JNgV56eXg8_wKvSer-PGtmF9djN3X8hDmeHXBRQY_H5u7N0DvxH1pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+elliptic+curves+with+p-isogenies+over+quadratic+fields&rft.jtitle=Canadian+journal+of+mathematics&rft.au=Michaud-Jacobs%2C+Philippe&rft.date=2023-06-01&rft.pub=Canadian+Mathematical+Society&rft.issn=0008-414X&rft.eissn=1496-4279&rft.volume=75&rft.issue=3&rft.spage=945&rft.epage=964&rft_id=info:doi/10.4153%2FS0008414X22000244&rft.externalDocID=10_4153_S0008414X22000244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-414X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-414X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-414X&client=summon