On elliptic curves with p-isogenies over quadratic fields
Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this...
Saved in:
Published in | Canadian journal of mathematics Vol. 75; no. 3; pp. 945 - 964 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Canada
Canadian Mathematical Society
01.06.2023
Cambridge University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0008-414X 1496-4279 |
DOI | 10.4153/S0008414X22000244 |
Cover
Abstract | Let K be a number field. For which primes p does there exist an elliptic curve
$E / K$
admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields. |
---|---|
AbstractList | Let K be a number field. For which primes p does there exist an elliptic curve \(E / K\) admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields. Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K -rational p -isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p . We prove results both for families of quadratic fields and for specific quadratic fields. Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields. |
Author | Michaud-Jacobs, Philippe |
Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0001-9415-8519 surname: Michaud-Jacobs fullname: Michaud-Jacobs, Philippe email: p.rodgers@warwick.ac.uk organization: Mathematics Institute, University of Warwick, Coventry, United Kingdom |
BookMark | eNp1UElLAzEUDlLBafUHeBvwHM02S45S3KDQgwreQpJ5U1OmM9NkpuK_N0MLHsTTW77lPb45mrVdCwhdU3IraMbvXgkhpaDig7HYMSHOUEKFzLFghZyhZILxhF-geQjbOPI8owmS6zaFpnH94GxqR3-AkH654TPtsQvdBloXF90BfLofdeX1RKsdNFW4ROe1bgJcneoCvT8-vC2f8Wr99LK8X2HLKRswl0wYDjnPcw3xQ7CZqbQ0QAwzUhhiS14ww8vKyKJmvAItSGaIAKOl1IQv0M3Rt_fdfoQwqG03-jaeVKyktCxYQXlk0SPL-i4ED7Xqvdtp_60oUVNC6k9CUcNPGr0z3lUb-LX-X_UDmr1pVw |
Cites_doi | 10.1112/S0010437X14007957 10.1007/BF01232025 10.2140/ant.2015.9.875 10.1007/BF01231195 10.1093/imrn/rnac134 10.4064/aa210812-2-4 10.4171/RMI/1269 10.1007/s40993-019-0153-2 10.1006/jsco.1996.0125 10.1007/BF01390348 10.5802/jtnb.894 10.2140/ant.2016.10.1147 10.1090/mcom/3805 10.1090/mcom/3547 10.1112/S1461157015000157 10.4064/aa152-4-1 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IKXGN AAYXX CITATION 3V. 7SC 7XB 8FD 8FE 8FG 8FK 8FQ 8FV ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.4153/S0008414X22000244 |
DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Canadian Business & Current Affairs Database Canadian Business & Current Affairs Database (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central CBCA Complete (Alumni Edition) ProQuest One Applied & Life Sciences ProQuest Central Korea CBCA Complete ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1496-4279 |
EndPage | 964 |
ExternalDocumentID | 10_4153_S0008414X22000244 |
GroupedDBID | --Z -~X 09C 09E 186 3O- 69Q 6TJ 8FQ AABWE AAEED AAGFV AAIKC AAMNW AANRG AASVR AAUKB AAYEQ AAYJJ ABBZL ABCQX ABEFU ABGDZ ABJNI ABMYL ABUWG ABXAU ABZCX ABZEH ACGFO ACIPV ACKIV ACNCT ACQFJ ACYZP ACZWT ADDNB ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEBPU AENCP AFKQG AFKRA AFLVW AGABE AGBYD AGJUD AGOOT AHRGI AI. AIOIP AJCYY AJPFC ALEEW ALMA_UNASSIGNED_HOLDINGS AQJOH ARAPS ARZZG ATUCA AYIQA BBLKV BCGOX BENPR BESQT BGLVJ BLZWO CCPQU CCQAD CCUQV CFBFF CGQII CHEAL CJCSC DOHLZ DWQXO EBS EGQIC EJD FRP HCIFZ HF~ IH6 IKXGN IOO JHPGK K7- KCGVB KFECR L7B LW7 MVM NHB NZEOI OHT OK1 P2P RCA RCD ROL S10 UHB VH1 WFFJZ XJT XOL XSW YYP ZKB ZMEZD 0R~ AAYXX ABVKB ABVZP ABXHF ACDLN ADIYS ADXHL AECCQ AFZFC AKMAY AMVHM CITATION PHGZM PHGZT 3V. 7SC 7XB 8FD 8FE 8FG 8FK AZQEC GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c312t-3924b3e6366ae841ec5bda9be0b2b94b0c8372b38db97f23dea405b04eba99a03 |
IEDL.DBID | IKXGN |
ISSN | 0008-414X |
IngestDate | Sat Jul 26 02:27:28 EDT 2025 Tue Jul 01 03:04:18 EDT 2025 Wed Mar 13 05:50:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 11G05 isogeny Galois representation 11F80 11G18 irreducibility modular curve Elliptic curve quadratic field |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-3924b3e6366ae841ec5bda9be0b2b94b0c8372b38db97f23dea405b04eba99a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9415-8519 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0008414X22000244/type/journal_article |
PQID | 2811872713 |
PQPubID | 4573634 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2811872713 crossref_primary_10_4153_S0008414X22000244 cambridge_journals_10_4153_S0008414X22000244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto |
PublicationTitle | Canadian journal of mathematics |
PublicationTitleAlternate | Can. J. Math.-J. Can. Math |
PublicationYear | 2023 |
Publisher | Canadian Mathematical Society Cambridge University Press |
Publisher_xml | – name: Canadian Mathematical Society – name: Cambridge University Press |
References | 2015; 151 1995; 97 2012; 152 2015; 27 2019; 5 2015; 18 1978; 44 1997; 24 2016; 10 1992; 109 2015; 9 1990; 100 2021; 90 2022; 38 2022; 203 S0008414X22000244_r20 S0008414X22000244_r19 S0008414X22000244_r18 S0008414X22000244_r9 S0008414X22000244_r7 S0008414X22000244_r11 S0008414X22000244_r10 S0008414X22000244_r8 S0008414X22000244_r13 S0008414X22000244_r5 S0008414X22000244_r12 S0008414X22000244_r6 S0008414X22000244_r3 S0008414X22000244_r15 S0008414X22000244_r4 Momose (S0008414X22000244_r17) 1995; 97 S0008414X22000244_r14 S0008414X22000244_r1 S0008414X22000244_r2 S0008414X22000244_r16 |
References_xml | – volume: 10 start-page: 1147 issue: 6 year: 2016 end-page: 1172 article-title: Modular elliptic curves over real abelian fields and the generalized Fermat equation $\ {x}^{2\ell }+{y}^{2m} = {z}^p$ publication-title: Algebra Number Theory – volume: 18 start-page: 578 issue: 1 year: 2015 end-page: 602 article-title: Hyperelliptic modular curves ${X}_0(n)$ and isogenies of elliptic curves over quadratic fields publication-title: LMS J. Comput. and Math. – volume: 151 start-page: 1395 issue: 8 year: 2015 end-page: 1415 article-title: The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields publication-title: Compos. Math. – volume: 24 start-page: 235 issue: 3–4 year: 1997 end-page: 265 article-title: The magma algebra system. I. The user language publication-title: J. Symb. Comput. – volume: 9 start-page: 875 issue: 4 year: 2015 end-page: 895 article-title: Fermat’s last theorem over some small real quadratic fields publication-title: Algebra Number Theory – volume: 203 start-page: 319 issue: 4 year: 2022 end-page: 352 article-title: Fermat’s last theorem and modular curves over real quadratic fields publication-title: Acta Arith. – volume: 27 start-page: 67 issue: 1 year: 2015 end-page: 76 article-title: Criteria for irreducibility of mod $p$ representations of Frey curves publication-title: J. Théor. Nombres Bordeaux – volume: 5 start-page: 1 issue: 15 year: 2019 end-page: 27 article-title: Shifted powers in Lucas–Lehmer sequences publication-title: Res. Number Theory – volume: 90 start-page: 321 issue: 327 year: 2021 end-page: 343 article-title: Quadratic points on modular curves with infinite Mordell–Weil group publication-title: Math. Comput. – volume: 100 start-page: 431 issue: 2 year: 1990 end-page: 476 article-title: On modular representations of $Gal\left(\overline{\mathbb{Q}}/ \mathbb{Q}\right)$ arising from modular forms publication-title: Invent. Math. – volume: 38 start-page: 1 issue: 1 year: 2022 end-page: 32 article-title: Global methods for the symplectic type of congruences between elliptic curves publication-title: Rev. Mat. Iberoam. – volume: 44 start-page: 129 issue: 2 year: 1978 end-page: 162 article-title: Rational isogenies of prime degree publication-title: Invent. Math. – volume: 97 start-page: 329 issue: 3 year: 1995 end-page: 348 article-title: Isogenies of prime degree over number fields publication-title: Compos. Math. – volume: 152 start-page: 323 issue: 4 year: 2012 end-page: 348 article-title: Points on quadratic twists of $\ {X}_0(N)$ publication-title: Acta Arith. – volume: 109 start-page: 221 issue: 1 year: 1992 end-page: 229 article-title: Torsion points on elliptic curves and q-coefficients of modular forms publication-title: Invent. Math. – ident: S0008414X22000244_r11 doi: 10.1112/S0010437X14007957 – ident: S0008414X22000244_r14 doi: 10.1007/BF01232025 – ident: S0008414X22000244_r13 doi: 10.2140/ant.2015.9.875 – ident: S0008414X22000244_r20 doi: 10.1007/BF01231195 – ident: S0008414X22000244_r2 doi: 10.1093/imrn/rnac134 – ident: S0008414X22000244_r16 doi: 10.4064/aa210812-2-4 – ident: S0008414X22000244_r8 doi: 10.4171/RMI/1269 – ident: S0008414X22000244_r9 – ident: S0008414X22000244_r4 doi: 10.1007/s40993-019-0153-2 – ident: S0008414X22000244_r10 – ident: S0008414X22000244_r3 doi: 10.1093/imrn/rnac134 – ident: S0008414X22000244_r5 doi: 10.1006/jsco.1996.0125 – ident: S0008414X22000244_r15 doi: 10.1007/BF01390348 – ident: S0008414X22000244_r12 doi: 10.5802/jtnb.894 – ident: S0008414X22000244_r1 doi: 10.2140/ant.2016.10.1147 – ident: S0008414X22000244_r18 doi: 10.1090/mcom/3805 – ident: S0008414X22000244_r6 doi: 10.1090/mcom/3547 – ident: S0008414X22000244_r7 doi: 10.1112/S1461157015000157 – volume: 97 start-page: 329 year: 1995 ident: S0008414X22000244_r17 article-title: Isogenies of prime degree over number fields publication-title: Compos. Math. – ident: S0008414X22000244_r19 doi: 10.4064/aa152-4-1 |
SSID | ssj0003651 |
Score | 2.3197107 |
Snippet | Let K be a number field. For which primes p does there exist an elliptic curve
$E / K$
admitting a K-rational p-isogeny? Although we have an answer to this... Let K be a number field. For which primes p does there exist an elliptic curve $E / K$ admitting a K -rational p -isogeny? Although we have an answer to this... Let K be a number field. For which primes p does there exist an elliptic curve \(E / K\) admitting a K-rational p-isogeny? Although we have an answer to this... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 945 |
SubjectTerms | Curves Fields (mathematics) Hypotheses Number theory Questions |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQDlwQkR0SdolJ4QQY0IaXJi0WxXnIXHpxrrx-3HabmNC2qWHNqoq27X9OY4_Qm5tagQAopMA2jHpIGNgDF56WqVGIw4KESgO37PBSL6N03FTcCubtsqlT6wctZvYWCN_4CoSY3PEVI_TbxZZo-LuakOhsUv2uhhpop2r_uvKE4ssbRjzFJNdOa53NTFkiXhCOFHxHo9nVTDG_Z2tsBmjNl10FXf6R-SwSRjpU63hY7LjixNyMFxNWy1Pif4oaJyriX-_pXYx-_EljfVVOmVf5QQtBNEwja2a9HthXFS5pVXnWnlGRv2Xz-cBaygRmBVdPmeYzUgQPhNZZjx-v7cpOKPBJ8BBS0gsAk4OQjnQvcCF8wYzMkikB6O1ScQ5aRWTwl8Q6qCX4QqpuFEyQKqD4D50ZfAqdSFL2-R-JZC8MewyR8wQ5Zf_k1-b3C1llk_rQRnbFneWUl2_eq3hy-2Pr8h-JH2vG7Y6pDWfLfw1pgZzuKn0_wtveLPH priority: 102 providerName: ProQuest |
Title | On elliptic curves with p-isogenies over quadratic fields |
URI | https://www.cambridge.org/core/product/identifier/S0008414X22000244/type/journal_article https://www.proquest.com/docview/2811872713 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTwwIaKmtpPaIyBaHqIgRKVskS92pC5taVp-P-cmLSAkJJZM1sX6crm7z74HwHkWGYFI7CRHbQNpMQ7QGHp0tYqMJh6Ue6L4NIjvhvIhiZINSFa1MD6tct3jYHmTv5yPNi3bn7ZHtsyhcTNf4xsq2ZEJ99Um5KXa_tCyXX2CtAJ-E-oUM3ToD6jfPyb9wdpKiziqpumpwEspbzzJnYnfkr_3Xfjpv36a76VP6u3CThVMsqtyE3uw4cb7sP207sRaHIB-HjPfc5MsQ8ayxezDFcyfvbJpMCompD3ElJlP42TvC2O9OmRsmdVWHMKwd_t2cxdU4xKCTHT4PKBIR6JwsYhj42j_LovQGo0uRI5aYpgRGeUolEXdzbmwzlC0hqF0aLQ2oTiC2ngydsfALHZjWiEVN0rmGOlccJd3ZO5UZPM4asDlGpC0QrxIiU94_NJf-DXgYoVZOi2baPy1uLlC9Us0V34sOidGffK_V5_Clh8QXyZ3NaE2ny3cGYURc2zBpur1W1C_vh28vLYq_fgEtqPEPg |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB3RcGh7QECLCNCyB3qpatXeXTu7B4RKIUqApFUFUm5mx7uWeskHTqj6p_iNzMZ2IELKjYsP9moPz88z89bzAXCUxUYgkjrJUdtAWkwCNIYuLa1io0kH5V4o9vpJ50ZeDOLBGjzUtTA-rbK2iXNDbUeZPyP_zpUfjM1JU52MJ4GfGuX_rtYjNEpaXLr__0iyFcfdM3q_Xzhvn1__7ATVVIEgExGfBhQQSBQuEUlinJKRy2K0RqMLkaOWGGak2TgKZVG3ci6sMxTUYCgdGq1NKGjfN7AufUVrA9ZPz_u__yxsv0jiakafCmQkB-V_VHKSwtckh8rf4746hrzq824Oy15x2SnMPV17EzaqEJX9KDm1BWtuuA3ve4v-rsUH0L-GzHfyJHuTsWx2d-8K5k902Tj4W4yIk6S_mU8OZZOZsZ5kGZvnyhUf4eZV4NqBxnA0dLvALLYSWiEVN0rmGOtccJdHMncqtnkSN-HbApC0-pSKlFSKxy99gV8TvtaYpeOyNceqxQc1qk9bP3Fqb_XjQ3jbue5dpVfd_uU-vPMj58t0sQNoTO9m7hMFJlP8XLGBwe1rE_ARz2Xy1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKr2UBXaqtvS4gNcKqJNbCexD6iqWJbHAuVQpL2lntiWetkH2QX1r_XXMd4kC6tK3LjkkFg-TD77m8-eB8BumRqBSOrEo7aRtJhFaAw9cq1So0kH-SAULy6zk2t5NkyHa_CvzYUJYZXtnrjYqO24DGfkXa5CY2xOmqrrm7CIq17_-2QahQ5S4aa1badRQ2Tg_t6RfKsOTnv0r_c47x_9OjyJmg4DUSkSPovIOZAoXCayzDglE1emaI1GFyNHLTEuSb9xFMqizj0X1hlycDCWDo3WJhY07wvYyEWug_BT_eMlC4gsbbr1qUgmcljfqBJdipCdHKvwjoc8GeLXx3UdVvlxlR4WnNd_C28aZ5X9qNG1CWtutAWvL5aVXqt3oH-OWKjpSTtPycr5za2rWDjbZZPoTzUmdJISZyFMlE3nxga4lWwRNVe9h-tnMdYHWB-NR-4jMIt5RiOk4kZJj6n2gjufSO9Uan2WdmB_aZCiWVRVQXol2K_4z34d-NbarJjURTqeGrzdWvVh6gd0fXr68w68JNgV56eXg8_wKvSer-PGtmF9djN3X8hDmeHXBRQY_H5u7N0DvxH1pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+elliptic+curves+with+p-isogenies+over+quadratic+fields&rft.jtitle=Canadian+journal+of+mathematics&rft.au=Michaud-Jacobs%2C+Philippe&rft.date=2023-06-01&rft.pub=Canadian+Mathematical+Society&rft.issn=0008-414X&rft.eissn=1496-4279&rft.volume=75&rft.issue=3&rft.spage=945&rft.epage=964&rft_id=info:doi/10.4153%2FS0008414X22000244&rft.externalDocID=10_4153_S0008414X22000244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-414X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-414X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-414X&client=summon |