Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays

In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structur...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 45; no. 43; pp. 22576 - 22588
Main Authors Sahoo, Pooja, Sharma, Akash, Padhan, Subash, Thangavel, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 03.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structure as confirmed from XRD measurements. We achieved a photocurrent density of 0.35 mA/cm2 at 1.5 V vs. Ag/AgCl for 10% Mg doped ZnO photoanode which is 9 times higher than that of undoped ZnO nanorods (0.03 mA/cm2). Incorporation of Mg resulted in faster charge transport and longer life time of electrons with reduced recombination rate. Mg dopant tuned the optical band gap of ZnO and increased the carrier concentration boosting the PEC performance of the photoanodes. Since seawater is one of the most abundant natural resource on earth, we further carried out seawater splitting of 10MgZ under visible light illumination which indicated its high photostability in natural seawater for 5 h of continuous illumination. [Display omitted] •We introduced Mg doped ZnO nanorods as photoanodes for solar water splitting.•A superior photoelectrochemical performance and better electron lifetime was observed.•10% Mg doped ZnO photoanode exhibited long term photostability in natural seawater.
AbstractList In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structure as confirmed from XRD measurements. We achieved a photocurrent density of 0.35 mA/cm2 at 1.5 V vs. Ag/AgCl for 10% Mg doped ZnO photoanode which is 9 times higher than that of undoped ZnO nanorods (0.03 mA/cm2). Incorporation of Mg resulted in faster charge transport and longer life time of electrons with reduced recombination rate. Mg dopant tuned the optical band gap of ZnO and increased the carrier concentration boosting the PEC performance of the photoanodes. Since seawater is one of the most abundant natural resource on earth, we further carried out seawater splitting of 10MgZ under visible light illumination which indicated its high photostability in natural seawater for 5 h of continuous illumination. [Display omitted] •We introduced Mg doped ZnO nanorods as photoanodes for solar water splitting.•A superior photoelectrochemical performance and better electron lifetime was observed.•10% Mg doped ZnO photoanode exhibited long term photostability in natural seawater.
Author Thangavel, R.
Sahoo, Pooja
Sharma, Akash
Padhan, Subash
Author_xml – sequence: 1
  givenname: Pooja
  orcidid: 0000-0001-9227-1489
  surname: Sahoo
  fullname: Sahoo, Pooja
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
– sequence: 2
  givenname: Akash
  orcidid: 0000-0002-6510-7656
  surname: Sharma
  fullname: Sharma, Akash
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
– sequence: 3
  givenname: Subash
  surname: Padhan
  fullname: Padhan, Subash
  organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
– sequence: 4
  givenname: R.
  surname: Thangavel
  fullname: Thangavel, R.
  email: rthangavel@iitism.ac.in
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
BookMark eNqFkMtKAzEYhYNUsFVfQfICM-YyZmbAhSLeoNKNunBh-Jv8bVPGpCSx0rd3anXjpqvDWXwHzjciAx88EnLGWckZV-fL0i0XG4seS8EEK5kqeS0PyJA3dVvIqqkHZMikYoXkbXtERiktGeM1q9oheX91yU07pJ2bLzK10a3R09Ui5JBWncvZ-TkNM_oFGSP9TD_VI7XuA31ywUNHn-bUhhVa-uYn1IMPMVgKMcImnZDDGXQJT3_zmLzc3T7fPBTjyf3jzfW4MJKLXMi6ntYcGDRcNMIYhu1FJU0NjZpZCQIEq7gUcGFAVUoxK-3UWtFWiGB6Sh4Ttds1MaQUcaZX0X1A3GjO9NaSXuo_S3prSTOle0s9ePkPNC5D7o_lCK7bj1_tcOzPrR1GnYxDb9C6iCZrG9y-iW98FoxM
CitedBy_id crossref_primary_10_16984_saufenbilder_1190168
crossref_primary_10_1007_s11426_024_2058_9
crossref_primary_10_1016_j_ijhydene_2024_05_237
crossref_primary_10_1016_j_ceramint_2024_08_239
crossref_primary_10_1039_D0TC04352D
crossref_primary_10_1016_j_ijhydene_2024_02_206
crossref_primary_10_1021_acsaem_3c02948
crossref_primary_10_1016_j_physe_2022_115374
crossref_primary_10_1016_j_apsusc_2023_158505
crossref_primary_10_1016_j_ijhydene_2021_08_154
crossref_primary_10_1016_j_ijhydene_2021_12_259
crossref_primary_10_1007_s11051_023_05878_0
crossref_primary_10_1016_j_optmat_2024_114948
crossref_primary_10_1016_j_surfin_2024_103850
crossref_primary_10_1557_s43579_023_00422_6
crossref_primary_10_1134_S1063783424601401
crossref_primary_10_1016_j_ijhydene_2021_03_094
crossref_primary_10_1021_acs_jpclett_3c00736
crossref_primary_10_1016_j_mssp_2020_105433
crossref_primary_10_1016_j_ccr_2024_216345
crossref_primary_10_3390_polym15010185
crossref_primary_10_1016_j_solmat_2023_112436
crossref_primary_10_1007_s13738_024_03105_8
crossref_primary_10_1016_j_molstruc_2020_129856
crossref_primary_10_1038_s41467_023_40010_9
crossref_primary_10_1016_j_rser_2024_115074
crossref_primary_10_1021_acs_jpcc_4c03718
Cites_doi 10.1039/c1ee01812d
10.1016/j.ijhydene.2011.01.004
10.1016/j.jallcom.2019.03.178
10.1016/j.apt.2017.10.014
10.1016/j.jallcom.2018.09.294
10.1021/cr1002326
10.1039/c2ce06650e
10.1038/s41467-020-14704-3
10.1016/j.ceramint.2016.03.105
10.1016/j.jpowsour.2016.03.086
10.1088/0957-4484/17/12/023
10.1038/238037a0
10.1016/j.jallcom.2016.05.254
10.1016/j.electacta.2018.10.045
10.1007/s10854-018-8835-4
10.1002/pssa.201026448
10.1016/j.ijhydene.2011.09.046
10.1016/j.ijhydene.2014.11.114
10.1007/s10854-019-00825-z
10.1088/1757-899X/454/1/012033
10.1039/C8CS00997J
10.1021/acs.jpcc.8b00875
10.1021/am300359h
10.1063/1.1690091
10.1016/j.jcrysgro.2011.11.078
10.1007/s10854-018-9608-9
10.1038/ncomms2066
10.1016/j.ijhydene.2017.04.121
10.1016/j.apsusc.2018.03.208
10.1038/srep12925
10.1021/nl200708y
10.1063/1.4861798
10.1021/jp303255f
10.1039/C5TA02974K
10.1016/j.ijhydene.2015.08.015
10.1016/j.ijhydene.2012.05.135
10.1016/j.ijhydene.2015.09.116
10.1016/j.ijhydene.2011.04.010
10.1016/j.jallcom.2015.10.117
10.1016/j.solener.2020.04.027
10.1039/C8RA10599E
10.1002/chem.201804119
10.1039/b812047a
10.1016/j.jcis.2017.07.032
10.1016/j.solener.2019.09.045
10.1007/s10971-017-4536-3
10.1002/aenm.201700555
10.1016/j.jpowsour.2019.04.116
10.1016/j.electacta.2012.03.165
10.1038/35104607
10.1016/j.rinp.2017.01.023
ContentType Journal Article
Copyright 2020 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2020 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2020.06.173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 22588
ExternalDocumentID 10_1016_j_ijhydene_2020_06_173
S0360319920323570
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c312t-377b71a0a81282cc0e9543c7a86fd3a2a204132a5ca64660d3dbdd294eeac0a83
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Tue Jul 01 02:01:41 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Fri Feb 23 02:50:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords Water splitting
Mg doped ZnO
Photoconversion efficiency
Nanorods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-377b71a0a81282cc0e9543c7a86fd3a2a204132a5ca64660d3dbdd294eeac0a83
ORCID 0000-0002-6510-7656
0000-0001-9227-1489
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2020_06_173
crossref_citationtrail_10_1016_j_ijhydene_2020_06_173
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_06_173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-03
PublicationDateYYYYMMDD 2020-09-03
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-03
  day: 03
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hsu, Lin (bib16) 2012; 74
Yang, Niu, Han, Liu, Wang, Li (bib6) 2017; 7
GuL, Amin, Abbas, Ilyas, Shah (bib26) 2019; 30
Wang, Ren, Zhou, Cai, Cai, Hu (bib13) 2015; 5
Shan, Kim, Liu, Liu, Sohn, Lee (bib27) 2004; 95
Etacheri, Roshan, Kumar (bib32) 2012; 4
Grätzel (bib2) 2001; 414
Li, Liu, Zhang, Guo, Xin, Zhao (bib40) 2019; 790
Fujishima, Honda (bib1) 1972; 238
Rouchdi, Salmani, Fares, Hassanain, Mzerd (bib28) 2017; 7
Li, Li, Wu, Ong, Loutfy (bib24) 2009; 19
Lee, Canciani, Alwhshe, Chen (bib11) 2016; 41
Dhanasekaran, Salunke, Gupta (bib34) 2012; 116
Liu, Liu, Su, Li, Guo (bib5) 2015; 40
Aboud, Shaban, Revaprasadu (bib45) 2019; 9
Ling, Wang, Wheeler, Zhang, Li (bib14) 2011; 11
Sahoo, Sharma, Padhan, Udayabhanu, Thangavel (bib20) 2019; 193
Guan, Chowdhury, Pant, Guo, Vayssieres, Mi (bib25) 2018; 122
Sharma, Kumar, Singh, Upadhyay, Satsangi, Dass (bib44) 2012; 37
Shelke, Lokhande, Kim, Lokhande (bib38) 2017; 506
Sharma, Chakraborty, Thangavel (bib19) 2018; 29
Sharma, Kumar, Shrivastava, Solanki, Satsangi, Dass (bib42) 2011; 36
Singh, Hudson, Pandey, Tiwari, Srivastava (bib21) 2012; 37
Sharma, Sahoo, Singha, Padhan, Udayabhanu, Thangavel (bib37) 2020; 203
Cai, Ren, Wang, Cai, Chen, Liu (bib12) 2015; 40
Singh, Kumar, Hui, Hui, Ramam, Tiwari (bib31) 2012; 14
Salem, Akir, Ghrib, Daoudi, Gaidi (bib15) 2016; 685
Hussain, Imran, Khalil, Niaz, Rana, Sattar (bib29) 2020; 115
Li, Zhuang, Wang, Xu (bib36) 2011; 208
Dridi, Bouaziz, Karyaoui, Litaiem, Chtourou (bib43) 2018; 29
Zhuang, Lu, Zhou, Zhou, Lin, Peng (bib39) 2019; 294
Duan, Lu, Du Pasquier (bib8) 2012; 352
Hou, Boppella, Shanmugasundaram, Kim, Lee (bib10) 2017; 42
Cheng, Tsai, Wu (bib48) 2016; 317
Zeng, Li (bib4) 2015; 3
Hsu, Chen (bib41) 2011; 36
Zhong, Yang, Zhang, Cai, Gao, Yu (bib9) 2019; 430
Yang, Prabhakar, Tan, Tilley, Moon (bib52) 2019; 48
Sun, Sun, Gao, Cheng, Liu, Piao (bib47) 2012; 3
Yang, Kim, Hutter, Phillips, Tan, Park (bib51) 2020; 11
Zeng, Yang, Shang, Xu, Yang, Hou (bib33) 2016; 42
Walter, Warren, McKone, Boettcher, Mi, Santori (bib3) 2010; 110
Yang, Wang, Kong, Yu, Jin (bib35) 2016; 657
Cho, Jang, Lee, Lee (bib7) 2014; 2
Kant, Dwivedi, Pathak, Dutta (bib18) 2018; 447
Yousefi, Azimi, Mahmoudian, Cheraghizade (bib23) 2018; 29
Shewale, Lee, Yu (bib30) 2019; 774
Pan, Luo, Sun, Feng, Poh, Lin (bib22) 2006; 17
Qasim, Jamil, Chen (bib46) 2018; 454
Sharma, Chakraborty, Thangavel, Udayabhanu (bib17) 2018; 85
Luo, Yang, Li, Zhang, Liu, Zhao (bib49) 2011; 4
Ayyub, Chhetri, Gupta, Roy, Rao (bib50) 2018; 24
Singh (10.1016/j.ijhydene.2020.06.173_bib31) 2012; 14
Fujishima (10.1016/j.ijhydene.2020.06.173_bib1) 1972; 238
Dhanasekaran (10.1016/j.ijhydene.2020.06.173_bib34) 2012; 116
Zeng (10.1016/j.ijhydene.2020.06.173_bib33) 2016; 42
Ling (10.1016/j.ijhydene.2020.06.173_bib14) 2011; 11
Sharma (10.1016/j.ijhydene.2020.06.173_bib44) 2012; 37
Yang (10.1016/j.ijhydene.2020.06.173_bib52) 2019; 48
Sharma (10.1016/j.ijhydene.2020.06.173_bib19) 2018; 29
Zhuang (10.1016/j.ijhydene.2020.06.173_bib39) 2019; 294
Sun (10.1016/j.ijhydene.2020.06.173_bib47) 2012; 3
Guan (10.1016/j.ijhydene.2020.06.173_bib25) 2018; 122
Zeng (10.1016/j.ijhydene.2020.06.173_bib4) 2015; 3
Shelke (10.1016/j.ijhydene.2020.06.173_bib38) 2017; 506
Hsu (10.1016/j.ijhydene.2020.06.173_bib41) 2011; 36
Sharma (10.1016/j.ijhydene.2020.06.173_bib17) 2018; 85
Yousefi (10.1016/j.ijhydene.2020.06.173_bib23) 2018; 29
Sharma (10.1016/j.ijhydene.2020.06.173_bib42) 2011; 36
Zhong (10.1016/j.ijhydene.2020.06.173_bib9) 2019; 430
Wang (10.1016/j.ijhydene.2020.06.173_bib13) 2015; 5
Shan (10.1016/j.ijhydene.2020.06.173_bib27) 2004; 95
Liu (10.1016/j.ijhydene.2020.06.173_bib5) 2015; 40
Rouchdi (10.1016/j.ijhydene.2020.06.173_bib28) 2017; 7
Singh (10.1016/j.ijhydene.2020.06.173_bib21) 2012; 37
Cheng (10.1016/j.ijhydene.2020.06.173_bib48) 2016; 317
Shewale (10.1016/j.ijhydene.2020.06.173_bib30) 2019; 774
Aboud (10.1016/j.ijhydene.2020.06.173_bib45) 2019; 9
Kant (10.1016/j.ijhydene.2020.06.173_bib18) 2018; 447
Li (10.1016/j.ijhydene.2020.06.173_bib36) 2011; 208
GuL (10.1016/j.ijhydene.2020.06.173_bib26) 2019; 30
Duan (10.1016/j.ijhydene.2020.06.173_bib8) 2012; 352
Salem (10.1016/j.ijhydene.2020.06.173_bib15) 2016; 685
Sharma (10.1016/j.ijhydene.2020.06.173_bib37) 2020; 203
Ayyub (10.1016/j.ijhydene.2020.06.173_bib50) 2018; 24
Hou (10.1016/j.ijhydene.2020.06.173_bib10) 2017; 42
Walter (10.1016/j.ijhydene.2020.06.173_bib3) 2010; 110
Li (10.1016/j.ijhydene.2020.06.173_bib24) 2009; 19
Yang (10.1016/j.ijhydene.2020.06.173_bib51) 2020; 11
Sahoo (10.1016/j.ijhydene.2020.06.173_bib20) 2019; 193
Li (10.1016/j.ijhydene.2020.06.173_bib40) 2019; 790
Hsu (10.1016/j.ijhydene.2020.06.173_bib16) 2012; 74
Qasim (10.1016/j.ijhydene.2020.06.173_bib46) 2018; 454
Etacheri (10.1016/j.ijhydene.2020.06.173_bib32) 2012; 4
Cho (10.1016/j.ijhydene.2020.06.173_bib7) 2014; 2
Hussain (10.1016/j.ijhydene.2020.06.173_bib29) 2020; 115
Yang (10.1016/j.ijhydene.2020.06.173_bib35) 2016; 657
Grätzel (10.1016/j.ijhydene.2020.06.173_bib2) 2001; 414
Dridi (10.1016/j.ijhydene.2020.06.173_bib43) 2018; 29
Lee (10.1016/j.ijhydene.2020.06.173_bib11) 2016; 41
Pan (10.1016/j.ijhydene.2020.06.173_bib22) 2006; 17
Cai (10.1016/j.ijhydene.2020.06.173_bib12) 2015; 40
Luo (10.1016/j.ijhydene.2020.06.173_bib49) 2011; 4
Yang (10.1016/j.ijhydene.2020.06.173_bib6) 2017; 7
References_xml – volume: 30
  start-page: 5257
  year: 2019
  end-page: 5265
  ident: bib26
  article-title: Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH
  publication-title: J Mater Sci Mater Electron
– volume: 3
  start-page: 1057
  year: 2012
  ident: bib47
  article-title: Fabrication of flexible and freestanding zinc chalcogenide single layers
  publication-title: Nat Commun
– volume: 115
  year: 2020
  ident: bib29
  article-title: An insight of Mg doped ZnO thin films: a comparative experimental and first-principle investigations
  publication-title: Phys E Low-Dimensional Syst Nanostructures
– volume: 36
  start-page: 4280
  year: 2011
  end-page: 4290
  ident: bib42
  article-title: Synthesis and characterization of nanocrystalline Zn
  publication-title: Int J Hydrogen Energy
– volume: 414
  start-page: 338
  year: 2001
  end-page: 344
  ident: bib2
  article-title: Photoelectrochemical cells
  publication-title: Nature
– volume: 122
  start-page: 13797
  year: 2018
  end-page: 13802
  ident: bib25
  article-title: Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays
  publication-title: J Phys Chem C
– volume: 447
  start-page: 200
  year: 2018
  end-page: 212
  ident: bib18
  article-title: Fabrication of ZnO nanostructures using Al doped ZnO (AZO) templates for application in photoelectrochemical water splitting
  publication-title: Appl Surf Sci
– volume: 657
  start-page: 261
  year: 2016
  end-page: 267
  ident: bib35
  article-title: Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties
  publication-title: J Alloys Compd
– volume: 37
  start-page: 12138
  year: 2012
  end-page: 12149
  ident: bib44
  article-title: Photoelectrochemical water splitting with nanocrystalline Zn
  publication-title: Int J Hydrogen Energy
– volume: 11
  start-page: 2119
  year: 2011
  end-page: 2125
  ident: bib14
  article-title: Sn-doped hematite nanostructures for photoelectrochemical water splitting
  publication-title: Nano Lett
– volume: 9
  start-page: 7729
  year: 2019
  end-page: 7736
  ident: bib45
  article-title: Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films
  publication-title: RSC Adv
– volume: 41
  start-page: 123
  year: 2016
  end-page: 131
  ident: bib11
  article-title: Enhanced photoelectrochemical water oxidation by Zn
  publication-title: Int J Hydrogen Energy
– volume: 29
  start-page: 78
  year: 2018
  end-page: 85
  ident: bib23
  article-title: Highly enhanced photocatalytic performance of Zn
  publication-title: Adv Powder Technol
– volume: 48
  start-page: 4979
  year: 2019
  end-page: 5015
  ident: bib52
  article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting
  publication-title: Chem Soc Rev
– volume: 790
  start-page: 493
  year: 2019
  end-page: 501
  ident: bib40
  article-title: 1D/0D WO
  publication-title: J Alloys Compd
– volume: 40
  start-page: 1394
  year: 2015
  end-page: 1401
  ident: bib12
  article-title: V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light
  publication-title: Int J Hydrogen Energy
– volume: 29
  start-page: 8267
  year: 2018
  end-page: 8278
  ident: bib43
  article-title: Effect of silver doping on optical and electrochemical properties of ZnO photoanode
  publication-title: J Mater Sci Mater Electron
– volume: 352
  start-page: 190
  year: 2012
  end-page: 193
  ident: bib8
  article-title: Morphological control of Mg
  publication-title: J Cryst Growth
– volume: 7
  start-page: 620
  year: 2017
  end-page: 627
  ident: bib28
  article-title: Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study
  publication-title: Results Phys
– volume: 42
  start-page: 15126
  year: 2017
  end-page: 15139
  ident: bib10
  article-title: Hierarchically self-assembled ZnO architectures: establishing light trapping networks for effective photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
– volume: 24
  start-page: 18455
  year: 2018
  end-page: 18462
  ident: bib50
  article-title: Photochemical and photoelectrochemical hydrogen generation by splitting seawater
  publication-title: Chem Eur J
– volume: 74
  start-page: 73
  year: 2012
  end-page: 77
  ident: bib16
  article-title: Enhanced photoelectrochemical properties of ternary Zn
  publication-title: Electrochim Acta
– volume: 208
  start-page: 136
  year: 2011
  end-page: 139
  ident: bib36
  article-title: Synthesis, characterization, and optical properties of Mg-doped zinc oxide single-crystal microprisms
  publication-title: Phys Status Solidi
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: bib1
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 36
  start-page: 15538
  year: 2011
  end-page: 15547
  ident: bib41
  article-title: Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
– volume: 685
  start-page: 107
  year: 2016
  end-page: 113
  ident: bib15
  article-title: Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films
  publication-title: J Alloys Compd
– volume: 37
  start-page: 3748
  year: 2012
  end-page: 3754
  ident: bib21
  article-title: Structural and hydrogenation studies of ZnO and Mg doped ZnO nanowires
  publication-title: Int J Hydrogen Energy
– volume: 454
  year: 2018
  ident: bib46
  article-title: Enhanced photoelectrochemical water splitting of hydrothermally-grown ZnO and yttrium-doped ZnO NR arrays
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 11
  start-page: 861
  year: 2020
  ident: bib51
  article-title: Benchmark performance of low-cost Sb
  publication-title: Nat Commun
– volume: 116
  start-page: 12156
  year: 2012
  end-page: 12164
  ident: bib34
  article-title: Visible-light-induced photosplitting of water over γ′-Fe 4N and γ′-Fe 4N/α-Fe
  publication-title: J Phys Chem C
– volume: 14
  start-page: 5898
  year: 2012
  ident: bib31
  article-title: Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires
  publication-title: CrystEngComm
– volume: 774
  start-page: 461
  year: 2019
  end-page: 470
  ident: bib30
  article-title: Effects of annealing temperature of spin-coated ZnO seed-layer on UV photo-sensing properties of PLD grown ZnO: Mg thin films
  publication-title: J Alloys Compd
– volume: 506
  start-page: 144
  year: 2017
  end-page: 153
  ident: bib38
  article-title: Photoelectrochemical (PEC) studies on Cu
  publication-title: J Colloid Interface Sci
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: bib3
  article-title: Solar water splitting cells
  publication-title: Chem Rev
– volume: 7
  start-page: 1700555
  year: 2017
  ident: bib6
  article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting
  publication-title: Adv Energy Mater
– volume: 193
  start-page: 148
  year: 2019
  end-page: 163
  ident: bib20
  article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
  publication-title: Sol Energy
– volume: 40
  start-page: 12964
  year: 2015
  end-page: 12972
  ident: bib5
  article-title: Facile preparation of BiVO
  publication-title: Int J Hydrogen Energy
– volume: 2
  year: 2014
  ident: bib7
  article-title: Research Update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes
  publication-title: Apl Mater
– volume: 4
  start-page: 2717
  year: 2012
  end-page: 2725
  ident: bib32
  article-title: Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis
  publication-title: ACS Appl Mater Interfaces
– volume: 29
  start-page: 14710
  year: 2018
  end-page: 14722
  ident: bib19
  article-title: Enhanced photoelectrochemical performance of hydrothermally grown tetravalent impurity (Si
  publication-title: J Mater Sci Mater Electron
– volume: 85
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib17
  article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications
  publication-title: J Sol Gel Sci Technol
– volume: 42
  start-page: 10021
  year: 2016
  end-page: 10029
  ident: bib33
  article-title: Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps
  publication-title: Ceram Int
– volume: 5
  start-page: 12925
  year: 2015
  ident: bib13
  article-title: N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure
  publication-title: Sci Rep
– volume: 19
  start-page: 1626
  year: 2009
  end-page: 1634
  ident: bib24
  article-title: Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors
  publication-title: J Mater Chem
– volume: 294
  start-page: 28
  year: 2019
  end-page: 37
  ident: bib39
  article-title: Cu modified ZnO nanoflowers as photoanode material for highly efficient dye sensitized solar cells
  publication-title: Electrochim Acta
– volume: 430
  start-page: 32
  year: 2019
  end-page: 42
  ident: bib9
  article-title: CdS branched TiO
  publication-title: J Power Sources
– volume: 17
  start-page: 2963
  year: 2006
  end-page: 2967
  ident: bib22
  article-title: Hydrogen storage of ZnO and Mg doped ZnO nanowires
  publication-title: Nanotechnology
– volume: 317
  start-page: 81
  year: 2016
  end-page: 92
  ident: bib48
  article-title: Photo-enhanced salt-water splitting using orthorhombic Ag
  publication-title: J Power Sources
– volume: 4
  start-page: 4046
  year: 2011
  ident: bib49
  article-title: Solar hydrogen generation from seawater with a modified BiVO
  publication-title: Energy Environ Sci
– volume: 3
  start-page: 14942
  year: 2015
  end-page: 14962
  ident: bib4
  article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
  publication-title: J Mater Chem
– volume: 203
  start-page: 284
  year: 2020
  end-page: 295
  ident: bib37
  article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu
  publication-title: Sol Energy
– volume: 95
  start-page: 4772
  year: 2004
  end-page: 4776
  ident: bib27
  article-title: Blueshift of near band edge emission in Mg doped ZnO thin films and aging
  publication-title: J Appl Phys
– volume: 4
  start-page: 4046
  year: 2011
  ident: 10.1016/j.ijhydene.2020.06.173_bib49
  article-title: Solar hydrogen generation from seawater with a modified BiVO4 photoanode
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee01812d
– volume: 36
  start-page: 4280
  year: 2011
  ident: 10.1016/j.ijhydene.2020.06.173_bib42
  article-title: Synthesis and characterization of nanocrystalline Zn1−xMxO (M=Ni, Cr) thin films for efficient photoelectrochemical splitting of water under UV irradiation
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.004
– volume: 790
  start-page: 493
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib40
  article-title: 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.03.178
– volume: 29
  start-page: 78
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib23
  article-title: Highly enhanced photocatalytic performance of Zn(1−x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2017.10.014
– volume: 774
  start-page: 461
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib30
  article-title: Effects of annealing temperature of spin-coated ZnO seed-layer on UV photo-sensing properties of PLD grown ZnO: Mg thin films
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.09.294
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.ijhydene.2020.06.173_bib3
  article-title: Solar water splitting cells
  publication-title: Chem Rev
  doi: 10.1021/cr1002326
– volume: 14
  start-page: 5898
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib31
  article-title: Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires
  publication-title: CrystEngComm
  doi: 10.1039/c2ce06650e
– volume: 11
  start-page: 861
  year: 2020
  ident: 10.1016/j.ijhydene.2020.06.173_bib51
  article-title: Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14704-3
– volume: 42
  start-page: 10021
  year: 2016
  ident: 10.1016/j.ijhydene.2020.06.173_bib33
  article-title: Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2016.03.105
– volume: 317
  start-page: 81
  year: 2016
  ident: 10.1016/j.ijhydene.2020.06.173_bib48
  article-title: Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.03.086
– volume: 17
  start-page: 2963
  year: 2006
  ident: 10.1016/j.ijhydene.2020.06.173_bib22
  article-title: Hydrogen storage of ZnO and Mg doped ZnO nanowires
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/12/023
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.ijhydene.2020.06.173_bib1
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 685
  start-page: 107
  year: 2016
  ident: 10.1016/j.ijhydene.2020.06.173_bib15
  article-title: Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.05.254
– volume: 294
  start-page: 28
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib39
  article-title: Cu modified ZnO nanoflowers as photoanode material for highly efficient dye sensitized solar cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.10.045
– volume: 29
  start-page: 8267
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib43
  article-title: Effect of silver doping on optical and electrochemical properties of ZnO photoanode
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-018-8835-4
– volume: 208
  start-page: 136
  year: 2011
  ident: 10.1016/j.ijhydene.2020.06.173_bib36
  article-title: Synthesis, characterization, and optical properties of Mg-doped zinc oxide single-crystal microprisms
  publication-title: Phys Status Solidi
  doi: 10.1002/pssa.201026448
– volume: 36
  start-page: 15538
  year: 2011
  ident: 10.1016/j.ijhydene.2020.06.173_bib41
  article-title: Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.046
– volume: 40
  start-page: 1394
  year: 2015
  ident: 10.1016/j.ijhydene.2020.06.173_bib12
  article-title: V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.11.114
– volume: 30
  start-page: 5257
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib26
  article-title: Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-019-00825-z
– volume: 454
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib46
  article-title: Enhanced photoelectrochemical water splitting of hydrothermally-grown ZnO and yttrium-doped ZnO NR arrays
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/454/1/012033
– volume: 48
  start-page: 4979
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib52
  article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting
  publication-title: Chem Soc Rev
  doi: 10.1039/C8CS00997J
– volume: 122
  start-page: 13797
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib25
  article-title: Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b00875
– volume: 4
  start-page: 2717
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib32
  article-title: Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am300359h
– volume: 95
  start-page: 4772
  year: 2004
  ident: 10.1016/j.ijhydene.2020.06.173_bib27
  article-title: Blueshift of near band edge emission in Mg doped ZnO thin films and aging
  publication-title: J Appl Phys
  doi: 10.1063/1.1690091
– volume: 352
  start-page: 190
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib8
  article-title: Morphological control of MgxZn1−xO layers grown on Ga:ZnO/glass substrates for photovoltaics
  publication-title: J Cryst Growth
  doi: 10.1016/j.jcrysgro.2011.11.078
– volume: 29
  start-page: 14710
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib19
  article-title: Enhanced photoelectrochemical performance of hydrothermally grown tetravalent impurity (Si4+) doped zinc oxide nanostructures for solar water splitting applications
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-018-9608-9
– volume: 3
  start-page: 1057
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib47
  article-title: Fabrication of flexible and freestanding zinc chalcogenide single layers
  publication-title: Nat Commun
  doi: 10.1038/ncomms2066
– volume: 42
  start-page: 15126
  year: 2017
  ident: 10.1016/j.ijhydene.2020.06.173_bib10
  article-title: Hierarchically self-assembled ZnO architectures: establishing light trapping networks for effective photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.121
– volume: 447
  start-page: 200
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib18
  article-title: Fabrication of ZnO nanostructures using Al doped ZnO (AZO) templates for application in photoelectrochemical water splitting
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.03.208
– volume: 5
  start-page: 12925
  year: 2015
  ident: 10.1016/j.ijhydene.2020.06.173_bib13
  article-title: N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure
  publication-title: Sci Rep
  doi: 10.1038/srep12925
– volume: 11
  start-page: 2119
  year: 2011
  ident: 10.1016/j.ijhydene.2020.06.173_bib14
  article-title: Sn-doped hematite nanostructures for photoelectrochemical water splitting
  publication-title: Nano Lett
  doi: 10.1021/nl200708y
– volume: 115
  year: 2020
  ident: 10.1016/j.ijhydene.2020.06.173_bib29
  article-title: An insight of Mg doped ZnO thin films: a comparative experimental and first-principle investigations
  publication-title: Phys E Low-Dimensional Syst Nanostructures
– volume: 2
  year: 2014
  ident: 10.1016/j.ijhydene.2020.06.173_bib7
  article-title: Research Update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes
  publication-title: Apl Mater
  doi: 10.1063/1.4861798
– volume: 116
  start-page: 12156
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib34
  article-title: Visible-light-induced photosplitting of water over γ′-Fe 4N and γ′-Fe 4N/α-Fe2O3 nanocatalysts
  publication-title: J Phys Chem C
  doi: 10.1021/jp303255f
– volume: 3
  start-page: 14942
  year: 2015
  ident: 10.1016/j.ijhydene.2020.06.173_bib4
  article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
  publication-title: J Mater Chem
  doi: 10.1039/C5TA02974K
– volume: 40
  start-page: 12964
  year: 2015
  ident: 10.1016/j.ijhydene.2020.06.173_bib5
  article-title: Facile preparation of BiVO4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.015
– volume: 37
  start-page: 12138
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib44
  article-title: Photoelectrochemical water splitting with nanocrystalline Zn1−xRuxO thin films
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.05.135
– volume: 41
  start-page: 123
  year: 2016
  ident: 10.1016/j.ijhydene.2020.06.173_bib11
  article-title: Enhanced photoelectrochemical water oxidation by ZnxMyO (M = Ni, Co, K, Na) nanorod arrays
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.116
– volume: 37
  start-page: 3748
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib21
  article-title: Structural and hydrogenation studies of ZnO and Mg doped ZnO nanowires
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.04.010
– volume: 657
  start-page: 261
  year: 2016
  ident: 10.1016/j.ijhydene.2020.06.173_bib35
  article-title: Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2015.10.117
– volume: 203
  start-page: 284
  year: 2020
  ident: 10.1016/j.ijhydene.2020.06.173_bib37
  article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.04.027
– volume: 9
  start-page: 7729
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib45
  article-title: Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films
  publication-title: RSC Adv
  doi: 10.1039/C8RA10599E
– volume: 24
  start-page: 18455
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib50
  article-title: Photochemical and photoelectrochemical hydrogen generation by splitting seawater
  publication-title: Chem Eur J
  doi: 10.1002/chem.201804119
– volume: 19
  start-page: 1626
  year: 2009
  ident: 10.1016/j.ijhydene.2020.06.173_bib24
  article-title: Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors
  publication-title: J Mater Chem
  doi: 10.1039/b812047a
– volume: 506
  start-page: 144
  year: 2017
  ident: 10.1016/j.ijhydene.2020.06.173_bib38
  article-title: Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2017.07.032
– volume: 193
  start-page: 148
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib20
  article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.09.045
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijhydene.2020.06.173_bib17
  article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications
  publication-title: J Sol Gel Sci Technol
  doi: 10.1007/s10971-017-4536-3
– volume: 7
  start-page: 1700555
  year: 2017
  ident: 10.1016/j.ijhydene.2020.06.173_bib6
  article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201700555
– volume: 430
  start-page: 32
  year: 2019
  ident: 10.1016/j.ijhydene.2020.06.173_bib9
  article-title: CdS branched TiO2: rods-on-rods nanoarrays for efficient photoelectrochemical (PEC) and self-bias photocatalytic (PC) hydrogen production
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.04.116
– volume: 74
  start-page: 73
  year: 2012
  ident: 10.1016/j.ijhydene.2020.06.173_bib16
  article-title: Enhanced photoelectrochemical properties of ternary Zn1−xCuxO nanorods with tunable band gaps for solar water splitting
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.03.165
– volume: 414
  start-page: 338
  year: 2001
  ident: 10.1016/j.ijhydene.2020.06.173_bib2
  article-title: Photoelectrochemical cells
  publication-title: Nature
  doi: 10.1038/35104607
– volume: 7
  start-page: 620
  year: 2017
  ident: 10.1016/j.ijhydene.2020.06.173_bib28
  article-title: Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2017.01.023
SSID ssj0017049
Score 2.457566
Snippet In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 22576
SubjectTerms Mg doped ZnO
Nanorods
Photoconversion efficiency
Water splitting
Title Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays
URI https://dx.doi.org/10.1016/j.ijhydene.2020.06.173
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14TZtkN69jKZaqtB60UjwY9hWbUpKQVqQXf7uzeZQKQg8eN-zAMpn95huY_QahW8kdAcSTG8oi0qCWJAankWsQ6VvCjJSgkS4UR2N3OKEPU2faQP36LYxuq6ywv8T0Aq2rL93Km90sjrvPgL36CU6gZ4ATx9N1O6WejvLO96bNw_IqCgybDb1765XwvBPPZ2u43lou0za1jqflkb8T1FbSGRyhw4ot4l55oGPUUMkJOtjSEDxF768xRPVC4YUus7HMNXzhbJau0iUQzKKtGacR_gJSmWPd5g7LRGGpZf1LSQ48-sAyzZTEb8kTTliSAqpiludsvTxDk8HdS39oVEMTDEEsewWA4XHPYiaDzO3bQpgqcCgRHvPdSBJmM9uEvGUzRzCXuq4pieRS2gFVAMFgRc5RM4FjXCCsOPAJCXYmp5RZjEO1xSOHexxomM9ICzm1p0JRKYrrwRaLsG4dm4e1h0Pt4dB0Q_BwC3U3dlmpqbHTIqh_RPgrOkIA_h22l_-wvUL7elX0lJFr1Fzln-oGSMiKt4soa6O93v3jcPwD7vreuA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0QWKgL4zPicxZuK21n2sKSEAko4EIwxIWTeVVKSEsKxvD33qEtwcSEhcs-TjK5Mz333PTOGYTulfAkCE9haYcoizqKWIKGvkVU3ZF2qCUNTaHYH_idEX0ae-MSahV7YUxbZc79Gaev2Tq_U8ujWZtHUe0VuNdswWmYM8CJF0DdXjHuVF4ZVZrd585g8zMhyFUwvG8ZwNZG4elDNJ2s4As3jpmubaw8nYD8naO28k77CB3mghE3szEdo5KOT9DBlo3gKfp4i2BhzzSemUobq9QwGJ5PkmWyAI257mzGSYi_QVem2HS6w2WssTLO_pkrB-5_YpXMtcLv8QuOeZwAsWKepny1OEOj9uOw1bHycxMsSRx3CZwRiMDhNofkXXeltHXDo0QGvO6HinCXuzakLpd7kvvU921FlFDKbVANLAwoco7KMQzjAmEtQFIowNmCUu5wAQWXCD0RCFBidU6qyCsixWRuKm7OtpixontsyooIMxNhZvsMIlxFtQ1untlq7EQ0iolgvxYIA-7fgb38B_YO7XWG_R7rdQfPV2jfPFm3mJFrVF6mX_oGNMlS3OZr7geVvuFp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light+driven+photosplitting+of+water+using+one+dimensional+Mg+doped+ZnO+nanorod+arrays&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Thangavel%2C+R.&rft.date=2020-09-03&rft.issn=0360-3199&rft.volume=45&rft.issue=43&rft.spage=22576&rft.epage=22588&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.06.173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2020_06_173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon