Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays
In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structur...
Saved in:
Published in | International journal of hydrogen energy Vol. 45; no. 43; pp. 22576 - 22588 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
03.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structure as confirmed from XRD measurements. We achieved a photocurrent density of 0.35 mA/cm2 at 1.5 V vs. Ag/AgCl for 10% Mg doped ZnO photoanode which is 9 times higher than that of undoped ZnO nanorods (0.03 mA/cm2). Incorporation of Mg resulted in faster charge transport and longer life time of electrons with reduced recombination rate. Mg dopant tuned the optical band gap of ZnO and increased the carrier concentration boosting the PEC performance of the photoanodes. Since seawater is one of the most abundant natural resource on earth, we further carried out seawater splitting of 10MgZ under visible light illumination which indicated its high photostability in natural seawater for 5 h of continuous illumination.
[Display omitted]
•We introduced Mg doped ZnO nanorods as photoanodes for solar water splitting.•A superior photoelectrochemical performance and better electron lifetime was observed.•10% Mg doped ZnO photoanode exhibited long term photostability in natural seawater. |
---|---|
AbstractList | In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structure as confirmed from XRD measurements. We achieved a photocurrent density of 0.35 mA/cm2 at 1.5 V vs. Ag/AgCl for 10% Mg doped ZnO photoanode which is 9 times higher than that of undoped ZnO nanorods (0.03 mA/cm2). Incorporation of Mg resulted in faster charge transport and longer life time of electrons with reduced recombination rate. Mg dopant tuned the optical band gap of ZnO and increased the carrier concentration boosting the PEC performance of the photoanodes. Since seawater is one of the most abundant natural resource on earth, we further carried out seawater splitting of 10MgZ under visible light illumination which indicated its high photostability in natural seawater for 5 h of continuous illumination.
[Display omitted]
•We introduced Mg doped ZnO nanorods as photoanodes for solar water splitting.•A superior photoelectrochemical performance and better electron lifetime was observed.•10% Mg doped ZnO photoanode exhibited long term photostability in natural seawater. |
Author | Thangavel, R. Sahoo, Pooja Sharma, Akash Padhan, Subash |
Author_xml | – sequence: 1 givenname: Pooja orcidid: 0000-0001-9227-1489 surname: Sahoo fullname: Sahoo, Pooja organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India – sequence: 2 givenname: Akash orcidid: 0000-0002-6510-7656 surname: Sharma fullname: Sharma, Akash organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India – sequence: 3 givenname: Subash surname: Padhan fullname: Padhan, Subash organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India – sequence: 4 givenname: R. surname: Thangavel fullname: Thangavel, R. email: rthangavel@iitism.ac.in organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India |
BookMark | eNqFkMtKAzEYhYNUsFVfQfICM-YyZmbAhSLeoNKNunBh-Jv8bVPGpCSx0rd3anXjpqvDWXwHzjciAx88EnLGWckZV-fL0i0XG4seS8EEK5kqeS0PyJA3dVvIqqkHZMikYoXkbXtERiktGeM1q9oheX91yU07pJ2bLzK10a3R09Ui5JBWncvZ-TkNM_oFGSP9TD_VI7XuA31ywUNHn-bUhhVa-uYn1IMPMVgKMcImnZDDGXQJT3_zmLzc3T7fPBTjyf3jzfW4MJKLXMi6ntYcGDRcNMIYhu1FJU0NjZpZCQIEq7gUcGFAVUoxK-3UWtFWiGB6Sh4Ttds1MaQUcaZX0X1A3GjO9NaSXuo_S3prSTOle0s9ePkPNC5D7o_lCK7bj1_tcOzPrR1GnYxDb9C6iCZrG9y-iW98FoxM |
CitedBy_id | crossref_primary_10_16984_saufenbilder_1190168 crossref_primary_10_1007_s11426_024_2058_9 crossref_primary_10_1016_j_ijhydene_2024_05_237 crossref_primary_10_1016_j_ceramint_2024_08_239 crossref_primary_10_1039_D0TC04352D crossref_primary_10_1016_j_ijhydene_2024_02_206 crossref_primary_10_1021_acsaem_3c02948 crossref_primary_10_1016_j_physe_2022_115374 crossref_primary_10_1016_j_apsusc_2023_158505 crossref_primary_10_1016_j_ijhydene_2021_08_154 crossref_primary_10_1016_j_ijhydene_2021_12_259 crossref_primary_10_1007_s11051_023_05878_0 crossref_primary_10_1016_j_optmat_2024_114948 crossref_primary_10_1016_j_surfin_2024_103850 crossref_primary_10_1557_s43579_023_00422_6 crossref_primary_10_1134_S1063783424601401 crossref_primary_10_1016_j_ijhydene_2021_03_094 crossref_primary_10_1021_acs_jpclett_3c00736 crossref_primary_10_1016_j_mssp_2020_105433 crossref_primary_10_1016_j_ccr_2024_216345 crossref_primary_10_3390_polym15010185 crossref_primary_10_1016_j_solmat_2023_112436 crossref_primary_10_1007_s13738_024_03105_8 crossref_primary_10_1016_j_molstruc_2020_129856 crossref_primary_10_1038_s41467_023_40010_9 crossref_primary_10_1016_j_rser_2024_115074 crossref_primary_10_1021_acs_jpcc_4c03718 |
Cites_doi | 10.1039/c1ee01812d 10.1016/j.ijhydene.2011.01.004 10.1016/j.jallcom.2019.03.178 10.1016/j.apt.2017.10.014 10.1016/j.jallcom.2018.09.294 10.1021/cr1002326 10.1039/c2ce06650e 10.1038/s41467-020-14704-3 10.1016/j.ceramint.2016.03.105 10.1016/j.jpowsour.2016.03.086 10.1088/0957-4484/17/12/023 10.1038/238037a0 10.1016/j.jallcom.2016.05.254 10.1016/j.electacta.2018.10.045 10.1007/s10854-018-8835-4 10.1002/pssa.201026448 10.1016/j.ijhydene.2011.09.046 10.1016/j.ijhydene.2014.11.114 10.1007/s10854-019-00825-z 10.1088/1757-899X/454/1/012033 10.1039/C8CS00997J 10.1021/acs.jpcc.8b00875 10.1021/am300359h 10.1063/1.1690091 10.1016/j.jcrysgro.2011.11.078 10.1007/s10854-018-9608-9 10.1038/ncomms2066 10.1016/j.ijhydene.2017.04.121 10.1016/j.apsusc.2018.03.208 10.1038/srep12925 10.1021/nl200708y 10.1063/1.4861798 10.1021/jp303255f 10.1039/C5TA02974K 10.1016/j.ijhydene.2015.08.015 10.1016/j.ijhydene.2012.05.135 10.1016/j.ijhydene.2015.09.116 10.1016/j.ijhydene.2011.04.010 10.1016/j.jallcom.2015.10.117 10.1016/j.solener.2020.04.027 10.1039/C8RA10599E 10.1002/chem.201804119 10.1039/b812047a 10.1016/j.jcis.2017.07.032 10.1016/j.solener.2019.09.045 10.1007/s10971-017-4536-3 10.1002/aenm.201700555 10.1016/j.jpowsour.2019.04.116 10.1016/j.electacta.2012.03.165 10.1038/35104607 10.1016/j.rinp.2017.01.023 |
ContentType | Journal Article |
Copyright | 2020 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2020.06.173 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 22588 |
ExternalDocumentID | 10_1016_j_ijhydene_2020_06_173 S0360319920323570 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-377b71a0a81282cc0e9543c7a86fd3a2a204132a5ca64660d3dbdd294eeac0a83 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:01:41 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Fri Feb 23 02:50:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | Water splitting Mg doped ZnO Photoconversion efficiency Nanorods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-377b71a0a81282cc0e9543c7a86fd3a2a204132a5ca64660d3dbdd294eeac0a83 |
ORCID | 0000-0002-6510-7656 0000-0001-9227-1489 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2020_06_173 crossref_citationtrail_10_1016_j_ijhydene_2020_06_173 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_06_173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-03 |
PublicationDateYYYYMMDD | 2020-09-03 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hsu, Lin (bib16) 2012; 74 Yang, Niu, Han, Liu, Wang, Li (bib6) 2017; 7 GuL, Amin, Abbas, Ilyas, Shah (bib26) 2019; 30 Wang, Ren, Zhou, Cai, Cai, Hu (bib13) 2015; 5 Shan, Kim, Liu, Liu, Sohn, Lee (bib27) 2004; 95 Etacheri, Roshan, Kumar (bib32) 2012; 4 Grätzel (bib2) 2001; 414 Li, Liu, Zhang, Guo, Xin, Zhao (bib40) 2019; 790 Fujishima, Honda (bib1) 1972; 238 Rouchdi, Salmani, Fares, Hassanain, Mzerd (bib28) 2017; 7 Li, Li, Wu, Ong, Loutfy (bib24) 2009; 19 Lee, Canciani, Alwhshe, Chen (bib11) 2016; 41 Dhanasekaran, Salunke, Gupta (bib34) 2012; 116 Liu, Liu, Su, Li, Guo (bib5) 2015; 40 Aboud, Shaban, Revaprasadu (bib45) 2019; 9 Ling, Wang, Wheeler, Zhang, Li (bib14) 2011; 11 Sahoo, Sharma, Padhan, Udayabhanu, Thangavel (bib20) 2019; 193 Guan, Chowdhury, Pant, Guo, Vayssieres, Mi (bib25) 2018; 122 Sharma, Kumar, Singh, Upadhyay, Satsangi, Dass (bib44) 2012; 37 Shelke, Lokhande, Kim, Lokhande (bib38) 2017; 506 Sharma, Chakraborty, Thangavel (bib19) 2018; 29 Sharma, Kumar, Shrivastava, Solanki, Satsangi, Dass (bib42) 2011; 36 Singh, Hudson, Pandey, Tiwari, Srivastava (bib21) 2012; 37 Sharma, Sahoo, Singha, Padhan, Udayabhanu, Thangavel (bib37) 2020; 203 Cai, Ren, Wang, Cai, Chen, Liu (bib12) 2015; 40 Singh, Kumar, Hui, Hui, Ramam, Tiwari (bib31) 2012; 14 Salem, Akir, Ghrib, Daoudi, Gaidi (bib15) 2016; 685 Hussain, Imran, Khalil, Niaz, Rana, Sattar (bib29) 2020; 115 Li, Zhuang, Wang, Xu (bib36) 2011; 208 Dridi, Bouaziz, Karyaoui, Litaiem, Chtourou (bib43) 2018; 29 Zhuang, Lu, Zhou, Zhou, Lin, Peng (bib39) 2019; 294 Duan, Lu, Du Pasquier (bib8) 2012; 352 Hou, Boppella, Shanmugasundaram, Kim, Lee (bib10) 2017; 42 Cheng, Tsai, Wu (bib48) 2016; 317 Zeng, Li (bib4) 2015; 3 Hsu, Chen (bib41) 2011; 36 Zhong, Yang, Zhang, Cai, Gao, Yu (bib9) 2019; 430 Yang, Prabhakar, Tan, Tilley, Moon (bib52) 2019; 48 Sun, Sun, Gao, Cheng, Liu, Piao (bib47) 2012; 3 Yang, Kim, Hutter, Phillips, Tan, Park (bib51) 2020; 11 Zeng, Yang, Shang, Xu, Yang, Hou (bib33) 2016; 42 Walter, Warren, McKone, Boettcher, Mi, Santori (bib3) 2010; 110 Yang, Wang, Kong, Yu, Jin (bib35) 2016; 657 Cho, Jang, Lee, Lee (bib7) 2014; 2 Kant, Dwivedi, Pathak, Dutta (bib18) 2018; 447 Yousefi, Azimi, Mahmoudian, Cheraghizade (bib23) 2018; 29 Shewale, Lee, Yu (bib30) 2019; 774 Pan, Luo, Sun, Feng, Poh, Lin (bib22) 2006; 17 Qasim, Jamil, Chen (bib46) 2018; 454 Sharma, Chakraborty, Thangavel, Udayabhanu (bib17) 2018; 85 Luo, Yang, Li, Zhang, Liu, Zhao (bib49) 2011; 4 Ayyub, Chhetri, Gupta, Roy, Rao (bib50) 2018; 24 Singh (10.1016/j.ijhydene.2020.06.173_bib31) 2012; 14 Fujishima (10.1016/j.ijhydene.2020.06.173_bib1) 1972; 238 Dhanasekaran (10.1016/j.ijhydene.2020.06.173_bib34) 2012; 116 Zeng (10.1016/j.ijhydene.2020.06.173_bib33) 2016; 42 Ling (10.1016/j.ijhydene.2020.06.173_bib14) 2011; 11 Sharma (10.1016/j.ijhydene.2020.06.173_bib44) 2012; 37 Yang (10.1016/j.ijhydene.2020.06.173_bib52) 2019; 48 Sharma (10.1016/j.ijhydene.2020.06.173_bib19) 2018; 29 Zhuang (10.1016/j.ijhydene.2020.06.173_bib39) 2019; 294 Sun (10.1016/j.ijhydene.2020.06.173_bib47) 2012; 3 Guan (10.1016/j.ijhydene.2020.06.173_bib25) 2018; 122 Zeng (10.1016/j.ijhydene.2020.06.173_bib4) 2015; 3 Shelke (10.1016/j.ijhydene.2020.06.173_bib38) 2017; 506 Hsu (10.1016/j.ijhydene.2020.06.173_bib41) 2011; 36 Sharma (10.1016/j.ijhydene.2020.06.173_bib17) 2018; 85 Yousefi (10.1016/j.ijhydene.2020.06.173_bib23) 2018; 29 Sharma (10.1016/j.ijhydene.2020.06.173_bib42) 2011; 36 Zhong (10.1016/j.ijhydene.2020.06.173_bib9) 2019; 430 Wang (10.1016/j.ijhydene.2020.06.173_bib13) 2015; 5 Shan (10.1016/j.ijhydene.2020.06.173_bib27) 2004; 95 Liu (10.1016/j.ijhydene.2020.06.173_bib5) 2015; 40 Rouchdi (10.1016/j.ijhydene.2020.06.173_bib28) 2017; 7 Singh (10.1016/j.ijhydene.2020.06.173_bib21) 2012; 37 Cheng (10.1016/j.ijhydene.2020.06.173_bib48) 2016; 317 Shewale (10.1016/j.ijhydene.2020.06.173_bib30) 2019; 774 Aboud (10.1016/j.ijhydene.2020.06.173_bib45) 2019; 9 Kant (10.1016/j.ijhydene.2020.06.173_bib18) 2018; 447 Li (10.1016/j.ijhydene.2020.06.173_bib36) 2011; 208 GuL (10.1016/j.ijhydene.2020.06.173_bib26) 2019; 30 Duan (10.1016/j.ijhydene.2020.06.173_bib8) 2012; 352 Salem (10.1016/j.ijhydene.2020.06.173_bib15) 2016; 685 Sharma (10.1016/j.ijhydene.2020.06.173_bib37) 2020; 203 Ayyub (10.1016/j.ijhydene.2020.06.173_bib50) 2018; 24 Hou (10.1016/j.ijhydene.2020.06.173_bib10) 2017; 42 Walter (10.1016/j.ijhydene.2020.06.173_bib3) 2010; 110 Li (10.1016/j.ijhydene.2020.06.173_bib24) 2009; 19 Yang (10.1016/j.ijhydene.2020.06.173_bib51) 2020; 11 Sahoo (10.1016/j.ijhydene.2020.06.173_bib20) 2019; 193 Li (10.1016/j.ijhydene.2020.06.173_bib40) 2019; 790 Hsu (10.1016/j.ijhydene.2020.06.173_bib16) 2012; 74 Qasim (10.1016/j.ijhydene.2020.06.173_bib46) 2018; 454 Etacheri (10.1016/j.ijhydene.2020.06.173_bib32) 2012; 4 Cho (10.1016/j.ijhydene.2020.06.173_bib7) 2014; 2 Hussain (10.1016/j.ijhydene.2020.06.173_bib29) 2020; 115 Yang (10.1016/j.ijhydene.2020.06.173_bib35) 2016; 657 Grätzel (10.1016/j.ijhydene.2020.06.173_bib2) 2001; 414 Dridi (10.1016/j.ijhydene.2020.06.173_bib43) 2018; 29 Lee (10.1016/j.ijhydene.2020.06.173_bib11) 2016; 41 Pan (10.1016/j.ijhydene.2020.06.173_bib22) 2006; 17 Cai (10.1016/j.ijhydene.2020.06.173_bib12) 2015; 40 Luo (10.1016/j.ijhydene.2020.06.173_bib49) 2011; 4 Yang (10.1016/j.ijhydene.2020.06.173_bib6) 2017; 7 |
References_xml | – volume: 30 start-page: 5257 year: 2019 end-page: 5265 ident: bib26 article-title: Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH publication-title: J Mater Sci Mater Electron – volume: 3 start-page: 1057 year: 2012 ident: bib47 article-title: Fabrication of flexible and freestanding zinc chalcogenide single layers publication-title: Nat Commun – volume: 115 year: 2020 ident: bib29 article-title: An insight of Mg doped ZnO thin films: a comparative experimental and first-principle investigations publication-title: Phys E Low-Dimensional Syst Nanostructures – volume: 36 start-page: 4280 year: 2011 end-page: 4290 ident: bib42 article-title: Synthesis and characterization of nanocrystalline Zn publication-title: Int J Hydrogen Energy – volume: 414 start-page: 338 year: 2001 end-page: 344 ident: bib2 article-title: Photoelectrochemical cells publication-title: Nature – volume: 122 start-page: 13797 year: 2018 end-page: 13802 ident: bib25 article-title: Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays publication-title: J Phys Chem C – volume: 447 start-page: 200 year: 2018 end-page: 212 ident: bib18 article-title: Fabrication of ZnO nanostructures using Al doped ZnO (AZO) templates for application in photoelectrochemical water splitting publication-title: Appl Surf Sci – volume: 657 start-page: 261 year: 2016 end-page: 267 ident: bib35 article-title: Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties publication-title: J Alloys Compd – volume: 37 start-page: 12138 year: 2012 end-page: 12149 ident: bib44 article-title: Photoelectrochemical water splitting with nanocrystalline Zn publication-title: Int J Hydrogen Energy – volume: 11 start-page: 2119 year: 2011 end-page: 2125 ident: bib14 article-title: Sn-doped hematite nanostructures for photoelectrochemical water splitting publication-title: Nano Lett – volume: 9 start-page: 7729 year: 2019 end-page: 7736 ident: bib45 article-title: Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films publication-title: RSC Adv – volume: 41 start-page: 123 year: 2016 end-page: 131 ident: bib11 article-title: Enhanced photoelectrochemical water oxidation by Zn publication-title: Int J Hydrogen Energy – volume: 29 start-page: 78 year: 2018 end-page: 85 ident: bib23 article-title: Highly enhanced photocatalytic performance of Zn publication-title: Adv Powder Technol – volume: 48 start-page: 4979 year: 2019 end-page: 5015 ident: bib52 article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting publication-title: Chem Soc Rev – volume: 790 start-page: 493 year: 2019 end-page: 501 ident: bib40 article-title: 1D/0D WO publication-title: J Alloys Compd – volume: 40 start-page: 1394 year: 2015 end-page: 1401 ident: bib12 article-title: V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light publication-title: Int J Hydrogen Energy – volume: 29 start-page: 8267 year: 2018 end-page: 8278 ident: bib43 article-title: Effect of silver doping on optical and electrochemical properties of ZnO photoanode publication-title: J Mater Sci Mater Electron – volume: 352 start-page: 190 year: 2012 end-page: 193 ident: bib8 article-title: Morphological control of Mg publication-title: J Cryst Growth – volume: 7 start-page: 620 year: 2017 end-page: 627 ident: bib28 article-title: Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study publication-title: Results Phys – volume: 42 start-page: 15126 year: 2017 end-page: 15139 ident: bib10 article-title: Hierarchically self-assembled ZnO architectures: establishing light trapping networks for effective photoelectrochemical water splitting publication-title: Int J Hydrogen Energy – volume: 24 start-page: 18455 year: 2018 end-page: 18462 ident: bib50 article-title: Photochemical and photoelectrochemical hydrogen generation by splitting seawater publication-title: Chem Eur J – volume: 74 start-page: 73 year: 2012 end-page: 77 ident: bib16 article-title: Enhanced photoelectrochemical properties of ternary Zn publication-title: Electrochim Acta – volume: 208 start-page: 136 year: 2011 end-page: 139 ident: bib36 article-title: Synthesis, characterization, and optical properties of Mg-doped zinc oxide single-crystal microprisms publication-title: Phys Status Solidi – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: bib1 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 36 start-page: 15538 year: 2011 end-page: 15547 ident: bib41 article-title: Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting publication-title: Int J Hydrogen Energy – volume: 685 start-page: 107 year: 2016 end-page: 113 ident: bib15 article-title: Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films publication-title: J Alloys Compd – volume: 37 start-page: 3748 year: 2012 end-page: 3754 ident: bib21 article-title: Structural and hydrogenation studies of ZnO and Mg doped ZnO nanowires publication-title: Int J Hydrogen Energy – volume: 454 year: 2018 ident: bib46 article-title: Enhanced photoelectrochemical water splitting of hydrothermally-grown ZnO and yttrium-doped ZnO NR arrays publication-title: IOP Conf Ser Mater Sci Eng – volume: 11 start-page: 861 year: 2020 ident: bib51 article-title: Benchmark performance of low-cost Sb publication-title: Nat Commun – volume: 116 start-page: 12156 year: 2012 end-page: 12164 ident: bib34 article-title: Visible-light-induced photosplitting of water over γ′-Fe 4N and γ′-Fe 4N/α-Fe publication-title: J Phys Chem C – volume: 14 start-page: 5898 year: 2012 ident: bib31 article-title: Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires publication-title: CrystEngComm – volume: 774 start-page: 461 year: 2019 end-page: 470 ident: bib30 article-title: Effects of annealing temperature of spin-coated ZnO seed-layer on UV photo-sensing properties of PLD grown ZnO: Mg thin films publication-title: J Alloys Compd – volume: 506 start-page: 144 year: 2017 end-page: 153 ident: bib38 article-title: Photoelectrochemical (PEC) studies on Cu publication-title: J Colloid Interface Sci – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: bib3 article-title: Solar water splitting cells publication-title: Chem Rev – volume: 7 start-page: 1700555 year: 2017 ident: bib6 article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting publication-title: Adv Energy Mater – volume: 193 start-page: 148 year: 2019 end-page: 163 ident: bib20 article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications publication-title: Sol Energy – volume: 40 start-page: 12964 year: 2015 end-page: 12972 ident: bib5 article-title: Facile preparation of BiVO publication-title: Int J Hydrogen Energy – volume: 2 year: 2014 ident: bib7 article-title: Research Update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes publication-title: Apl Mater – volume: 4 start-page: 2717 year: 2012 end-page: 2725 ident: bib32 article-title: Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis publication-title: ACS Appl Mater Interfaces – volume: 29 start-page: 14710 year: 2018 end-page: 14722 ident: bib19 article-title: Enhanced photoelectrochemical performance of hydrothermally grown tetravalent impurity (Si publication-title: J Mater Sci Mater Electron – volume: 85 start-page: 1 year: 2018 end-page: 11 ident: bib17 article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications publication-title: J Sol Gel Sci Technol – volume: 42 start-page: 10021 year: 2016 end-page: 10029 ident: bib33 article-title: Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps publication-title: Ceram Int – volume: 5 start-page: 12925 year: 2015 ident: bib13 article-title: N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure publication-title: Sci Rep – volume: 19 start-page: 1626 year: 2009 end-page: 1634 ident: bib24 article-title: Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors publication-title: J Mater Chem – volume: 294 start-page: 28 year: 2019 end-page: 37 ident: bib39 article-title: Cu modified ZnO nanoflowers as photoanode material for highly efficient dye sensitized solar cells publication-title: Electrochim Acta – volume: 430 start-page: 32 year: 2019 end-page: 42 ident: bib9 article-title: CdS branched TiO publication-title: J Power Sources – volume: 17 start-page: 2963 year: 2006 end-page: 2967 ident: bib22 article-title: Hydrogen storage of ZnO and Mg doped ZnO nanowires publication-title: Nanotechnology – volume: 317 start-page: 81 year: 2016 end-page: 92 ident: bib48 article-title: Photo-enhanced salt-water splitting using orthorhombic Ag publication-title: J Power Sources – volume: 4 start-page: 4046 year: 2011 ident: bib49 article-title: Solar hydrogen generation from seawater with a modified BiVO publication-title: Energy Environ Sci – volume: 3 start-page: 14942 year: 2015 end-page: 14962 ident: bib4 article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction publication-title: J Mater Chem – volume: 203 start-page: 284 year: 2020 end-page: 295 ident: bib37 article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu publication-title: Sol Energy – volume: 95 start-page: 4772 year: 2004 end-page: 4776 ident: bib27 article-title: Blueshift of near band edge emission in Mg doped ZnO thin films and aging publication-title: J Appl Phys – volume: 4 start-page: 4046 year: 2011 ident: 10.1016/j.ijhydene.2020.06.173_bib49 article-title: Solar hydrogen generation from seawater with a modified BiVO4 photoanode publication-title: Energy Environ Sci doi: 10.1039/c1ee01812d – volume: 36 start-page: 4280 year: 2011 ident: 10.1016/j.ijhydene.2020.06.173_bib42 article-title: Synthesis and characterization of nanocrystalline Zn1−xMxO (M=Ni, Cr) thin films for efficient photoelectrochemical splitting of water under UV irradiation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.004 – volume: 790 start-page: 493 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib40 article-title: 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.03.178 – volume: 29 start-page: 78 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib23 article-title: Highly enhanced photocatalytic performance of Zn(1−x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method publication-title: Adv Powder Technol doi: 10.1016/j.apt.2017.10.014 – volume: 774 start-page: 461 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib30 article-title: Effects of annealing temperature of spin-coated ZnO seed-layer on UV photo-sensing properties of PLD grown ZnO: Mg thin films publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.09.294 – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.ijhydene.2020.06.173_bib3 article-title: Solar water splitting cells publication-title: Chem Rev doi: 10.1021/cr1002326 – volume: 14 start-page: 5898 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib31 article-title: Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires publication-title: CrystEngComm doi: 10.1039/c2ce06650e – volume: 11 start-page: 861 year: 2020 ident: 10.1016/j.ijhydene.2020.06.173_bib51 article-title: Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting publication-title: Nat Commun doi: 10.1038/s41467-020-14704-3 – volume: 42 start-page: 10021 year: 2016 ident: 10.1016/j.ijhydene.2020.06.173_bib33 article-title: Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps publication-title: Ceram Int doi: 10.1016/j.ceramint.2016.03.105 – volume: 317 start-page: 81 year: 2016 ident: 10.1016/j.ijhydene.2020.06.173_bib48 article-title: Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.03.086 – volume: 17 start-page: 2963 year: 2006 ident: 10.1016/j.ijhydene.2020.06.173_bib22 article-title: Hydrogen storage of ZnO and Mg doped ZnO nanowires publication-title: Nanotechnology doi: 10.1088/0957-4484/17/12/023 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.ijhydene.2020.06.173_bib1 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 685 start-page: 107 year: 2016 ident: 10.1016/j.ijhydene.2020.06.173_bib15 article-title: Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.05.254 – volume: 294 start-page: 28 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib39 article-title: Cu modified ZnO nanoflowers as photoanode material for highly efficient dye sensitized solar cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.10.045 – volume: 29 start-page: 8267 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib43 article-title: Effect of silver doping on optical and electrochemical properties of ZnO photoanode publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-018-8835-4 – volume: 208 start-page: 136 year: 2011 ident: 10.1016/j.ijhydene.2020.06.173_bib36 article-title: Synthesis, characterization, and optical properties of Mg-doped zinc oxide single-crystal microprisms publication-title: Phys Status Solidi doi: 10.1002/pssa.201026448 – volume: 36 start-page: 15538 year: 2011 ident: 10.1016/j.ijhydene.2020.06.173_bib41 article-title: Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.046 – volume: 40 start-page: 1394 year: 2015 ident: 10.1016/j.ijhydene.2020.06.173_bib12 article-title: V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.11.114 – volume: 30 start-page: 5257 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib26 article-title: Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-019-00825-z – volume: 454 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib46 article-title: Enhanced photoelectrochemical water splitting of hydrothermally-grown ZnO and yttrium-doped ZnO NR arrays publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/454/1/012033 – volume: 48 start-page: 4979 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib52 article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting publication-title: Chem Soc Rev doi: 10.1039/C8CS00997J – volume: 122 start-page: 13797 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib25 article-title: Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b00875 – volume: 4 start-page: 2717 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib32 article-title: Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis publication-title: ACS Appl Mater Interfaces doi: 10.1021/am300359h – volume: 95 start-page: 4772 year: 2004 ident: 10.1016/j.ijhydene.2020.06.173_bib27 article-title: Blueshift of near band edge emission in Mg doped ZnO thin films and aging publication-title: J Appl Phys doi: 10.1063/1.1690091 – volume: 352 start-page: 190 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib8 article-title: Morphological control of MgxZn1−xO layers grown on Ga:ZnO/glass substrates for photovoltaics publication-title: J Cryst Growth doi: 10.1016/j.jcrysgro.2011.11.078 – volume: 29 start-page: 14710 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib19 article-title: Enhanced photoelectrochemical performance of hydrothermally grown tetravalent impurity (Si4+) doped zinc oxide nanostructures for solar water splitting applications publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-018-9608-9 – volume: 3 start-page: 1057 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib47 article-title: Fabrication of flexible and freestanding zinc chalcogenide single layers publication-title: Nat Commun doi: 10.1038/ncomms2066 – volume: 42 start-page: 15126 year: 2017 ident: 10.1016/j.ijhydene.2020.06.173_bib10 article-title: Hierarchically self-assembled ZnO architectures: establishing light trapping networks for effective photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.121 – volume: 447 start-page: 200 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib18 article-title: Fabrication of ZnO nanostructures using Al doped ZnO (AZO) templates for application in photoelectrochemical water splitting publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.03.208 – volume: 5 start-page: 12925 year: 2015 ident: 10.1016/j.ijhydene.2020.06.173_bib13 article-title: N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure publication-title: Sci Rep doi: 10.1038/srep12925 – volume: 11 start-page: 2119 year: 2011 ident: 10.1016/j.ijhydene.2020.06.173_bib14 article-title: Sn-doped hematite nanostructures for photoelectrochemical water splitting publication-title: Nano Lett doi: 10.1021/nl200708y – volume: 115 year: 2020 ident: 10.1016/j.ijhydene.2020.06.173_bib29 article-title: An insight of Mg doped ZnO thin films: a comparative experimental and first-principle investigations publication-title: Phys E Low-Dimensional Syst Nanostructures – volume: 2 year: 2014 ident: 10.1016/j.ijhydene.2020.06.173_bib7 article-title: Research Update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes publication-title: Apl Mater doi: 10.1063/1.4861798 – volume: 116 start-page: 12156 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib34 article-title: Visible-light-induced photosplitting of water over γ′-Fe 4N and γ′-Fe 4N/α-Fe2O3 nanocatalysts publication-title: J Phys Chem C doi: 10.1021/jp303255f – volume: 3 start-page: 14942 year: 2015 ident: 10.1016/j.ijhydene.2020.06.173_bib4 article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction publication-title: J Mater Chem doi: 10.1039/C5TA02974K – volume: 40 start-page: 12964 year: 2015 ident: 10.1016/j.ijhydene.2020.06.173_bib5 article-title: Facile preparation of BiVO4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.08.015 – volume: 37 start-page: 12138 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib44 article-title: Photoelectrochemical water splitting with nanocrystalline Zn1−xRuxO thin films publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.05.135 – volume: 41 start-page: 123 year: 2016 ident: 10.1016/j.ijhydene.2020.06.173_bib11 article-title: Enhanced photoelectrochemical water oxidation by ZnxMyO (M = Ni, Co, K, Na) nanorod arrays publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.116 – volume: 37 start-page: 3748 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib21 article-title: Structural and hydrogenation studies of ZnO and Mg doped ZnO nanowires publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.010 – volume: 657 start-page: 261 year: 2016 ident: 10.1016/j.ijhydene.2020.06.173_bib35 article-title: Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2015.10.117 – volume: 203 start-page: 284 year: 2020 ident: 10.1016/j.ijhydene.2020.06.173_bib37 article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature publication-title: Sol Energy doi: 10.1016/j.solener.2020.04.027 – volume: 9 start-page: 7729 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib45 article-title: Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films publication-title: RSC Adv doi: 10.1039/C8RA10599E – volume: 24 start-page: 18455 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib50 article-title: Photochemical and photoelectrochemical hydrogen generation by splitting seawater publication-title: Chem Eur J doi: 10.1002/chem.201804119 – volume: 19 start-page: 1626 year: 2009 ident: 10.1016/j.ijhydene.2020.06.173_bib24 article-title: Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors publication-title: J Mater Chem doi: 10.1039/b812047a – volume: 506 start-page: 144 year: 2017 ident: 10.1016/j.ijhydene.2020.06.173_bib38 article-title: Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2017.07.032 – volume: 193 start-page: 148 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib20 article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications publication-title: Sol Energy doi: 10.1016/j.solener.2019.09.045 – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.ijhydene.2020.06.173_bib17 article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications publication-title: J Sol Gel Sci Technol doi: 10.1007/s10971-017-4536-3 – volume: 7 start-page: 1700555 year: 2017 ident: 10.1016/j.ijhydene.2020.06.173_bib6 article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting publication-title: Adv Energy Mater doi: 10.1002/aenm.201700555 – volume: 430 start-page: 32 year: 2019 ident: 10.1016/j.ijhydene.2020.06.173_bib9 article-title: CdS branched TiO2: rods-on-rods nanoarrays for efficient photoelectrochemical (PEC) and self-bias photocatalytic (PC) hydrogen production publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.04.116 – volume: 74 start-page: 73 year: 2012 ident: 10.1016/j.ijhydene.2020.06.173_bib16 article-title: Enhanced photoelectrochemical properties of ternary Zn1−xCuxO nanorods with tunable band gaps for solar water splitting publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.165 – volume: 414 start-page: 338 year: 2001 ident: 10.1016/j.ijhydene.2020.06.173_bib2 article-title: Photoelectrochemical cells publication-title: Nature doi: 10.1038/35104607 – volume: 7 start-page: 620 year: 2017 ident: 10.1016/j.ijhydene.2020.06.173_bib28 article-title: Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study publication-title: Results Phys doi: 10.1016/j.rinp.2017.01.023 |
SSID | ssj0017049 |
Score | 2.457566 |
Snippet | In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 22576 |
SubjectTerms | Mg doped ZnO Nanorods Photoconversion efficiency Water splitting |
Title | Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays |
URI | https://dx.doi.org/10.1016/j.ijhydene.2020.06.173 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14TZtkN69jKZaqtB60UjwY9hWbUpKQVqQXf7uzeZQKQg8eN-zAMpn95huY_QahW8kdAcSTG8oi0qCWJAankWsQ6VvCjJSgkS4UR2N3OKEPU2faQP36LYxuq6ywv8T0Aq2rL93Km90sjrvPgL36CU6gZ4ATx9N1O6WejvLO96bNw_IqCgybDb1765XwvBPPZ2u43lou0za1jqflkb8T1FbSGRyhw4ot4l55oGPUUMkJOtjSEDxF768xRPVC4YUus7HMNXzhbJau0iUQzKKtGacR_gJSmWPd5g7LRGGpZf1LSQ48-sAyzZTEb8kTTliSAqpiludsvTxDk8HdS39oVEMTDEEsewWA4XHPYiaDzO3bQpgqcCgRHvPdSBJmM9uEvGUzRzCXuq4pieRS2gFVAMFgRc5RM4FjXCCsOPAJCXYmp5RZjEO1xSOHexxomM9ICzm1p0JRKYrrwRaLsG4dm4e1h0Pt4dB0Q_BwC3U3dlmpqbHTIqh_RPgrOkIA_h22l_-wvUL7elX0lJFr1Fzln-oGSMiKt4soa6O93v3jcPwD7vreuA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0QWKgL4zPicxZuK21n2sKSEAko4EIwxIWTeVVKSEsKxvD33qEtwcSEhcs-TjK5Mz333PTOGYTulfAkCE9haYcoizqKWIKGvkVU3ZF2qCUNTaHYH_idEX0ae-MSahV7YUxbZc79Gaev2Tq_U8ujWZtHUe0VuNdswWmYM8CJF0DdXjHuVF4ZVZrd585g8zMhyFUwvG8ZwNZG4elDNJ2s4As3jpmubaw8nYD8naO28k77CB3mghE3szEdo5KOT9DBlo3gKfp4i2BhzzSemUobq9QwGJ5PkmWyAI257mzGSYi_QVem2HS6w2WssTLO_pkrB-5_YpXMtcLv8QuOeZwAsWKepny1OEOj9uOw1bHycxMsSRx3CZwRiMDhNofkXXeltHXDo0QGvO6HinCXuzakLpd7kvvU921FlFDKbVANLAwoco7KMQzjAmEtQFIowNmCUu5wAQWXCD0RCFBidU6qyCsixWRuKm7OtpixontsyooIMxNhZvsMIlxFtQ1untlq7EQ0iolgvxYIA-7fgb38B_YO7XWG_R7rdQfPV2jfPFm3mJFrVF6mX_oGNMlS3OZr7geVvuFp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light+driven+photosplitting+of+water+using+one+dimensional+Mg+doped+ZnO+nanorod+arrays&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Thangavel%2C+R.&rft.date=2020-09-03&rft.issn=0360-3199&rft.volume=45&rft.issue=43&rft.spage=22576&rft.epage=22588&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.06.173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2020_06_173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |