Dynamic analysis of breaking wave impact on a floating offshore wind turbine via smoothed particle hydrodynamics

•SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest forces attributed to breaking wave impinging rear columns of FOWT.•Wave breaking imparts significant accelerations to nacelle.•Maximum moorin...

Full description

Saved in:
Bibliographic Details
Published inMarine structures Vol. 100; p. 103731
Main Authors Wang, Shengzhe, Chuang, Wei-Liang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest forces attributed to breaking wave impinging rear columns of FOWT.•Wave breaking imparts significant accelerations to nacelle.•Maximum mooring tensions not significantly influenced by breaking wave. This work leverages Lagrangian smoothed particle hydrodynamics (SPH) to explore the structural and hydrodynamic response of floating offshore wind turbines (FOWT) subject to impulsive breaking waves. The SPH formulation was first validated against breaking wave impact on a model tension leg platform (TLP) which demonstrated good consistency with experimental results. Following validation, wave focusing was utilized to generate both breaking and nonbreaking extreme waves impacting a moored semi-submersible FOWT at full scale. Impulsive forces and accelerations resulting from the plunging breaker were observed to exceed that of nonbreaking waves by up to 70 % and 230 %, respectively, and were highly sensitive to the wave impingement location relative to the FOWT. However, wave breaking did not appear to significantly influence rigid body motions and yielded lower mooring tensions than its nonbreaking counterpart due to the short duration of impact. This work ultimately demonstrates the applicability of SPH for the simulation of breaking wave interactions with floating bodies and provides further impetus towards the study of FOWTs under such conditions.
AbstractList •SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest forces attributed to breaking wave impinging rear columns of FOWT.•Wave breaking imparts significant accelerations to nacelle.•Maximum mooring tensions not significantly influenced by breaking wave. This work leverages Lagrangian smoothed particle hydrodynamics (SPH) to explore the structural and hydrodynamic response of floating offshore wind turbines (FOWT) subject to impulsive breaking waves. The SPH formulation was first validated against breaking wave impact on a model tension leg platform (TLP) which demonstrated good consistency with experimental results. Following validation, wave focusing was utilized to generate both breaking and nonbreaking extreme waves impacting a moored semi-submersible FOWT at full scale. Impulsive forces and accelerations resulting from the plunging breaker were observed to exceed that of nonbreaking waves by up to 70 % and 230 %, respectively, and were highly sensitive to the wave impingement location relative to the FOWT. However, wave breaking did not appear to significantly influence rigid body motions and yielded lower mooring tensions than its nonbreaking counterpart due to the short duration of impact. This work ultimately demonstrates the applicability of SPH for the simulation of breaking wave interactions with floating bodies and provides further impetus towards the study of FOWTs under such conditions.
ArticleNumber 103731
Author Wang, Shengzhe
Chuang, Wei-Liang
Author_xml – sequence: 1
  givenname: Shengzhe
  orcidid: 0000-0001-9704-4752
  surname: Wang
  fullname: Wang, Shengzhe
  email: shengzhe.2.wang@ucdenver.edu
  organization: Department of Civil Engineering, University of Colorado Denver, Denver, CO 80204, United States
– sequence: 2
  givenname: Wei-Liang
  surname: Chuang
  fullname: Chuang, Wei-Liang
  organization: Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
BookMark eNqFkMtOwzAQRb0oEm3hF5B_ICUT59FILEDlKVViA2tr4gd1Se3Idlvl70kV2LDpaqQ7c-_MnBmZWGcVITeQLiCF8na72KEP0e_FIkuzfBBZxWBCpmldQLJkrL4ksxC2aQoVAExJ99hb3BlB0WLbBxOo07TxCr-N_aJHPChqdh2KSJ2lSHXrMJ46TuuwcV7Ro7GSxr1vjFX0YJCGnXNxoyTt0EcjWkU3vfROjnvCFbnQ2AZ1_Vvn5PP56WP1mqzfX95WD-tEMMhiwkosMqaWEiqNQtZlUTZQ6DKXFWCOeZHVIKq8QNRiWUA-iFWd5aJpBGRNJdic3I25wrsQvNJcmDjc7mz0aFoOKT8R41v-R4yfiPGR2GAv_9k7b4bJ_rzxfjSq4bmDUZ4HYZQVShqvROTSmXMRP-xhkVg
CitedBy_id crossref_primary_10_3390_jmse13020208
Cites_doi 10.1017/S0022112086002999
10.1016/j.oceaneng.2015.08.066
10.1016/j.coastaleng.2009.11.005
10.1061/(ASCE)ST.1943-541X.0003295
10.1016/j.coastaleng.2017.06.004
10.1061/(ASCE)0733-950X(1999)125:3(145)
10.3390/en15010389
10.1088/0034-4885/68/8/R01
10.1016/j.apor.2023.103757
10.1016/j.oceaneng.2021.109987
10.1016/j.renene.2023.01.081
10.1007/s40571-015-0069-0
10.1016/j.coastaleng.2014.11.001
10.3390/en15051653
10.1007/s11831-010-9040-7
10.1016/S0889-9746(89)80028-3
10.1016/j.oceaneng.2014.06.029
10.1016/j.oceaneng.2022.113464
10.1016/j.oceaneng.2015.05.035
10.1142/S0578563404000872
10.1016/j.compstruc.2013.02.010
10.1103/PhysRev.159.98
10.1016/j.egypro.2017.10.333
10.1063/1.4796197
10.3390/en15113993
10.1016/j.apor.2014.12.003
10.1007/s40571-021-00404-2
10.1016/j.rser.2023.114092
10.1016/j.renene.2017.04.052
10.1016/j.oceaneng.2021.109227
10.1007/BF02123482
10.1016/j.oceaneng.2021.109138
10.1146/annurev-fluid-120710-101220
10.1016/j.marstruc.2021.103054
10.1016/j.apor.2017.07.015
10.1006/jcph.1994.1034
10.1016/j.compfluid.2016.03.008
10.1016/j.apor.2021.102714
10.1016/j.apor.2023.103832
10.1007/s12206-018-0213-x
10.1016/j.engstruct.2022.114851
10.1007/s00348-015-2010-y
10.1002/we.2288
10.1016/j.coastaleng.2019.103560
10.1146/annurev.aa.30.090192.002551
10.1016/j.oceaneng.2022.111262
10.1016/j.ijnaoe.2020.01.003
10.1016/j.oceaneng.2022.111192
10.1016/j.renene.2014.03.033
10.1016/j.cpc.2014.10.004
10.3390/jmse8100826
10.1016/j.jweia.2015.09.016
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.marstruc.2024.103731
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
ExternalDocumentID 10_1016_j_marstruc_2024_103731
S095183392400159X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
XPP
ZMT
~G-
29M
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
LY7
M41
R2-
RIG
SET
SSH
UHS
WUQ
ID FETCH-LOGICAL-c312t-36a523e8d17facd9656b15f64d71a4a45291c745aafc85141a47924cbbc12b7c3
IEDL.DBID .~1
ISSN 0951-8339
IngestDate Tue Jul 01 02:36:57 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Sat Dec 21 15:58:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoothed particle hydrodynamics
Floating offshore wind turbine
Flume testing
Wave focusing
Breaking wave
Mooring
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-36a523e8d17facd9656b15f64d71a4a45291c745aafc85141a47924cbbc12b7c3
ORCID 0000-0001-9704-4752
ParticipantIDs crossref_citationtrail_10_1016_j_marstruc_2024_103731
crossref_primary_10_1016_j_marstruc_2024_103731
elsevier_sciencedirect_doi_10_1016_j_marstruc_2024_103731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Marine structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ning, Wang, Chen, Li, Zang, Cheng (bib0060) 2017; 67
Trimble. SketchUp official website. SketchUp 2020.
Batchelor (bib0054) 2000
Yu, Kwon (bib0073) 2014; 70
Gotoh, Shao, Memita (bib0072) 2004; 46
Li, Bachynski-Polic (bib0024) 2021; 79
Dunbar, Craven, Paterson (bib0020) 2015; 110
Fourtakas, Vacondio, Dominguez, Rogers (bib0053) 2020
Chen, Basu (bib0010) 2019; 22
Moideen, Behera (bib0061) 2021; 234
Robertson, Jonkman, Masciola, Song (bib0009) 2014
Yang, Alkhabbaz, Edirisinghe, Tongphong, Lee (bib0007) 2022; 15
Borthwick (bib0071) 1989; 3
X.1. Wind. Technology - X1 Wind 2024.
Pan, Ijzermans, Jones, Thyagarajan, van Beest, Williams (bib0038) 2016; 3
Tan, Sun, Liu, Li, Lyu, Zhu (bib0035) 2023; 205
Jonkman, Butterfield, Musial, Scott (bib0011) 2009
Hall M. MoorDyn - Users Guide 2015.
Tran, Kim (bib0022) 2015; 147
Zhou, Xiao, Peyrard, Pan (bib0019) 2021; 240
Wang, Robertson, Jonkman, Kim, Shen, Koop (bib0034) 2022; 15
Gong, Shao, Liu, Wang, Tan (bib0052) 2016; 65
Luo, Rubinato, Wang, Zhao (bib0004) 2022; 253
.
Sarpkaya (bib0070) 1986; 165
Pawitan, Garlock, Wang (bib0005) 2024; 142
Chuang, Chang, Mercier (bib0041) 2015; 56
Wang, Garlock, Glisic (bib0065) 2021; 13
Cao, Xiao, Cheng, Liu (bib0014) 2021; 232
Robertson, Wendt, Jonkman, Popko, Dagher, Geuydon (bib0042) 2017; 137
Wu, Garlock, Wang (bib0067) 2022
Reis, Barbosa, Figueiredo, Clain, Lopes, Baptista (bib0029) 2022; 270
Goda (bib0062) 2000
Tagliafierro, Karimirad, Martinez-Estevez, Dominguez, Crespo, Gomez-Gesteira (bib0030) 2022
Monaghan (bib0046) 1992; 30
Didier, Neves, Martins, Neves (bib0063) 2014; 88
Huo, Zhao, Zhang, Zhang, Yuan (bib0017) 2023; 269
Han, Zhao, Su, He, Xu, Wu (bib0013) 2022; 253
Wang, Mitchell, Teague, Jarosz, Hulbert (bib0069) 2005; 309
Monaghan (bib0044) 2012; 44
(bib0002) 2019
Chuang, Liu, Lu (bib0008) 2020; 12
Liu, Liu (bib0028) 2010; 17
Cuomo, Allsop, Bruce, Pearson (bib0039) 2010; 57
Dominguez, Crespo, Hall, Altomare, Wu, Stratigaki (bib0058) 2019; 153
Altomare, Crespo, Dominguez, Gomez-Gesteira, Suzuki, Verwaest (bib0048) 2015; 96
Crespo, Dominguez, Rogers, Gomez-Gesteira, Longshaw, Canelas (bib0032) 2015; 187
Crespo, Gomez-Gesteira, Dalrymple (bib0055) 2007; 5
Pan (bib0051) 2017
Tagliafierro, Karimirad, Martinez-Estevez, Dominguez, Viccione, Crespo (bib0031) 2022; 15
Ren, He, Dong, Wen (bib0037) 2015; 50
Dong, Chen, Liu, Zhou, Ni, Cai (bib0003) 2022
Liu, Xiao, Incecik, Peyrard, Wan (bib0021) 2017; 112
Verlet (bib0056) 1967; 159
Monaghan (bib0045) 2005; 68
Tagliafierro, Karimirad, Altomare, Goteman, Martinez-Estevez, Capasso (bib0016) 2023; 141
Hall, Goupee (bib0057) 2015; 104
Akbari, Torabbeigi (bib0066) 2021; 112
Jonkman (bib0033) 2010
Altomare, Tafuni, Dominguez, Crespo, Gironella, Sospedra (bib0064) 2020; 8
Barreiro, Crespo, Dominguez, Gomez-Gesteira (bib0026) 2013; 120
Wendland (bib0049) 1995; 4
Ding, Li, Yu, Hao, Ji (bib0012) 2018; 32
Monaghan (bib0047) 1994; 110
Altomare, Dominguez, Crespo, Gonzalez-Cao, Suzuki, Gomez-Gesteira (bib0025) 2017; 127
Wang, Garlock, Deike, Glisic (bib0027) 2022; 148
Wang (bib0036) 2022; 266
Yan, Korobenko, Deng, Bazilevs (bib0023) 2016; 141
Dominguez, Fourtakas, Altomare, Canelas, Tafuni, Garcia-Feal (bib0043) 2022; 9
Tromans PS, Anaturk AR, Hagemeijer P. A new model for the kinematics of large ocean waves-application as a design wave, Edinburgh: 1991.
Coulling, Goupee, Robertson, Jonkman, Dagher (bib0015) 2013; 5
The White House. FACT SHEET: Biden-⁠Harris Administration Announces New Actions to Expand U.S. Offshore Wind Energy 2022.
(accessed January 2, 2024).
Monaghan, Kos (bib0050) 1999; 125
Zeng, Shao, Feng, Xu, Jin, Li (bib0006) 2024; 191
Borthwick (10.1016/j.marstruc.2024.103731_bib0071) 1989; 3
Altomare (10.1016/j.marstruc.2024.103731_bib0025) 2017; 127
Pan (10.1016/j.marstruc.2024.103731_bib0038) 2016; 3
Cao (10.1016/j.marstruc.2024.103731_bib0014) 2021; 232
Wang (10.1016/j.marstruc.2024.103731_bib0069) 2005; 309
Chuang (10.1016/j.marstruc.2024.103731_bib0041) 2015; 56
Han (10.1016/j.marstruc.2024.103731_bib0013) 2022; 253
Akbari (10.1016/j.marstruc.2024.103731_bib0066) 2021; 112
Goda (10.1016/j.marstruc.2024.103731_bib0062) 2000
Barreiro (10.1016/j.marstruc.2024.103731_bib0026) 2013; 120
Chuang (10.1016/j.marstruc.2024.103731_bib0008) 2020; 12
Altomare (10.1016/j.marstruc.2024.103731_bib0048) 2015; 96
Tagliafierro (10.1016/j.marstruc.2024.103731_bib0030) 2022
Tan (10.1016/j.marstruc.2024.103731_bib0035) 2023; 205
10.1016/j.marstruc.2024.103731_bib0040
Monaghan (10.1016/j.marstruc.2024.103731_bib0050) 1999; 125
Fourtakas (10.1016/j.marstruc.2024.103731_bib0053) 2020
Hall (10.1016/j.marstruc.2024.103731_bib0057) 2015; 104
10.1016/j.marstruc.2024.103731_bib0001
Tran (10.1016/j.marstruc.2024.103731_bib0022) 2015; 147
Zeng (10.1016/j.marstruc.2024.103731_bib0006) 2024; 191
Yang (10.1016/j.marstruc.2024.103731_bib0007) 2022; 15
Altomare (10.1016/j.marstruc.2024.103731_bib0064) 2020; 8
Reis (10.1016/j.marstruc.2024.103731_bib0029) 2022; 270
Dominguez (10.1016/j.marstruc.2024.103731_bib0043) 2022; 9
Yu (10.1016/j.marstruc.2024.103731_bib0073) 2014; 70
Robertson (10.1016/j.marstruc.2024.103731_bib0009) 2014
Jonkman (10.1016/j.marstruc.2024.103731_bib0011) 2009
Pan (10.1016/j.marstruc.2024.103731_bib0051) 2017
Didier (10.1016/j.marstruc.2024.103731_bib0063) 2014; 88
Huo (10.1016/j.marstruc.2024.103731_bib0017) 2023; 269
Tagliafierro (10.1016/j.marstruc.2024.103731_bib0016) 2023; 141
Jonkman (10.1016/j.marstruc.2024.103731_bib0033) 2010
Wang (10.1016/j.marstruc.2024.103731_bib0065) 2021; 13
Monaghan (10.1016/j.marstruc.2024.103731_bib0046) 1992; 30
Zhou (10.1016/j.marstruc.2024.103731_bib0019) 2021; 240
Chen (10.1016/j.marstruc.2024.103731_bib0010) 2019; 22
Sarpkaya (10.1016/j.marstruc.2024.103731_bib0070) 1986; 165
Batchelor (10.1016/j.marstruc.2024.103731_bib0054) 2000
(10.1016/j.marstruc.2024.103731_bib0002) 2019
Wu (10.1016/j.marstruc.2024.103731_bib0067) 2022
Yan (10.1016/j.marstruc.2024.103731_bib0023) 2016; 141
Ding (10.1016/j.marstruc.2024.103731_bib0012) 2018; 32
Coulling (10.1016/j.marstruc.2024.103731_bib0015) 2013; 5
Li (10.1016/j.marstruc.2024.103731_bib0024) 2021; 79
Monaghan (10.1016/j.marstruc.2024.103731_bib0045) 2005; 68
Verlet (10.1016/j.marstruc.2024.103731_bib0056) 1967; 159
Dunbar (10.1016/j.marstruc.2024.103731_bib0020) 2015; 110
10.1016/j.marstruc.2024.103731_bib0068
Tagliafierro (10.1016/j.marstruc.2024.103731_bib0031) 2022; 15
Gotoh (10.1016/j.marstruc.2024.103731_bib0072) 2004; 46
Cuomo (10.1016/j.marstruc.2024.103731_bib0039) 2010; 57
Monaghan (10.1016/j.marstruc.2024.103731_bib0044) 2012; 44
Liu (10.1016/j.marstruc.2024.103731_bib0028) 2010; 17
Wang (10.1016/j.marstruc.2024.103731_bib0036) 2022; 266
Crespo (10.1016/j.marstruc.2024.103731_bib0032) 2015; 187
Monaghan (10.1016/j.marstruc.2024.103731_bib0047) 1994; 110
Moideen (10.1016/j.marstruc.2024.103731_bib0061) 2021; 234
Liu (10.1016/j.marstruc.2024.103731_bib0021) 2017; 112
Ning (10.1016/j.marstruc.2024.103731_bib0060) 2017; 67
Luo (10.1016/j.marstruc.2024.103731_bib0004) 2022; 253
Gong (10.1016/j.marstruc.2024.103731_bib0052) 2016; 65
Robertson (10.1016/j.marstruc.2024.103731_bib0042) 2017; 137
Dong (10.1016/j.marstruc.2024.103731_bib0003) 2022
Wang (10.1016/j.marstruc.2024.103731_bib0027) 2022; 148
Pawitan (10.1016/j.marstruc.2024.103731_bib0005) 2024; 142
10.1016/j.marstruc.2024.103731_bib0059
Crespo (10.1016/j.marstruc.2024.103731_bib0055) 2007; 5
10.1016/j.marstruc.2024.103731_bib0018
Wang (10.1016/j.marstruc.2024.103731_bib0034) 2022; 15
Dominguez (10.1016/j.marstruc.2024.103731_bib0058) 2019; 153
Wendland (10.1016/j.marstruc.2024.103731_bib0049) 1995; 4
Ren (10.1016/j.marstruc.2024.103731_bib0037) 2015; 50
References_xml – volume: 13
  year: 2021
  ident: bib0065
  article-title: Parametric modeling of depth-limited wave spectra under hurricane conditions with applications to Kinetic Umbrellas against storm surge inundation
  publication-title: Water (Basel)
– reference: The White House. FACT SHEET: Biden-⁠Harris Administration Announces New Actions to Expand U.S. Offshore Wind Energy 2022.
– volume: 120
  start-page: 96
  year: 2013
  end-page: 106
  ident: bib0026
  article-title: Smoothed particle hydrodynamics for coastal engineering problems
  publication-title: Comput Struct
– year: 2019
  ident: bib0002
  article-title: Future world vision: infrastructure reimagined
– year: 2009
  ident: bib0011
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
– volume: 79
  year: 2021
  ident: bib0024
  article-title: Validation and application of nonlinear hydrodynamics from CFD in an engineering model of a semi-submersible floating wind turbine
  publication-title: Marine Struct
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: bib0049
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
– volume: 148
  year: 2022
  ident: bib0027
  article-title: Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes
  publication-title: J Struct Eng
– year: 2014
  ident: bib0009
  article-title: Definition of the semisubmersible floating system for phase ii of OC4
– volume: 159
  start-page: 98
  year: 1967
  end-page: 103
  ident: bib0056
  article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules
  publication-title: Phys Rev
– volume: 3
  start-page: 155
  year: 2016
  end-page: 166
  ident: bib0038
  article-title: Application of the SPH method to solitary wave impact on an offshore platform
  publication-title: Comput Part Mech
– volume: 3
  start-page: 509
  year: 1989
  end-page: 528
  ident: bib0071
  article-title: Pressure and force measurements on a cylinder oscillated sinusoidally at low and intermediate Keulegan-Carpenter numbers
  publication-title: J Fluids Struct
– volume: 112
  year: 2021
  ident: bib0066
  article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers
  publication-title: Appl Ocean Res
– volume: 30
  start-page: 543
  year: 1992
  end-page: 574
  ident: bib0046
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu Rev Astron Astrophys
– volume: 110
  start-page: 98
  year: 2015
  end-page: 105
  ident: bib0020
  article-title: Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms
  publication-title: Ocean Eng
– volume: 266
  year: 2022
  ident: bib0036
  article-title: Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion
  publication-title: Ocean Eng
– year: 2017
  ident: bib0051
  article-title: Simulating fluid-solid interaction using smoothed particle hydrodynamics method
– volume: 88
  start-page: 330
  year: 2014
  end-page: 341
  ident: bib0063
  article-title: Wave interaction with a vertical wall: SPH numerical and experimental modeling
  publication-title: Ocean Eng
– volume: 253
  year: 2022
  ident: bib0004
  article-title: Experimental investigation of freak wave actions on a floating platform and effects of the air gap
  publication-title: Ocean Eng
– reference: Tromans PS, Anaturk AR, Hagemeijer P. A new model for the kinematics of large ocean waves-application as a design wave, Edinburgh: 1991.
– volume: 141
  start-page: 155
  year: 2016
  end-page: 174
  ident: bib0023
  article-title: Computational free-surface fluid-structure interaction with application to floating offshore wind turbines
  publication-title: Comput Fluids
– volume: 125
  start-page: 145
  year: 1999
  end-page: 155
  ident: bib0050
  article-title: Solitary waves on a Cretan beach
  publication-title: J Waterw Port Coast Ocean Eng
– volume: 67
  start-page: 188
  year: 2017
  end-page: 200
  ident: bib0060
  article-title: Extreme wave run-up and pressure on a vertical seawall
  publication-title: Appl Ocean Res
– volume: 205
  start-page: 393
  year: 2023
  end-page: 409
  ident: bib0035
  article-title: SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves
  publication-title: Renew Energy
– volume: 15
  start-page: 389
  year: 2022
  ident: bib0034
  article-title: OC6 Phase Ia: CFD simulations of the free-decay motion of the DeepCwind semisubmersible
  publication-title: Energies (Basel)
– volume: 9
  start-page: 867
  year: 2022
  end-page: 895
  ident: bib0043
  article-title: DualSPHysics: from fluid dynamics to multiphysics problems
  publication-title: Comput Part Mech
– year: 2000
  ident: bib0054
  article-title: An introduction to fluid dynamics
– start-page: 268
  year: 2022
  ident: bib0067
  article-title: A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response
  publication-title: Eng Struct
– volume: 22
  start-page: 327
  year: 2019
  end-page: 339
  ident: bib0010
  article-title: Wave-current interaction effects on structural responses of floating offshore wind turbines
  publication-title: Wind Energy
– volume: 65
  start-page: 155
  year: 2016
  end-page: 179
  ident: bib0052
  article-title: Two-phase SPH simulation of fluid–structure interactions
  publication-title: J Fluids Solids
– volume: 57
  start-page: 424
  year: 2010
  end-page: 439
  ident: bib0039
  article-title: Breaking wave loads at vertical seawalls and breakwaters
  publication-title: Coast Eng
– volume: 8
  start-page: 826
  year: 2020
  ident: bib0064
  article-title: SPH simulations of real sea waves impacting a large-scale structure
  publication-title: J Mar Sci Eng
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: bib0028
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch Comput Methods Eng
– reference: Hall M. MoorDyn - Users Guide 2015.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: bib0047
  article-title: Simulating free surface flows with SPH
  publication-title: J Comput Phys
– volume: 32
  start-page: 1105
  year: 2018
  end-page: 1116
  ident: bib0012
  article-title: Numerical and experimental investigation into the dynamic response of a floating wind turbine spar array platform
  publication-title: J Mech Sci Technol
– volume: 187
  start-page: 204
  year: 2015
  end-page: 216
  ident: bib0032
  article-title: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)
  publication-title: Comput Phys Commun
– volume: 112
  start-page: 280
  year: 2017
  end-page: 301
  ident: bib0021
  article-title: Establishing a fully coupled CFD analysis tool for floating offshore wind turbines
  publication-title: Renew Energy
– volume: 44
  start-page: 323
  year: 2012
  end-page: 346
  ident: bib0044
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu Rev Fluid Mech
– volume: 232
  year: 2021
  ident: bib0014
  article-title: Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: a comprehensive numerical and experimental comparison
  publication-title: Ocean Eng
– year: 2010
  ident: bib0033
  article-title: Definition of the floating system for phase iv of OC3
– volume: 127
  start-page: 37
  year: 2017
  end-page: 54
  ident: bib0025
  article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model
  publication-title: Coast Eng
– volume: 12
  start-page: 367
  year: 2020
  end-page: 375
  ident: bib0008
  article-title: Influence of second order wave excitation loads on coupled response of an offshore floating wind trubine
  publication-title: Int J Naval Arch Ocean Eng
– volume: 147
  start-page: 104
  year: 2015
  end-page: 119
  ident: bib0022
  article-title: The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine
  publication-title: J Wind Eng Industr Aerodyn
– volume: 50
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0037
  article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method
  publication-title: Appl Ocean Res
– volume: 137
  start-page: 38
  year: 2017
  end-page: 57
  ident: bib0042
  article-title: OC5 project phase II: validation of global loads of the DeepCwind floating semisubmersible wind turbine
  publication-title: Energy Procedia
– volume: 141
  year: 2023
  ident: bib0016
  article-title: Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework
  publication-title: Appl Ocean Res
– year: 2020
  ident: bib0053
  article-title: Improved density diffusion term for long duration wave propagation
  publication-title: Proceedings of the International SPHERIC Workshop
– volume: 96
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0048
  article-title: Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures
  publication-title: Coast Eng
– volume: 309
  start-page: 896
  year: 2005
  ident: bib0069
  article-title: Extreme waves under Hurricane Ivan
  publication-title: Science (1979)
– volume: 5
  year: 2013
  ident: bib0015
  article-title: Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data
  publication-title: J Renew Sust Energy
– volume: 153
  year: 2019
  ident: bib0058
  article-title: SPH simulation of floating structures with moorings
  publication-title: Coast Eng
– reference: (accessed January 2, 2024).
– volume: 191
  year: 2024
  ident: bib0006
  article-title: Nonlinear hydrodynamics of floating offshore wind turbines: a review
  publication-title: Renew Sust Energy Rev
– reference: X.1. Wind. Technology - X1 Wind 2024.
– volume: 46
  start-page: 39
  year: 2004
  end-page: 63
  ident: bib0072
  article-title: SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater
  publication-title: Coast Eng J
– volume: 165
  start-page: 61
  year: 1986
  end-page: 71
  ident: bib0070
  article-title: Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers
  publication-title: J Fluid Mech
– year: 2022
  ident: bib0030
  article-title: Preliminary study of floating offshore wind turbines motions using the smoothed particle hydrodynamics method
  publication-title: Proceedings of the ASME 2022 41st International Conference on Ocean
– volume: 15
  start-page: 3993
  year: 2022
  ident: bib0031
  article-title: Numerical assessment of a tension-leg platform wind turbine in intermediate water using the smoothed particle hydrodynamics method
  publication-title: Energies (Basel)
– start-page: 15
  year: 2022
  ident: bib0003
  article-title: Review of study on the coupled dynamic performance of floating offshore wind turbines
  publication-title: Energies (Basel)
– volume: 70
  start-page: 184
  year: 2014
  end-page: 196
  ident: bib0073
  article-title: Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method
  publication-title: Renew Energy
– volume: 269
  year: 2023
  ident: bib0017
  article-title: Study on wave slamming characteristics of a typical floating wind turbine under freak waves
  publication-title: Ocean Eng
– reference: .
– volume: 56
  year: 2015
  ident: bib0041
  article-title: Green water velocity due to breaking wave impingement on a tension leg platform
  publication-title: Exp Fluids
– reference: Trimble. SketchUp official website. SketchUp 2020.
– volume: 240
  year: 2021
  ident: bib0019
  article-title: Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach
  publication-title: Ocean Eng
– volume: 142
  year: 2024
  ident: bib0005
  article-title: Multiphase SPH Analysis of a Breaking Wave Impact on Elevated Structures with Vertical and Inclined Walls
  publication-title: Appl Ocean Res
– volume: 234
  year: 2021
  ident: bib0061
  article-title: Numerical investigation of extreme wave impact on coastal bridge deck using focused waves
  publication-title: Ocean Eng
– volume: 253
  year: 2022
  ident: bib0013
  article-title: On the hydrodynamic responses of a multi-column TLP floating offshore wind turbine model
  publication-title: Ocean Eng
– volume: 15
  start-page: 1653
  year: 2022
  ident: bib0007
  article-title: FOWT stability study according to number of columns considering amount of materials used
  publication-title: Energies (Basel)
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: bib0045
  article-title: Smoothed particle hydrodynamics
  publication-title: Reports on Progress in Physics
– volume: 104
  start-page: 590
  year: 2015
  end-page: 603
  ident: bib0057
  article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data
  publication-title: Ocean Eng
– year: 2000
  ident: bib0062
  article-title: Random seas and design of maritime structures
– volume: 270
  year: 2022
  ident: bib0029
  article-title: Smoothed particle hydrodynamics modeling of elevated structures impacted by tsunami-like waves
  publication-title: Eng Struct
– volume: 5
  start-page: 173
  year: 2007
  end-page: 184
  ident: bib0055
  article-title: Boundary conditions generated by dynamic particles in SPH methods
  publication-title: CMC - Tech Sci Press
– volume: 165
  start-page: 61
  year: 1986
  ident: 10.1016/j.marstruc.2024.103731_bib0070
  article-title: Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112086002999
– volume: 110
  start-page: 98
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0020
  article-title: Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2015.08.066
– volume: 57
  start-page: 424
  year: 2010
  ident: 10.1016/j.marstruc.2024.103731_bib0039
  article-title: Breaking wave loads at vertical seawalls and breakwaters
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2009.11.005
– volume: 309
  start-page: 896
  year: 2005
  ident: 10.1016/j.marstruc.2024.103731_bib0069
  article-title: Extreme waves under Hurricane Ivan
  publication-title: Science (1979)
– volume: 148
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0027
  article-title: Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003295
– volume: 127
  start-page: 37
  year: 2017
  ident: 10.1016/j.marstruc.2024.103731_bib0025
  article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2017.06.004
– volume: 125
  start-page: 145
  year: 1999
  ident: 10.1016/j.marstruc.2024.103731_bib0050
  article-title: Solitary waves on a Cretan beach
  publication-title: J Waterw Port Coast Ocean Eng
  doi: 10.1061/(ASCE)0733-950X(1999)125:3(145)
– volume: 15
  start-page: 389
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0034
  article-title: OC6 Phase Ia: CFD simulations of the free-decay motion of the DeepCwind semisubmersible
  publication-title: Energies (Basel)
  doi: 10.3390/en15010389
– volume: 68
  start-page: 1703
  year: 2005
  ident: 10.1016/j.marstruc.2024.103731_bib0045
  article-title: Smoothed particle hydrodynamics
  publication-title: Reports on Progress in Physics
  doi: 10.1088/0034-4885/68/8/R01
– volume: 141
  year: 2023
  ident: 10.1016/j.marstruc.2024.103731_bib0016
  article-title: Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2023.103757
– volume: 240
  year: 2021
  ident: 10.1016/j.marstruc.2024.103731_bib0019
  article-title: Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109987
– volume: 205
  start-page: 393
  year: 2023
  ident: 10.1016/j.marstruc.2024.103731_bib0035
  article-title: SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2023.01.081
– volume: 3
  start-page: 155
  year: 2016
  ident: 10.1016/j.marstruc.2024.103731_bib0038
  article-title: Application of the SPH method to solitary wave impact on an offshore platform
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-015-0069-0
– year: 2020
  ident: 10.1016/j.marstruc.2024.103731_bib0053
  article-title: Improved density diffusion term for long duration wave propagation
– volume: 5
  start-page: 173
  year: 2007
  ident: 10.1016/j.marstruc.2024.103731_bib0055
  article-title: Boundary conditions generated by dynamic particles in SPH methods
  publication-title: CMC - Tech Sci Press
– volume: 96
  start-page: 1
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0048
  article-title: Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2014.11.001
– ident: 10.1016/j.marstruc.2024.103731_bib0068
– volume: 266
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0036
  article-title: Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion
  publication-title: Ocean Eng
– volume: 15
  start-page: 1653
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0007
  article-title: FOWT stability study according to number of columns considering amount of materials used
  publication-title: Energies (Basel)
  doi: 10.3390/en15051653
– volume: 17
  start-page: 25
  year: 2010
  ident: 10.1016/j.marstruc.2024.103731_bib0028
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-010-9040-7
– year: 2019
  ident: 10.1016/j.marstruc.2024.103731_bib0002
– volume: 3
  start-page: 509
  year: 1989
  ident: 10.1016/j.marstruc.2024.103731_bib0071
  article-title: Pressure and force measurements on a cylinder oscillated sinusoidally at low and intermediate Keulegan-Carpenter numbers
  publication-title: J Fluids Struct
  doi: 10.1016/S0889-9746(89)80028-3
– volume: 88
  start-page: 330
  year: 2014
  ident: 10.1016/j.marstruc.2024.103731_bib0063
  article-title: Wave interaction with a vertical wall: SPH numerical and experimental modeling
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2014.06.029
– volume: 269
  year: 2023
  ident: 10.1016/j.marstruc.2024.103731_bib0017
  article-title: Study on wave slamming characteristics of a typical floating wind turbine under freak waves
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113464
– year: 2010
  ident: 10.1016/j.marstruc.2024.103731_bib0033
– volume: 104
  start-page: 590
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0057
  article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2015.05.035
– volume: 65
  start-page: 155
  year: 2016
  ident: 10.1016/j.marstruc.2024.103731_bib0052
  article-title: Two-phase SPH simulation of fluid–structure interactions
  publication-title: J Fluids Solids
– year: 2000
  ident: 10.1016/j.marstruc.2024.103731_bib0054
– volume: 46
  start-page: 39
  year: 2004
  ident: 10.1016/j.marstruc.2024.103731_bib0072
  article-title: SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater
  publication-title: Coast Eng J
  doi: 10.1142/S0578563404000872
– volume: 120
  start-page: 96
  year: 2013
  ident: 10.1016/j.marstruc.2024.103731_bib0026
  article-title: Smoothed particle hydrodynamics for coastal engineering problems
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.02.010
– volume: 159
  start-page: 98
  year: 1967
  ident: 10.1016/j.marstruc.2024.103731_bib0056
  article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.159.98
– ident: 10.1016/j.marstruc.2024.103731_bib0001
– volume: 137
  start-page: 38
  year: 2017
  ident: 10.1016/j.marstruc.2024.103731_bib0042
  article-title: OC5 project phase II: validation of global loads of the DeepCwind floating semisubmersible wind turbine
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.10.333
– volume: 13
  year: 2021
  ident: 10.1016/j.marstruc.2024.103731_bib0065
  article-title: Parametric modeling of depth-limited wave spectra under hurricane conditions with applications to Kinetic Umbrellas against storm surge inundation
  publication-title: Water (Basel)
– volume: 5
  year: 2013
  ident: 10.1016/j.marstruc.2024.103731_bib0015
  article-title: Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data
  publication-title: J Renew Sust Energy
  doi: 10.1063/1.4796197
– volume: 15
  start-page: 3993
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0031
  article-title: Numerical assessment of a tension-leg platform wind turbine in intermediate water using the smoothed particle hydrodynamics method
  publication-title: Energies (Basel)
  doi: 10.3390/en15113993
– volume: 50
  start-page: 1
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0037
  article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2014.12.003
– volume: 9
  start-page: 867
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0043
  article-title: DualSPHysics: from fluid dynamics to multiphysics problems
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-021-00404-2
– year: 2017
  ident: 10.1016/j.marstruc.2024.103731_bib0051
– volume: 191
  year: 2024
  ident: 10.1016/j.marstruc.2024.103731_bib0006
  article-title: Nonlinear hydrodynamics of floating offshore wind turbines: a review
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2023.114092
– volume: 112
  start-page: 280
  year: 2017
  ident: 10.1016/j.marstruc.2024.103731_bib0021
  article-title: Establishing a fully coupled CFD analysis tool for floating offshore wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.052
– volume: 234
  year: 2021
  ident: 10.1016/j.marstruc.2024.103731_bib0061
  article-title: Numerical investigation of extreme wave impact on coastal bridge deck using focused waves
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109227
– volume: 4
  start-page: 389
  year: 1995
  ident: 10.1016/j.marstruc.2024.103731_bib0049
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
  doi: 10.1007/BF02123482
– volume: 232
  year: 2021
  ident: 10.1016/j.marstruc.2024.103731_bib0014
  article-title: Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: a comprehensive numerical and experimental comparison
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109138
– volume: 44
  start-page: 323
  year: 2012
  ident: 10.1016/j.marstruc.2024.103731_bib0044
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-120710-101220
– year: 2000
  ident: 10.1016/j.marstruc.2024.103731_bib0062
– volume: 79
  year: 2021
  ident: 10.1016/j.marstruc.2024.103731_bib0024
  article-title: Validation and application of nonlinear hydrodynamics from CFD in an engineering model of a semi-submersible floating wind turbine
  publication-title: Marine Struct
  doi: 10.1016/j.marstruc.2021.103054
– volume: 67
  start-page: 188
  year: 2017
  ident: 10.1016/j.marstruc.2024.103731_bib0060
  article-title: Extreme wave run-up and pressure on a vertical seawall
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2017.07.015
– year: 2014
  ident: 10.1016/j.marstruc.2024.103731_bib0009
– volume: 110
  start-page: 399
  year: 1994
  ident: 10.1016/j.marstruc.2024.103731_bib0047
  article-title: Simulating free surface flows with SPH
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1994.1034
– volume: 141
  start-page: 155
  year: 2016
  ident: 10.1016/j.marstruc.2024.103731_bib0023
  article-title: Computational free-surface fluid-structure interaction with application to floating offshore wind turbines
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2016.03.008
– ident: 10.1016/j.marstruc.2024.103731_bib0018
– year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0030
  article-title: Preliminary study of floating offshore wind turbines motions using the smoothed particle hydrodynamics method
– volume: 112
  year: 2021
  ident: 10.1016/j.marstruc.2024.103731_bib0066
  article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2021.102714
– volume: 142
  year: 2024
  ident: 10.1016/j.marstruc.2024.103731_bib0005
  article-title: Multiphase SPH Analysis of a Breaking Wave Impact on Elevated Structures with Vertical and Inclined Walls
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2023.103832
– volume: 32
  start-page: 1105
  year: 2018
  ident: 10.1016/j.marstruc.2024.103731_bib0012
  article-title: Numerical and experimental investigation into the dynamic response of a floating wind turbine spar array platform
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-018-0213-x
– volume: 270
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0029
  article-title: Smoothed particle hydrodynamics modeling of elevated structures impacted by tsunami-like waves
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114851
– ident: 10.1016/j.marstruc.2024.103731_bib0059
– volume: 56
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0041
  article-title: Green water velocity due to breaking wave impingement on a tension leg platform
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-2010-y
– volume: 22
  start-page: 327
  year: 2019
  ident: 10.1016/j.marstruc.2024.103731_bib0010
  article-title: Wave-current interaction effects on structural responses of floating offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.2288
– volume: 153
  year: 2019
  ident: 10.1016/j.marstruc.2024.103731_bib0058
  article-title: SPH simulation of floating structures with moorings
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2019.103560
– volume: 30
  start-page: 543
  year: 1992
  ident: 10.1016/j.marstruc.2024.103731_bib0046
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu Rev Astron Astrophys
  doi: 10.1146/annurev.aa.30.090192.002551
– start-page: 15
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0003
  article-title: Review of study on the coupled dynamic performance of floating offshore wind turbines
  publication-title: Energies (Basel)
– ident: 10.1016/j.marstruc.2024.103731_bib0040
– volume: 253
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0013
  article-title: On the hydrodynamic responses of a multi-column TLP floating offshore wind turbine model
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111262
– volume: 12
  start-page: 367
  year: 2020
  ident: 10.1016/j.marstruc.2024.103731_bib0008
  article-title: Influence of second order wave excitation loads on coupled response of an offshore floating wind trubine
  publication-title: Int J Naval Arch Ocean Eng
  doi: 10.1016/j.ijnaoe.2020.01.003
– year: 2009
  ident: 10.1016/j.marstruc.2024.103731_bib0011
– volume: 253
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0004
  article-title: Experimental investigation of freak wave actions on a floating platform and effects of the air gap
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111192
– start-page: 268
  year: 2022
  ident: 10.1016/j.marstruc.2024.103731_bib0067
  article-title: A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response
  publication-title: Eng Struct
– volume: 70
  start-page: 184
  year: 2014
  ident: 10.1016/j.marstruc.2024.103731_bib0073
  article-title: Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.03.033
– volume: 187
  start-page: 204
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0032
  article-title: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2014.10.004
– volume: 8
  start-page: 826
  year: 2020
  ident: 10.1016/j.marstruc.2024.103731_bib0064
  article-title: SPH simulations of real sea waves impacting a large-scale structure
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse8100826
– volume: 147
  start-page: 104
  year: 2015
  ident: 10.1016/j.marstruc.2024.103731_bib0022
  article-title: The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine
  publication-title: J Wind Eng Industr Aerodyn
  doi: 10.1016/j.jweia.2015.09.016
SSID ssj0017111
Score 2.3930123
Snippet •SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103731
SubjectTerms Breaking wave
Floating offshore wind turbine
Flume testing
Mooring
Smoothed particle hydrodynamics
Wave focusing
Title Dynamic analysis of breaking wave impact on a floating offshore wind turbine via smoothed particle hydrodynamics
URI https://dx.doi.org/10.1016/j.marstruc.2024.103731
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvXgRn1hfzEG8pckmm2xyFB9UxV600FvY7G5oS9sEK5Ze_O3OJptSQejB6yZDwsxkvhkyMx8h14kBcaU8hzKlHRZI6iS-ip0oNuhGfZSrtn32o96APQ_DYYvcNbMwpq3Sxv46plfR2p64VptuOR67byY5iAPEd2aAPxmaCXbGjZd3v9dtHpTTioO3opM3d29MCU-6MywezZpWrBN9Vs2fB_RvgNoAncd9smezRbitX-iAtPT8kJy-Vpu1P1ZwA32BngL2Az0i5X1NMA_C7hqBIgcseivKKViKLw31WCQUcxCQTwth2p7xrnwxKj40LLFEB0QhrJc1fI0FLGaFmdFSUFqtwGilMOjWz1kck8Hjw_tdz7GcCo4MqP_pBJHA0lPHivJcSJVgOpfRMI-Y4lQwYX7DUslZKEQuMRljeMhRwzLLJPUzLoMT0p4Xc31KIMk4V7HKdCAiJuIIc3VPJVnkCS-UOgk6JGwUmUq7cNzwXkzTprNskjYGSI0B0toAHeKu5cp65cZWiaSxU_rLeVLEhS2yZ_-QPSe7vqEDNu194QVp43V9iTnKZ3ZVOeEV2bl9eun1fwCDoujK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIo3PgC3sqVNXwcOiIfGaxdA2q2kSaoNQTttE9Mu_Cn-IE6bIpCQOCCuUdxUdurPVm1_APuxAXGlmg7jSjvck8yJXRU5QWTQjbkkV077bAetB37V8TtT8F73wpiySuv7K59eemu70rDabPR7vcadCQ4ij_CdG-CPO7ay8lpPxpS3DY8vz8jIB657cX5_2nIstYAjPeaOHC8QlIHpSLEwE1LFFNWkzM8CrkImuDB_I5kMuS9EJikm4bQY0kEyTSVz01B69NxpmOXkLgxtwtHbZ10JC1lJ-lvy15vX-9KW_HT0QtmqmQtLianLy4Z3j_2MiF9Q7mIRFmx4iieVBpZgSufLsH5bjvIeTPAQ24KuJlqPsAL9s4rRHoUdboJFhpRllxxXOBavGqs-TCxyFJg9F8LUWdOubNgtBhrHvVwhwR4l6BpfewKHL4VpClPYt2bA7kSRl6_OGa7Cw79oeg1m8iLX64BxGoYqUqn2RMBFFFBy0FRxGjRF05c69jbArxWZSDvh3BBtPCd1KdtTUhsgMQZIKgNsQONTrl_N-PhVIq7tlHy7rQkB0S-ym3-Q3YO51v3tTXJz2b7egnnXcBGb2kJ_G2Zor96hAGmU7pYXEuHxv7-AD2woJBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+analysis+of+breaking+wave+impact+on+a+floating+offshore+wind+turbine+via+smoothed+particle+hydrodynamics&rft.jtitle=Marine+structures&rft.au=Wang%2C+Shengzhe&rft.au=Chuang%2C+Wei-Liang&rft.date=2025-03-15&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.volume=100&rft_id=info:doi/10.1016%2Fj.marstruc.2024.103731&rft.externalDocID=S095183392400159X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon