Dynamic analysis of breaking wave impact on a floating offshore wind turbine via smoothed particle hydrodynamics
•SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest forces attributed to breaking wave impinging rear columns of FOWT.•Wave breaking imparts significant accelerations to nacelle.•Maximum moorin...
Saved in:
Published in | Marine structures Vol. 100; p. 103731 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest forces attributed to breaking wave impinging rear columns of FOWT.•Wave breaking imparts significant accelerations to nacelle.•Maximum mooring tensions not significantly influenced by breaking wave.
This work leverages Lagrangian smoothed particle hydrodynamics (SPH) to explore the structural and hydrodynamic response of floating offshore wind turbines (FOWT) subject to impulsive breaking waves. The SPH formulation was first validated against breaking wave impact on a model tension leg platform (TLP) which demonstrated good consistency with experimental results. Following validation, wave focusing was utilized to generate both breaking and nonbreaking extreme waves impacting a moored semi-submersible FOWT at full scale. Impulsive forces and accelerations resulting from the plunging breaker were observed to exceed that of nonbreaking waves by up to 70 % and 230 %, respectively, and were highly sensitive to the wave impingement location relative to the FOWT. However, wave breaking did not appear to significantly influence rigid body motions and yielded lower mooring tensions than its nonbreaking counterpart due to the short duration of impact. This work ultimately demonstrates the applicability of SPH for the simulation of breaking wave interactions with floating bodies and provides further impetus towards the study of FOWTs under such conditions. |
---|---|
AbstractList | •SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest forces attributed to breaking wave impinging rear columns of FOWT.•Wave breaking imparts significant accelerations to nacelle.•Maximum mooring tensions not significantly influenced by breaking wave.
This work leverages Lagrangian smoothed particle hydrodynamics (SPH) to explore the structural and hydrodynamic response of floating offshore wind turbines (FOWT) subject to impulsive breaking waves. The SPH formulation was first validated against breaking wave impact on a model tension leg platform (TLP) which demonstrated good consistency with experimental results. Following validation, wave focusing was utilized to generate both breaking and nonbreaking extreme waves impacting a moored semi-submersible FOWT at full scale. Impulsive forces and accelerations resulting from the plunging breaker were observed to exceed that of nonbreaking waves by up to 70 % and 230 %, respectively, and were highly sensitive to the wave impingement location relative to the FOWT. However, wave breaking did not appear to significantly influence rigid body motions and yielded lower mooring tensions than its nonbreaking counterpart due to the short duration of impact. This work ultimately demonstrates the applicability of SPH for the simulation of breaking wave interactions with floating bodies and provides further impetus towards the study of FOWTs under such conditions. |
ArticleNumber | 103731 |
Author | Wang, Shengzhe Chuang, Wei-Liang |
Author_xml | – sequence: 1 givenname: Shengzhe orcidid: 0000-0001-9704-4752 surname: Wang fullname: Wang, Shengzhe email: shengzhe.2.wang@ucdenver.edu organization: Department of Civil Engineering, University of Colorado Denver, Denver, CO 80204, United States – sequence: 2 givenname: Wei-Liang surname: Chuang fullname: Chuang, Wei-Liang organization: Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan |
BookMark | eNqFkMtOwzAQRb0oEm3hF5B_ICUT59FILEDlKVViA2tr4gd1Se3Idlvl70kV2LDpaqQ7c-_MnBmZWGcVITeQLiCF8na72KEP0e_FIkuzfBBZxWBCpmldQLJkrL4ksxC2aQoVAExJ99hb3BlB0WLbBxOo07TxCr-N_aJHPChqdh2KSJ2lSHXrMJ46TuuwcV7Ro7GSxr1vjFX0YJCGnXNxoyTt0EcjWkU3vfROjnvCFbnQ2AZ1_Vvn5PP56WP1mqzfX95WD-tEMMhiwkosMqaWEiqNQtZlUTZQ6DKXFWCOeZHVIKq8QNRiWUA-iFWd5aJpBGRNJdic3I25wrsQvNJcmDjc7mz0aFoOKT8R41v-R4yfiPGR2GAv_9k7b4bJ_rzxfjSq4bmDUZ4HYZQVShqvROTSmXMRP-xhkVg |
CitedBy_id | crossref_primary_10_3390_jmse13020208 |
Cites_doi | 10.1017/S0022112086002999 10.1016/j.oceaneng.2015.08.066 10.1016/j.coastaleng.2009.11.005 10.1061/(ASCE)ST.1943-541X.0003295 10.1016/j.coastaleng.2017.06.004 10.1061/(ASCE)0733-950X(1999)125:3(145) 10.3390/en15010389 10.1088/0034-4885/68/8/R01 10.1016/j.apor.2023.103757 10.1016/j.oceaneng.2021.109987 10.1016/j.renene.2023.01.081 10.1007/s40571-015-0069-0 10.1016/j.coastaleng.2014.11.001 10.3390/en15051653 10.1007/s11831-010-9040-7 10.1016/S0889-9746(89)80028-3 10.1016/j.oceaneng.2014.06.029 10.1016/j.oceaneng.2022.113464 10.1016/j.oceaneng.2015.05.035 10.1142/S0578563404000872 10.1016/j.compstruc.2013.02.010 10.1103/PhysRev.159.98 10.1016/j.egypro.2017.10.333 10.1063/1.4796197 10.3390/en15113993 10.1016/j.apor.2014.12.003 10.1007/s40571-021-00404-2 10.1016/j.rser.2023.114092 10.1016/j.renene.2017.04.052 10.1016/j.oceaneng.2021.109227 10.1007/BF02123482 10.1016/j.oceaneng.2021.109138 10.1146/annurev-fluid-120710-101220 10.1016/j.marstruc.2021.103054 10.1016/j.apor.2017.07.015 10.1006/jcph.1994.1034 10.1016/j.compfluid.2016.03.008 10.1016/j.apor.2021.102714 10.1016/j.apor.2023.103832 10.1007/s12206-018-0213-x 10.1016/j.engstruct.2022.114851 10.1007/s00348-015-2010-y 10.1002/we.2288 10.1016/j.coastaleng.2019.103560 10.1146/annurev.aa.30.090192.002551 10.1016/j.oceaneng.2022.111262 10.1016/j.ijnaoe.2020.01.003 10.1016/j.oceaneng.2022.111192 10.1016/j.renene.2014.03.033 10.1016/j.cpc.2014.10.004 10.3390/jmse8100826 10.1016/j.jweia.2015.09.016 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.marstruc.2024.103731 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
ExternalDocumentID | 10_1016_j_marstruc_2024_103731 S095183392400159X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSZ T5K XPP ZMT ~G- 29M 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE LY7 M41 R2- RIG SET SSH UHS WUQ |
ID | FETCH-LOGICAL-c312t-36a523e8d17facd9656b15f64d71a4a45291c745aafc85141a47924cbbc12b7c3 |
IEDL.DBID | .~1 |
ISSN | 0951-8339 |
IngestDate | Tue Jul 01 02:36:57 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Sat Dec 21 15:58:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smoothed particle hydrodynamics Floating offshore wind turbine Flume testing Wave focusing Breaking wave Mooring |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-36a523e8d17facd9656b15f64d71a4a45291c745aafc85141a47924cbbc12b7c3 |
ORCID | 0000-0001-9704-4752 |
ParticipantIDs | crossref_citationtrail_10_1016_j_marstruc_2024_103731 crossref_primary_10_1016_j_marstruc_2024_103731 elsevier_sciencedirect_doi_10_1016_j_marstruc_2024_103731 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Marine structures |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ning, Wang, Chen, Li, Zang, Cheng (bib0060) 2017; 67 Trimble. SketchUp official website. SketchUp 2020. Batchelor (bib0054) 2000 Yu, Kwon (bib0073) 2014; 70 Gotoh, Shao, Memita (bib0072) 2004; 46 Li, Bachynski-Polic (bib0024) 2021; 79 Dunbar, Craven, Paterson (bib0020) 2015; 110 Fourtakas, Vacondio, Dominguez, Rogers (bib0053) 2020 Chen, Basu (bib0010) 2019; 22 Moideen, Behera (bib0061) 2021; 234 Robertson, Jonkman, Masciola, Song (bib0009) 2014 Yang, Alkhabbaz, Edirisinghe, Tongphong, Lee (bib0007) 2022; 15 Borthwick (bib0071) 1989; 3 X.1. Wind. Technology - X1 Wind 2024. Pan, Ijzermans, Jones, Thyagarajan, van Beest, Williams (bib0038) 2016; 3 Tan, Sun, Liu, Li, Lyu, Zhu (bib0035) 2023; 205 Jonkman, Butterfield, Musial, Scott (bib0011) 2009 Hall M. MoorDyn - Users Guide 2015. Tran, Kim (bib0022) 2015; 147 Zhou, Xiao, Peyrard, Pan (bib0019) 2021; 240 Wang, Robertson, Jonkman, Kim, Shen, Koop (bib0034) 2022; 15 Gong, Shao, Liu, Wang, Tan (bib0052) 2016; 65 Luo, Rubinato, Wang, Zhao (bib0004) 2022; 253 . Sarpkaya (bib0070) 1986; 165 Pawitan, Garlock, Wang (bib0005) 2024; 142 Chuang, Chang, Mercier (bib0041) 2015; 56 Wang, Garlock, Glisic (bib0065) 2021; 13 Cao, Xiao, Cheng, Liu (bib0014) 2021; 232 Robertson, Wendt, Jonkman, Popko, Dagher, Geuydon (bib0042) 2017; 137 Wu, Garlock, Wang (bib0067) 2022 Reis, Barbosa, Figueiredo, Clain, Lopes, Baptista (bib0029) 2022; 270 Goda (bib0062) 2000 Tagliafierro, Karimirad, Martinez-Estevez, Dominguez, Crespo, Gomez-Gesteira (bib0030) 2022 Monaghan (bib0046) 1992; 30 Didier, Neves, Martins, Neves (bib0063) 2014; 88 Huo, Zhao, Zhang, Zhang, Yuan (bib0017) 2023; 269 Han, Zhao, Su, He, Xu, Wu (bib0013) 2022; 253 Wang, Mitchell, Teague, Jarosz, Hulbert (bib0069) 2005; 309 Monaghan (bib0044) 2012; 44 (bib0002) 2019 Chuang, Liu, Lu (bib0008) 2020; 12 Liu, Liu (bib0028) 2010; 17 Cuomo, Allsop, Bruce, Pearson (bib0039) 2010; 57 Dominguez, Crespo, Hall, Altomare, Wu, Stratigaki (bib0058) 2019; 153 Altomare, Crespo, Dominguez, Gomez-Gesteira, Suzuki, Verwaest (bib0048) 2015; 96 Crespo, Dominguez, Rogers, Gomez-Gesteira, Longshaw, Canelas (bib0032) 2015; 187 Crespo, Gomez-Gesteira, Dalrymple (bib0055) 2007; 5 Pan (bib0051) 2017 Tagliafierro, Karimirad, Martinez-Estevez, Dominguez, Viccione, Crespo (bib0031) 2022; 15 Ren, He, Dong, Wen (bib0037) 2015; 50 Dong, Chen, Liu, Zhou, Ni, Cai (bib0003) 2022 Liu, Xiao, Incecik, Peyrard, Wan (bib0021) 2017; 112 Verlet (bib0056) 1967; 159 Monaghan (bib0045) 2005; 68 Tagliafierro, Karimirad, Altomare, Goteman, Martinez-Estevez, Capasso (bib0016) 2023; 141 Hall, Goupee (bib0057) 2015; 104 Akbari, Torabbeigi (bib0066) 2021; 112 Jonkman (bib0033) 2010 Altomare, Tafuni, Dominguez, Crespo, Gironella, Sospedra (bib0064) 2020; 8 Barreiro, Crespo, Dominguez, Gomez-Gesteira (bib0026) 2013; 120 Wendland (bib0049) 1995; 4 Ding, Li, Yu, Hao, Ji (bib0012) 2018; 32 Monaghan (bib0047) 1994; 110 Altomare, Dominguez, Crespo, Gonzalez-Cao, Suzuki, Gomez-Gesteira (bib0025) 2017; 127 Wang, Garlock, Deike, Glisic (bib0027) 2022; 148 Wang (bib0036) 2022; 266 Yan, Korobenko, Deng, Bazilevs (bib0023) 2016; 141 Dominguez, Fourtakas, Altomare, Canelas, Tafuni, Garcia-Feal (bib0043) 2022; 9 Tromans PS, Anaturk AR, Hagemeijer P. A new model for the kinematics of large ocean waves-application as a design wave, Edinburgh: 1991. Coulling, Goupee, Robertson, Jonkman, Dagher (bib0015) 2013; 5 The White House. FACT SHEET: Biden-Harris Administration Announces New Actions to Expand U.S. Offshore Wind Energy 2022. (accessed January 2, 2024). Monaghan, Kos (bib0050) 1999; 125 Zeng, Shao, Feng, Xu, Jin, Li (bib0006) 2024; 191 Borthwick (10.1016/j.marstruc.2024.103731_bib0071) 1989; 3 Altomare (10.1016/j.marstruc.2024.103731_bib0025) 2017; 127 Pan (10.1016/j.marstruc.2024.103731_bib0038) 2016; 3 Cao (10.1016/j.marstruc.2024.103731_bib0014) 2021; 232 Wang (10.1016/j.marstruc.2024.103731_bib0069) 2005; 309 Chuang (10.1016/j.marstruc.2024.103731_bib0041) 2015; 56 Han (10.1016/j.marstruc.2024.103731_bib0013) 2022; 253 Akbari (10.1016/j.marstruc.2024.103731_bib0066) 2021; 112 Goda (10.1016/j.marstruc.2024.103731_bib0062) 2000 Barreiro (10.1016/j.marstruc.2024.103731_bib0026) 2013; 120 Chuang (10.1016/j.marstruc.2024.103731_bib0008) 2020; 12 Altomare (10.1016/j.marstruc.2024.103731_bib0048) 2015; 96 Tagliafierro (10.1016/j.marstruc.2024.103731_bib0030) 2022 Tan (10.1016/j.marstruc.2024.103731_bib0035) 2023; 205 10.1016/j.marstruc.2024.103731_bib0040 Monaghan (10.1016/j.marstruc.2024.103731_bib0050) 1999; 125 Fourtakas (10.1016/j.marstruc.2024.103731_bib0053) 2020 Hall (10.1016/j.marstruc.2024.103731_bib0057) 2015; 104 10.1016/j.marstruc.2024.103731_bib0001 Tran (10.1016/j.marstruc.2024.103731_bib0022) 2015; 147 Zeng (10.1016/j.marstruc.2024.103731_bib0006) 2024; 191 Yang (10.1016/j.marstruc.2024.103731_bib0007) 2022; 15 Altomare (10.1016/j.marstruc.2024.103731_bib0064) 2020; 8 Reis (10.1016/j.marstruc.2024.103731_bib0029) 2022; 270 Dominguez (10.1016/j.marstruc.2024.103731_bib0043) 2022; 9 Yu (10.1016/j.marstruc.2024.103731_bib0073) 2014; 70 Robertson (10.1016/j.marstruc.2024.103731_bib0009) 2014 Jonkman (10.1016/j.marstruc.2024.103731_bib0011) 2009 Pan (10.1016/j.marstruc.2024.103731_bib0051) 2017 Didier (10.1016/j.marstruc.2024.103731_bib0063) 2014; 88 Huo (10.1016/j.marstruc.2024.103731_bib0017) 2023; 269 Tagliafierro (10.1016/j.marstruc.2024.103731_bib0016) 2023; 141 Jonkman (10.1016/j.marstruc.2024.103731_bib0033) 2010 Wang (10.1016/j.marstruc.2024.103731_bib0065) 2021; 13 Monaghan (10.1016/j.marstruc.2024.103731_bib0046) 1992; 30 Zhou (10.1016/j.marstruc.2024.103731_bib0019) 2021; 240 Chen (10.1016/j.marstruc.2024.103731_bib0010) 2019; 22 Sarpkaya (10.1016/j.marstruc.2024.103731_bib0070) 1986; 165 Batchelor (10.1016/j.marstruc.2024.103731_bib0054) 2000 (10.1016/j.marstruc.2024.103731_bib0002) 2019 Wu (10.1016/j.marstruc.2024.103731_bib0067) 2022 Yan (10.1016/j.marstruc.2024.103731_bib0023) 2016; 141 Ding (10.1016/j.marstruc.2024.103731_bib0012) 2018; 32 Coulling (10.1016/j.marstruc.2024.103731_bib0015) 2013; 5 Li (10.1016/j.marstruc.2024.103731_bib0024) 2021; 79 Monaghan (10.1016/j.marstruc.2024.103731_bib0045) 2005; 68 Verlet (10.1016/j.marstruc.2024.103731_bib0056) 1967; 159 Dunbar (10.1016/j.marstruc.2024.103731_bib0020) 2015; 110 10.1016/j.marstruc.2024.103731_bib0068 Tagliafierro (10.1016/j.marstruc.2024.103731_bib0031) 2022; 15 Gotoh (10.1016/j.marstruc.2024.103731_bib0072) 2004; 46 Cuomo (10.1016/j.marstruc.2024.103731_bib0039) 2010; 57 Monaghan (10.1016/j.marstruc.2024.103731_bib0044) 2012; 44 Liu (10.1016/j.marstruc.2024.103731_bib0028) 2010; 17 Wang (10.1016/j.marstruc.2024.103731_bib0036) 2022; 266 Crespo (10.1016/j.marstruc.2024.103731_bib0032) 2015; 187 Monaghan (10.1016/j.marstruc.2024.103731_bib0047) 1994; 110 Moideen (10.1016/j.marstruc.2024.103731_bib0061) 2021; 234 Liu (10.1016/j.marstruc.2024.103731_bib0021) 2017; 112 Ning (10.1016/j.marstruc.2024.103731_bib0060) 2017; 67 Luo (10.1016/j.marstruc.2024.103731_bib0004) 2022; 253 Gong (10.1016/j.marstruc.2024.103731_bib0052) 2016; 65 Robertson (10.1016/j.marstruc.2024.103731_bib0042) 2017; 137 Dong (10.1016/j.marstruc.2024.103731_bib0003) 2022 Wang (10.1016/j.marstruc.2024.103731_bib0027) 2022; 148 Pawitan (10.1016/j.marstruc.2024.103731_bib0005) 2024; 142 10.1016/j.marstruc.2024.103731_bib0059 Crespo (10.1016/j.marstruc.2024.103731_bib0055) 2007; 5 10.1016/j.marstruc.2024.103731_bib0018 Wang (10.1016/j.marstruc.2024.103731_bib0034) 2022; 15 Dominguez (10.1016/j.marstruc.2024.103731_bib0058) 2019; 153 Wendland (10.1016/j.marstruc.2024.103731_bib0049) 1995; 4 Ren (10.1016/j.marstruc.2024.103731_bib0037) 2015; 50 |
References_xml | – volume: 13 year: 2021 ident: bib0065 article-title: Parametric modeling of depth-limited wave spectra under hurricane conditions with applications to Kinetic Umbrellas against storm surge inundation publication-title: Water (Basel) – reference: The White House. FACT SHEET: Biden-Harris Administration Announces New Actions to Expand U.S. Offshore Wind Energy 2022. – volume: 120 start-page: 96 year: 2013 end-page: 106 ident: bib0026 article-title: Smoothed particle hydrodynamics for coastal engineering problems publication-title: Comput Struct – year: 2019 ident: bib0002 article-title: Future world vision: infrastructure reimagined – year: 2009 ident: bib0011 article-title: Definition of a 5-MW reference wind turbine for offshore system development – volume: 79 year: 2021 ident: bib0024 article-title: Validation and application of nonlinear hydrodynamics from CFD in an engineering model of a semi-submersible floating wind turbine publication-title: Marine Struct – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib0049 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv Comput Math – volume: 148 year: 2022 ident: bib0027 article-title: Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes publication-title: J Struct Eng – year: 2014 ident: bib0009 article-title: Definition of the semisubmersible floating system for phase ii of OC4 – volume: 159 start-page: 98 year: 1967 end-page: 103 ident: bib0056 article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules publication-title: Phys Rev – volume: 3 start-page: 155 year: 2016 end-page: 166 ident: bib0038 article-title: Application of the SPH method to solitary wave impact on an offshore platform publication-title: Comput Part Mech – volume: 3 start-page: 509 year: 1989 end-page: 528 ident: bib0071 article-title: Pressure and force measurements on a cylinder oscillated sinusoidally at low and intermediate Keulegan-Carpenter numbers publication-title: J Fluids Struct – volume: 112 year: 2021 ident: bib0066 article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers publication-title: Appl Ocean Res – volume: 30 start-page: 543 year: 1992 end-page: 574 ident: bib0046 article-title: Smoothed particle hydrodynamics publication-title: Annu Rev Astron Astrophys – volume: 110 start-page: 98 year: 2015 end-page: 105 ident: bib0020 article-title: Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms publication-title: Ocean Eng – volume: 266 year: 2022 ident: bib0036 article-title: Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion publication-title: Ocean Eng – year: 2017 ident: bib0051 article-title: Simulating fluid-solid interaction using smoothed particle hydrodynamics method – volume: 88 start-page: 330 year: 2014 end-page: 341 ident: bib0063 article-title: Wave interaction with a vertical wall: SPH numerical and experimental modeling publication-title: Ocean Eng – volume: 253 year: 2022 ident: bib0004 article-title: Experimental investigation of freak wave actions on a floating platform and effects of the air gap publication-title: Ocean Eng – reference: Tromans PS, Anaturk AR, Hagemeijer P. A new model for the kinematics of large ocean waves-application as a design wave, Edinburgh: 1991. – volume: 141 start-page: 155 year: 2016 end-page: 174 ident: bib0023 article-title: Computational free-surface fluid-structure interaction with application to floating offshore wind turbines publication-title: Comput Fluids – volume: 125 start-page: 145 year: 1999 end-page: 155 ident: bib0050 article-title: Solitary waves on a Cretan beach publication-title: J Waterw Port Coast Ocean Eng – volume: 67 start-page: 188 year: 2017 end-page: 200 ident: bib0060 article-title: Extreme wave run-up and pressure on a vertical seawall publication-title: Appl Ocean Res – volume: 205 start-page: 393 year: 2023 end-page: 409 ident: bib0035 article-title: SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves publication-title: Renew Energy – volume: 15 start-page: 389 year: 2022 ident: bib0034 article-title: OC6 Phase Ia: CFD simulations of the free-decay motion of the DeepCwind semisubmersible publication-title: Energies (Basel) – volume: 9 start-page: 867 year: 2022 end-page: 895 ident: bib0043 article-title: DualSPHysics: from fluid dynamics to multiphysics problems publication-title: Comput Part Mech – year: 2000 ident: bib0054 article-title: An introduction to fluid dynamics – start-page: 268 year: 2022 ident: bib0067 article-title: A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response publication-title: Eng Struct – volume: 22 start-page: 327 year: 2019 end-page: 339 ident: bib0010 article-title: Wave-current interaction effects on structural responses of floating offshore wind turbines publication-title: Wind Energy – volume: 65 start-page: 155 year: 2016 end-page: 179 ident: bib0052 article-title: Two-phase SPH simulation of fluid–structure interactions publication-title: J Fluids Solids – volume: 57 start-page: 424 year: 2010 end-page: 439 ident: bib0039 article-title: Breaking wave loads at vertical seawalls and breakwaters publication-title: Coast Eng – volume: 8 start-page: 826 year: 2020 ident: bib0064 article-title: SPH simulations of real sea waves impacting a large-scale structure publication-title: J Mar Sci Eng – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: bib0028 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch Comput Methods Eng – reference: Hall M. MoorDyn - Users Guide 2015. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: bib0047 article-title: Simulating free surface flows with SPH publication-title: J Comput Phys – volume: 32 start-page: 1105 year: 2018 end-page: 1116 ident: bib0012 article-title: Numerical and experimental investigation into the dynamic response of a floating wind turbine spar array platform publication-title: J Mech Sci Technol – volume: 187 start-page: 204 year: 2015 end-page: 216 ident: bib0032 article-title: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH) publication-title: Comput Phys Commun – volume: 112 start-page: 280 year: 2017 end-page: 301 ident: bib0021 article-title: Establishing a fully coupled CFD analysis tool for floating offshore wind turbines publication-title: Renew Energy – volume: 44 start-page: 323 year: 2012 end-page: 346 ident: bib0044 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu Rev Fluid Mech – volume: 232 year: 2021 ident: bib0014 article-title: Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: a comprehensive numerical and experimental comparison publication-title: Ocean Eng – year: 2010 ident: bib0033 article-title: Definition of the floating system for phase iv of OC3 – volume: 127 start-page: 37 year: 2017 end-page: 54 ident: bib0025 article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model publication-title: Coast Eng – volume: 12 start-page: 367 year: 2020 end-page: 375 ident: bib0008 article-title: Influence of second order wave excitation loads on coupled response of an offshore floating wind trubine publication-title: Int J Naval Arch Ocean Eng – volume: 147 start-page: 104 year: 2015 end-page: 119 ident: bib0022 article-title: The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine publication-title: J Wind Eng Industr Aerodyn – volume: 50 start-page: 1 year: 2015 end-page: 12 ident: bib0037 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl Ocean Res – volume: 137 start-page: 38 year: 2017 end-page: 57 ident: bib0042 article-title: OC5 project phase II: validation of global loads of the DeepCwind floating semisubmersible wind turbine publication-title: Energy Procedia – volume: 141 year: 2023 ident: bib0016 article-title: Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework publication-title: Appl Ocean Res – year: 2020 ident: bib0053 article-title: Improved density diffusion term for long duration wave propagation publication-title: Proceedings of the International SPHERIC Workshop – volume: 96 start-page: 1 year: 2015 end-page: 12 ident: bib0048 article-title: Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures publication-title: Coast Eng – volume: 309 start-page: 896 year: 2005 ident: bib0069 article-title: Extreme waves under Hurricane Ivan publication-title: Science (1979) – volume: 5 year: 2013 ident: bib0015 article-title: Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data publication-title: J Renew Sust Energy – volume: 153 year: 2019 ident: bib0058 article-title: SPH simulation of floating structures with moorings publication-title: Coast Eng – reference: (accessed January 2, 2024). – volume: 191 year: 2024 ident: bib0006 article-title: Nonlinear hydrodynamics of floating offshore wind turbines: a review publication-title: Renew Sust Energy Rev – reference: X.1. Wind. Technology - X1 Wind 2024. – volume: 46 start-page: 39 year: 2004 end-page: 63 ident: bib0072 article-title: SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater publication-title: Coast Eng J – volume: 165 start-page: 61 year: 1986 end-page: 71 ident: bib0070 article-title: Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers publication-title: J Fluid Mech – year: 2022 ident: bib0030 article-title: Preliminary study of floating offshore wind turbines motions using the smoothed particle hydrodynamics method publication-title: Proceedings of the ASME 2022 41st International Conference on Ocean – volume: 15 start-page: 3993 year: 2022 ident: bib0031 article-title: Numerical assessment of a tension-leg platform wind turbine in intermediate water using the smoothed particle hydrodynamics method publication-title: Energies (Basel) – start-page: 15 year: 2022 ident: bib0003 article-title: Review of study on the coupled dynamic performance of floating offshore wind turbines publication-title: Energies (Basel) – volume: 70 start-page: 184 year: 2014 end-page: 196 ident: bib0073 article-title: Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method publication-title: Renew Energy – volume: 269 year: 2023 ident: bib0017 article-title: Study on wave slamming characteristics of a typical floating wind turbine under freak waves publication-title: Ocean Eng – reference: . – volume: 56 year: 2015 ident: bib0041 article-title: Green water velocity due to breaking wave impingement on a tension leg platform publication-title: Exp Fluids – reference: Trimble. SketchUp official website. SketchUp 2020. – volume: 240 year: 2021 ident: bib0019 article-title: Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach publication-title: Ocean Eng – volume: 142 year: 2024 ident: bib0005 article-title: Multiphase SPH Analysis of a Breaking Wave Impact on Elevated Structures with Vertical and Inclined Walls publication-title: Appl Ocean Res – volume: 234 year: 2021 ident: bib0061 article-title: Numerical investigation of extreme wave impact on coastal bridge deck using focused waves publication-title: Ocean Eng – volume: 253 year: 2022 ident: bib0013 article-title: On the hydrodynamic responses of a multi-column TLP floating offshore wind turbine model publication-title: Ocean Eng – volume: 15 start-page: 1653 year: 2022 ident: bib0007 article-title: FOWT stability study according to number of columns considering amount of materials used publication-title: Energies (Basel) – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: bib0045 article-title: Smoothed particle hydrodynamics publication-title: Reports on Progress in Physics – volume: 104 start-page: 590 year: 2015 end-page: 603 ident: bib0057 article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data publication-title: Ocean Eng – year: 2000 ident: bib0062 article-title: Random seas and design of maritime structures – volume: 270 year: 2022 ident: bib0029 article-title: Smoothed particle hydrodynamics modeling of elevated structures impacted by tsunami-like waves publication-title: Eng Struct – volume: 5 start-page: 173 year: 2007 end-page: 184 ident: bib0055 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: CMC - Tech Sci Press – volume: 165 start-page: 61 year: 1986 ident: 10.1016/j.marstruc.2024.103731_bib0070 article-title: Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers publication-title: J Fluid Mech doi: 10.1017/S0022112086002999 – volume: 110 start-page: 98 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0020 article-title: Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.08.066 – volume: 57 start-page: 424 year: 2010 ident: 10.1016/j.marstruc.2024.103731_bib0039 article-title: Breaking wave loads at vertical seawalls and breakwaters publication-title: Coast Eng doi: 10.1016/j.coastaleng.2009.11.005 – volume: 309 start-page: 896 year: 2005 ident: 10.1016/j.marstruc.2024.103731_bib0069 article-title: Extreme waves under Hurricane Ivan publication-title: Science (1979) – volume: 148 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0027 article-title: Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0003295 – volume: 127 start-page: 37 year: 2017 ident: 10.1016/j.marstruc.2024.103731_bib0025 article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model publication-title: Coast Eng doi: 10.1016/j.coastaleng.2017.06.004 – volume: 125 start-page: 145 year: 1999 ident: 10.1016/j.marstruc.2024.103731_bib0050 article-title: Solitary waves on a Cretan beach publication-title: J Waterw Port Coast Ocean Eng doi: 10.1061/(ASCE)0733-950X(1999)125:3(145) – volume: 15 start-page: 389 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0034 article-title: OC6 Phase Ia: CFD simulations of the free-decay motion of the DeepCwind semisubmersible publication-title: Energies (Basel) doi: 10.3390/en15010389 – volume: 68 start-page: 1703 year: 2005 ident: 10.1016/j.marstruc.2024.103731_bib0045 article-title: Smoothed particle hydrodynamics publication-title: Reports on Progress in Physics doi: 10.1088/0034-4885/68/8/R01 – volume: 141 year: 2023 ident: 10.1016/j.marstruc.2024.103731_bib0016 article-title: Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework publication-title: Appl Ocean Res doi: 10.1016/j.apor.2023.103757 – volume: 240 year: 2021 ident: 10.1016/j.marstruc.2024.103731_bib0019 article-title: Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.109987 – volume: 205 start-page: 393 year: 2023 ident: 10.1016/j.marstruc.2024.103731_bib0035 article-title: SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves publication-title: Renew Energy doi: 10.1016/j.renene.2023.01.081 – volume: 3 start-page: 155 year: 2016 ident: 10.1016/j.marstruc.2024.103731_bib0038 article-title: Application of the SPH method to solitary wave impact on an offshore platform publication-title: Comput Part Mech doi: 10.1007/s40571-015-0069-0 – year: 2020 ident: 10.1016/j.marstruc.2024.103731_bib0053 article-title: Improved density diffusion term for long duration wave propagation – volume: 5 start-page: 173 year: 2007 ident: 10.1016/j.marstruc.2024.103731_bib0055 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: CMC - Tech Sci Press – volume: 96 start-page: 1 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0048 article-title: Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures publication-title: Coast Eng doi: 10.1016/j.coastaleng.2014.11.001 – ident: 10.1016/j.marstruc.2024.103731_bib0068 – volume: 266 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0036 article-title: Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion publication-title: Ocean Eng – volume: 15 start-page: 1653 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0007 article-title: FOWT stability study according to number of columns considering amount of materials used publication-title: Energies (Basel) doi: 10.3390/en15051653 – volume: 17 start-page: 25 year: 2010 ident: 10.1016/j.marstruc.2024.103731_bib0028 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-010-9040-7 – year: 2019 ident: 10.1016/j.marstruc.2024.103731_bib0002 – volume: 3 start-page: 509 year: 1989 ident: 10.1016/j.marstruc.2024.103731_bib0071 article-title: Pressure and force measurements on a cylinder oscillated sinusoidally at low and intermediate Keulegan-Carpenter numbers publication-title: J Fluids Struct doi: 10.1016/S0889-9746(89)80028-3 – volume: 88 start-page: 330 year: 2014 ident: 10.1016/j.marstruc.2024.103731_bib0063 article-title: Wave interaction with a vertical wall: SPH numerical and experimental modeling publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2014.06.029 – volume: 269 year: 2023 ident: 10.1016/j.marstruc.2024.103731_bib0017 article-title: Study on wave slamming characteristics of a typical floating wind turbine under freak waves publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113464 – year: 2010 ident: 10.1016/j.marstruc.2024.103731_bib0033 – volume: 104 start-page: 590 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0057 article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.05.035 – volume: 65 start-page: 155 year: 2016 ident: 10.1016/j.marstruc.2024.103731_bib0052 article-title: Two-phase SPH simulation of fluid–structure interactions publication-title: J Fluids Solids – year: 2000 ident: 10.1016/j.marstruc.2024.103731_bib0054 – volume: 46 start-page: 39 year: 2004 ident: 10.1016/j.marstruc.2024.103731_bib0072 article-title: SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater publication-title: Coast Eng J doi: 10.1142/S0578563404000872 – volume: 120 start-page: 96 year: 2013 ident: 10.1016/j.marstruc.2024.103731_bib0026 article-title: Smoothed particle hydrodynamics for coastal engineering problems publication-title: Comput Struct doi: 10.1016/j.compstruc.2013.02.010 – volume: 159 start-page: 98 year: 1967 ident: 10.1016/j.marstruc.2024.103731_bib0056 article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules publication-title: Phys Rev doi: 10.1103/PhysRev.159.98 – ident: 10.1016/j.marstruc.2024.103731_bib0001 – volume: 137 start-page: 38 year: 2017 ident: 10.1016/j.marstruc.2024.103731_bib0042 article-title: OC5 project phase II: validation of global loads of the DeepCwind floating semisubmersible wind turbine publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.10.333 – volume: 13 year: 2021 ident: 10.1016/j.marstruc.2024.103731_bib0065 article-title: Parametric modeling of depth-limited wave spectra under hurricane conditions with applications to Kinetic Umbrellas against storm surge inundation publication-title: Water (Basel) – volume: 5 year: 2013 ident: 10.1016/j.marstruc.2024.103731_bib0015 article-title: Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data publication-title: J Renew Sust Energy doi: 10.1063/1.4796197 – volume: 15 start-page: 3993 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0031 article-title: Numerical assessment of a tension-leg platform wind turbine in intermediate water using the smoothed particle hydrodynamics method publication-title: Energies (Basel) doi: 10.3390/en15113993 – volume: 50 start-page: 1 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0037 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl Ocean Res doi: 10.1016/j.apor.2014.12.003 – volume: 9 start-page: 867 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0043 article-title: DualSPHysics: from fluid dynamics to multiphysics problems publication-title: Comput Part Mech doi: 10.1007/s40571-021-00404-2 – year: 2017 ident: 10.1016/j.marstruc.2024.103731_bib0051 – volume: 191 year: 2024 ident: 10.1016/j.marstruc.2024.103731_bib0006 article-title: Nonlinear hydrodynamics of floating offshore wind turbines: a review publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2023.114092 – volume: 112 start-page: 280 year: 2017 ident: 10.1016/j.marstruc.2024.103731_bib0021 article-title: Establishing a fully coupled CFD analysis tool for floating offshore wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2017.04.052 – volume: 234 year: 2021 ident: 10.1016/j.marstruc.2024.103731_bib0061 article-title: Numerical investigation of extreme wave impact on coastal bridge deck using focused waves publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.109227 – volume: 4 start-page: 389 year: 1995 ident: 10.1016/j.marstruc.2024.103731_bib0049 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv Comput Math doi: 10.1007/BF02123482 – volume: 232 year: 2021 ident: 10.1016/j.marstruc.2024.103731_bib0014 article-title: Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: a comprehensive numerical and experimental comparison publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.109138 – volume: 44 start-page: 323 year: 2012 ident: 10.1016/j.marstruc.2024.103731_bib0044 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-120710-101220 – year: 2000 ident: 10.1016/j.marstruc.2024.103731_bib0062 – volume: 79 year: 2021 ident: 10.1016/j.marstruc.2024.103731_bib0024 article-title: Validation and application of nonlinear hydrodynamics from CFD in an engineering model of a semi-submersible floating wind turbine publication-title: Marine Struct doi: 10.1016/j.marstruc.2021.103054 – volume: 67 start-page: 188 year: 2017 ident: 10.1016/j.marstruc.2024.103731_bib0060 article-title: Extreme wave run-up and pressure on a vertical seawall publication-title: Appl Ocean Res doi: 10.1016/j.apor.2017.07.015 – year: 2014 ident: 10.1016/j.marstruc.2024.103731_bib0009 – volume: 110 start-page: 399 year: 1994 ident: 10.1016/j.marstruc.2024.103731_bib0047 article-title: Simulating free surface flows with SPH publication-title: J Comput Phys doi: 10.1006/jcph.1994.1034 – volume: 141 start-page: 155 year: 2016 ident: 10.1016/j.marstruc.2024.103731_bib0023 article-title: Computational free-surface fluid-structure interaction with application to floating offshore wind turbines publication-title: Comput Fluids doi: 10.1016/j.compfluid.2016.03.008 – ident: 10.1016/j.marstruc.2024.103731_bib0018 – year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0030 article-title: Preliminary study of floating offshore wind turbines motions using the smoothed particle hydrodynamics method – volume: 112 year: 2021 ident: 10.1016/j.marstruc.2024.103731_bib0066 article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers publication-title: Appl Ocean Res doi: 10.1016/j.apor.2021.102714 – volume: 142 year: 2024 ident: 10.1016/j.marstruc.2024.103731_bib0005 article-title: Multiphase SPH Analysis of a Breaking Wave Impact on Elevated Structures with Vertical and Inclined Walls publication-title: Appl Ocean Res doi: 10.1016/j.apor.2023.103832 – volume: 32 start-page: 1105 year: 2018 ident: 10.1016/j.marstruc.2024.103731_bib0012 article-title: Numerical and experimental investigation into the dynamic response of a floating wind turbine spar array platform publication-title: J Mech Sci Technol doi: 10.1007/s12206-018-0213-x – volume: 270 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0029 article-title: Smoothed particle hydrodynamics modeling of elevated structures impacted by tsunami-like waves publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.114851 – ident: 10.1016/j.marstruc.2024.103731_bib0059 – volume: 56 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0041 article-title: Green water velocity due to breaking wave impingement on a tension leg platform publication-title: Exp Fluids doi: 10.1007/s00348-015-2010-y – volume: 22 start-page: 327 year: 2019 ident: 10.1016/j.marstruc.2024.103731_bib0010 article-title: Wave-current interaction effects on structural responses of floating offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.2288 – volume: 153 year: 2019 ident: 10.1016/j.marstruc.2024.103731_bib0058 article-title: SPH simulation of floating structures with moorings publication-title: Coast Eng doi: 10.1016/j.coastaleng.2019.103560 – volume: 30 start-page: 543 year: 1992 ident: 10.1016/j.marstruc.2024.103731_bib0046 article-title: Smoothed particle hydrodynamics publication-title: Annu Rev Astron Astrophys doi: 10.1146/annurev.aa.30.090192.002551 – start-page: 15 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0003 article-title: Review of study on the coupled dynamic performance of floating offshore wind turbines publication-title: Energies (Basel) – ident: 10.1016/j.marstruc.2024.103731_bib0040 – volume: 253 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0013 article-title: On the hydrodynamic responses of a multi-column TLP floating offshore wind turbine model publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111262 – volume: 12 start-page: 367 year: 2020 ident: 10.1016/j.marstruc.2024.103731_bib0008 article-title: Influence of second order wave excitation loads on coupled response of an offshore floating wind trubine publication-title: Int J Naval Arch Ocean Eng doi: 10.1016/j.ijnaoe.2020.01.003 – year: 2009 ident: 10.1016/j.marstruc.2024.103731_bib0011 – volume: 253 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0004 article-title: Experimental investigation of freak wave actions on a floating platform and effects of the air gap publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111192 – start-page: 268 year: 2022 ident: 10.1016/j.marstruc.2024.103731_bib0067 article-title: A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response publication-title: Eng Struct – volume: 70 start-page: 184 year: 2014 ident: 10.1016/j.marstruc.2024.103731_bib0073 article-title: Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method publication-title: Renew Energy doi: 10.1016/j.renene.2014.03.033 – volume: 187 start-page: 204 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0032 article-title: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH) publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2014.10.004 – volume: 8 start-page: 826 year: 2020 ident: 10.1016/j.marstruc.2024.103731_bib0064 article-title: SPH simulations of real sea waves impacting a large-scale structure publication-title: J Mar Sci Eng doi: 10.3390/jmse8100826 – volume: 147 start-page: 104 year: 2015 ident: 10.1016/j.marstruc.2024.103731_bib0022 article-title: The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine publication-title: J Wind Eng Industr Aerodyn doi: 10.1016/j.jweia.2015.09.016 |
SSID | ssj0017111 |
Score | 2.3930123 |
Snippet | •SPH validated against breaking wave experiment impacting floating TLP.•Dynamics of DeepCwind FOWT subject to breaking and nonbreaking waves explored.•Largest... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103731 |
SubjectTerms | Breaking wave Floating offshore wind turbine Flume testing Mooring Smoothed particle hydrodynamics Wave focusing |
Title | Dynamic analysis of breaking wave impact on a floating offshore wind turbine via smoothed particle hydrodynamics |
URI | https://dx.doi.org/10.1016/j.marstruc.2024.103731 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvXgRn1hfzEG8pckmm2xyFB9UxV600FvY7G5oS9sEK5Ze_O3OJptSQejB6yZDwsxkvhkyMx8h14kBcaU8hzKlHRZI6iS-ip0oNuhGfZSrtn32o96APQ_DYYvcNbMwpq3Sxv46plfR2p64VptuOR67byY5iAPEd2aAPxmaCXbGjZd3v9dtHpTTioO3opM3d29MCU-6MywezZpWrBN9Vs2fB_RvgNoAncd9smezRbitX-iAtPT8kJy-Vpu1P1ZwA32BngL2Az0i5X1NMA_C7hqBIgcseivKKViKLw31WCQUcxCQTwth2p7xrnwxKj40LLFEB0QhrJc1fI0FLGaFmdFSUFqtwGilMOjWz1kck8Hjw_tdz7GcCo4MqP_pBJHA0lPHivJcSJVgOpfRMI-Y4lQwYX7DUslZKEQuMRljeMhRwzLLJPUzLoMT0p4Xc31KIMk4V7HKdCAiJuIIc3VPJVnkCS-UOgk6JGwUmUq7cNzwXkzTprNskjYGSI0B0toAHeKu5cp65cZWiaSxU_rLeVLEhS2yZ_-QPSe7vqEDNu194QVp43V9iTnKZ3ZVOeEV2bl9eun1fwCDoujK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIo3PgC3sqVNXwcOiIfGaxdA2q2kSaoNQTttE9Mu_Cn-IE6bIpCQOCCuUdxUdurPVm1_APuxAXGlmg7jSjvck8yJXRU5QWTQjbkkV077bAetB37V8TtT8F73wpiySuv7K59eemu70rDabPR7vcadCQ4ij_CdG-CPO7ay8lpPxpS3DY8vz8jIB657cX5_2nIstYAjPeaOHC8QlIHpSLEwE1LFFNWkzM8CrkImuDB_I5kMuS9EJikm4bQY0kEyTSVz01B69NxpmOXkLgxtwtHbZ10JC1lJ-lvy15vX-9KW_HT0QtmqmQtLianLy4Z3j_2MiF9Q7mIRFmx4iieVBpZgSufLsH5bjvIeTPAQ24KuJlqPsAL9s4rRHoUdboJFhpRllxxXOBavGqs-TCxyFJg9F8LUWdOubNgtBhrHvVwhwR4l6BpfewKHL4VpClPYt2bA7kSRl6_OGa7Cw79oeg1m8iLX64BxGoYqUqn2RMBFFFBy0FRxGjRF05c69jbArxWZSDvh3BBtPCd1KdtTUhsgMQZIKgNsQONTrl_N-PhVIq7tlHy7rQkB0S-ym3-Q3YO51v3tTXJz2b7egnnXcBGb2kJ_G2Zor96hAGmU7pYXEuHxv7-AD2woJBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+analysis+of+breaking+wave+impact+on+a+floating+offshore+wind+turbine+via+smoothed+particle+hydrodynamics&rft.jtitle=Marine+structures&rft.au=Wang%2C+Shengzhe&rft.au=Chuang%2C+Wei-Liang&rft.date=2025-03-15&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.volume=100&rft_id=info:doi/10.1016%2Fj.marstruc.2024.103731&rft.externalDocID=S095183392400159X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon |