A scaling law of high-order harmonic generation
Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), and the intensity I of the laser field change simultaneously to kEb, λ/k, and k3I, res...
Saved in:
Published in | Chinese physics B Vol. 21; no. 2; pp. 351 - 356 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/2/024210 |
Cover
Summary: | Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), and the intensity I of the laser field change simultaneously to kEb, λ/k, and k3I, respectively. The characteristics of the HHG spectrum remain unchanged, while the harmonic yield is enhanced k3 times. That HHG obeys the same scaling law with above-threshold ionization is a solid proof of the fact that the two physical processes have similar physical mechanisms. The variation of integrated harmonic yields is also discussed. |
---|---|
Bibliography: | Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), and the intensity I of the laser field change simultaneously to kEb, λ/k, and k3I, respectively. The characteristics of the HHG spectrum remain unchanged, while the harmonic yield is enhanced k3 times. That HHG obeys the same scaling law with above-threshold ionization is a solid proof of the fact that the two physical processes have similar physical mechanisms. The variation of integrated harmonic yields is also discussed. high-order harmonic generation, scaling law, harmonic yield, nonperturbative quantumelectrodynamics 11-5639/O4 Wu Yan, Ye Hui-Liang, Shao Chu-Yin, Zhang aing-Tao a) State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, Shanghai 201800, China b) Changshu Institute of Technology, Changshu 215500, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/2/024210 |