Phase and structural evolution of dysprosia stabilized zirconia ceramics under CMAS corrosion environment

Saved in:
Bibliographic Details
Published inCeramics international Vol. 49; no. 23; pp. 38237 - 38246
Main Authors Cheng, Huicong, Wang, Yalei, Liu, Huaifei, Xiong, Xiang, Tan, Yulin
Format Journal Article
LanguageEnglish
Published 01.12.2023
Online AccessGet full text

Cover

Loading…
Author Cheng, Huicong
Tan, Yulin
Liu, Huaifei
Xiong, Xiang
Wang, Yalei
Author_xml – sequence: 1
  givenname: Huicong
  surname: Cheng
  fullname: Cheng, Huicong
– sequence: 2
  givenname: Yalei
  surname: Wang
  fullname: Wang, Yalei
– sequence: 3
  givenname: Huaifei
  surname: Liu
  fullname: Liu, Huaifei
– sequence: 4
  givenname: Xiang
  surname: Xiong
  fullname: Xiong, Xiang
– sequence: 5
  givenname: Yulin
  surname: Tan
  fullname: Tan, Yulin
BookMark eNqFkMtKAzEUhrOoYFt9BckLzJjrTAbclOINKgrqOmSSDKZMk5JkCu3TO0N148bVgcP_ncu3ADMfvAXgBqMSI1zdbktto9o5n0uCCC1RU2LOZ2COSE0KIRi5BIuUtmgMNwzNgXv7UslC5Q1MOQ46D1H10B5CP2QXPAwdNMe0jyE5NSZU63p3sgaeXNTBj73zPp3g4I2NcP2yeoc6xAkYcesPLga_sz5fgYtO9cle_9Ql-Hy4_1g_FZvXx-f1alNoikkuKGaC4dZagVqldM2ZIbxuOo2oEcZUDGuEO6QE5hVnnArDRU2MpW2rMGWGLsHdea4eb0jRdlK7rKZnclSulxjJSZXcyl9VclIlUSNHVSNe_cH30e1UPP4HfgMri3kS
CitedBy_id crossref_primary_10_1016_j_ceramint_2024_03_340
Cites_doi 10.1016/j.ceramint.2020.02.112
10.1016/j.irbm.2010.10.004
10.1016/j.ceramint.2020.07.149
10.1016/j.matdes.2009.12.019
10.1557/mrs.2012.232
10.1016/j.matlet.2005.03.061
10.1016/j.jallcom.2015.09.089
10.1016/j.surfcoat.2014.04.007
10.1016/j.corsci.2020.108968
10.1016/j.solidstatesciences.2010.11.043
10.1007/s11666-020-01142-2
10.1111/j.1744-7402.2009.02373.x
10.1115/1.2906754
10.3724/SP.J.1077.2009.01226
10.15541/jim20210013
10.1016/j.msea.2008.01.006
10.1016/j.surfcoat.2009.09.055
10.1016/j.jallcom.2014.11.152
10.1016/j.ceramint.2020.03.030
10.1016/j.corsci.2017.07.010
10.1111/j.1551-2916.2006.01209.x
10.1016/j.surfcoat.2005.07.089
10.1016/j.surfcoat.2010.08.130
10.1016/j.jeurceramsoc.2012.01.006
10.1016/j.ceramint.2023.03.059
10.1016/j.surfcoat.2011.11.026
10.1557/mrs.2012.230
10.1016/j.ceramint.2022.05.016
10.1016/j.jeurceramsoc.2011.04.006
10.1016/j.ceramint.2020.04.184
10.1016/j.surfcoat.2010.09.008
10.1016/j.actamat.2004.11.028
10.1016/j.surfcoat.2014.10.023
10.1016/j.jallcom.2018.03.011
10.1016/S0257-8972(96)02994-5
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2023.09.155
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 38246
ExternalDocumentID 10_1016_j_ceramint_2023_09_155
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSH
SSM
SSZ
T5K
WUQ
XPP
~G-
ID FETCH-LOGICAL-c312t-314841bee80baac754d2579fc03d8dd641c01f0a815654538d5872de3bba134d3
ISSN 0272-8842
IngestDate Tue Jul 01 04:23:45 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-314841bee80baac754d2579fc03d8dd641c01f0a815654538d5872de3bba134d3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_ceramint_2023_09_155
crossref_primary_10_1016_j_ceramint_2023_09_155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Ceramics international
PublicationYear 2023
References Krämer (10.1016/j.ceramint.2023.09.155_bib26) 2008; A490
Wang (10.1016/j.ceramint.2023.09.155_bib33) 2020; 46
Guo (10.1016/j.ceramint.2023.09.155_bib35) 2020; 177
Habibi (10.1016/j.ceramint.2023.09.155_bib4) 2012; 32
Mercer (10.1016/j.ceramint.2023.09.155_bib28) 2005; 53
Kim (10.1016/j.ceramint.2023.09.155_bib19) 1993; 115
Pan (10.1016/j.ceramint.2023.09.155_bib2) 2018
Krämer (10.1016/j.ceramint.2023.09.155_bib37) 2006; 89
Yang (10.1016/j.ceramint.2023.09.155_bib9) 2016; 654
Li (10.1016/j.ceramint.2023.09.155_bib18) 2020; 46
Cheng (10.1016/j.ceramint.2023.09.155_bib44) 2023; 49
Clarke (10.1016/j.ceramint.2023.09.155_bib15) 2012; 37
Fan (10.1016/j.ceramint.2023.09.155_bib31) 2021; 36
Kan (10.1016/j.ceramint.2023.09.155_bib6) 2008; 179
Zheng (10.1016/j.ceramint.2023.09.155_bib29) 2017; 126
Borom (10.1016/j.ceramint.2023.09.155_bib20) 1996; 86–87
Cao (10.1016/j.ceramint.2023.09.155_bib3) 2016
Cheng (10.1016/j.ceramint.2023.09.155_bib17) 2022; 48
Ren (10.1016/j.ceramint.2023.09.155_bib14) 2018; 750
Zhao (10.1016/j.ceramint.2023.09.155_bib23) 2014; 251
Zhou (10.1016/j.ceramint.2023.09.155_bib30) 2021
Huang (10.1016/j.ceramint.2023.09.155_bib42) 2003; 32
Lughi (10.1016/j.ceramint.2023.09.155_bib13) 2005; 200
Zhang (10.1016/j.ceramint.2023.09.155_bib1) 2020; 46
Liu (10.1016/j.ceramint.2023.09.155_bib12) 2009; 24
Cheng (10.1016/j.ceramint.2023.09.155_bib16) 2022; 50
Levi (10.1016/j.ceramint.2023.09.155_bib21) 2012; 37
Kim (10.1016/j.ceramint.2023.09.155_bib36) 2010; 205
Mohan (10.1016/j.ceramint.2023.09.155_bib25) 2009; 204
Wang (10.1016/j.ceramint.2023.09.155_bib34) 2021; 30
Li (10.1016/j.ceramint.2023.09.155_bib40) 2021
Steinke (10.1016/j.ceramint.2023.09.155_bib27) 2010; 205
Majewski (10.1016/j.ceramint.2023.09.155_bib32) 2012; 206
Hui (10.1016/j.ceramint.2023.09.155_bib5) 2015; 626
Rai (10.1016/j.ceramint.2023.09.155_bib22) 2009; 7
Wu (10.1016/j.ceramint.2023.09.155_bib7) 2020; 46
Wiesner (10.1016/j.ceramint.2023.09.155_bib41) 2014; 259
Yin (10.1016/j.ceramint.2023.09.155_bib24) 2019; 13
Liu (10.1016/j.ceramint.2023.09.155_bib11) 2011; 13
Wulfman (10.1016/j.ceramint.2023.09.155_bib45) 2010; 31
Xu (10.1016/j.ceramint.2023.09.155_bib8) 2005; 59
Wu (10.1016/j.ceramint.2023.09.155_bib43) 2011; 31
Liu (10.1016/j.ceramint.2023.09.155_bib10) 2010; 31
References_xml – volume: 46
  start-page: 13331
  year: 2020
  ident: 10.1016/j.ceramint.2023.09.155_bib18
  article-title: Microstructure and synthesis mechanism of dysprosia-stabilized zirconia nanocrystals via chemical coprecipitation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.112
– volume: 31
  start-page: 257
  year: 2010
  ident: 10.1016/j.ceramint.2023.09.155_bib45
  article-title: Interest of Raman spectroscopy for the study of dental material: the zirconia material example
  publication-title: IRBM
  doi: 10.1016/j.irbm.2010.10.004
– volume: 46
  start-page: 26754
  year: 2020
  ident: 10.1016/j.ceramint.2023.09.155_bib1
  article-title: Synthesis and thermophysical performances of (Nd1-xYbx)2AlTaO7 oxides for heat-insulation coating applications
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.07.149
– volume: 31
  start-page: 2972
  year: 2010
  ident: 10.1016/j.ceramint.2023.09.155_bib10
  article-title: Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.12.019
– volume: 37
  start-page: 891
  year: 2012
  ident: 10.1016/j.ceramint.2023.09.155_bib15
  article-title: Thermal-barrier coatings for more efficient gas-turbine engines
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.232
– volume: 59
  start-page: 2804
  year: 2005
  ident: 10.1016/j.ceramint.2023.09.155_bib8
  article-title: Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.03.061
– volume: 654
  start-page: 435
  year: 2016
  ident: 10.1016/j.ceramint.2023.09.155_bib9
  article-title: The pressure dependence of physical properties of La2Zr2O7: first-principles calculations and Quasi-harmonic Debye approximation
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.09.089
– volume: 251
  start-page: 74
  year: 2014
  ident: 10.1016/j.ceramint.2023.09.155_bib23
  article-title: Molten silicate interactions with thermal barrier coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.04.007
– volume: 177
  year: 2020
  ident: 10.1016/j.ceramint.2023.09.155_bib35
  article-title: Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2020.108968
– volume: 32
  start-page: 228
  year: 2003
  ident: 10.1016/j.ceramint.2023.09.155_bib42
  article-title: Dentrite study of D-i An-Ab system at large cooling-rate
  publication-title: J. Synth. Cryst.
– year: 2021
  ident: 10.1016/j.ceramint.2023.09.155_bib40
– volume: 13
  start-page: 513
  year: 2011
  ident: 10.1016/j.ceramint.2023.09.155_bib11
  article-title: Microstructure, phase stability and thermal conductivity of plasma sprayed Yb2O3, Y2O3 co-stabilized ZrO2 coatings
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2010.11.043
– volume: 50
  start-page: 97
  issue: 2022
  year: 2022
  ident: 10.1016/j.ceramint.2023.09.155_bib16
  article-title: Synthesis of Dy2O3-ZrO2 nano powders by cocurrent coprecipitation
  publication-title: J. Mater. Eng.
– volume: 30
  start-page: 442
  year: 2021
  ident: 10.1016/j.ceramint.2023.09.155_bib34
  article-title: Calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance of Y-Yb-Gd-stabilized zirconia thermal barrier coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-020-01142-2
– volume: 7
  start-page: 662
  year: 2009
  ident: 10.1016/j.ceramint.2023.09.155_bib22
  article-title: CMAS-resistant thermal barrier coatings (TBC)
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/j.1744-7402.2009.02373.x
– volume: 115
  start-page: 641
  year: 1993
  ident: 10.1016/j.ceramint.2023.09.155_bib19
  article-title: Deposition of volcanic materials in the hot sections of two gas turbine engines
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.2906754
– year: 2018
  ident: 10.1016/j.ceramint.2023.09.155_bib2
– volume: 179
  start-page: 1531
  year: 2008
  ident: 10.1016/j.ceramint.2023.09.155_bib6
  article-title: Preparation and conductivity of Yb2O3–Y2O3 and Gd2O3–Y2O3 co-doped zirconia ceramics
  publication-title: Solid. St. Lon.
– volume: 24
  start-page: 1226
  year: 2009
  ident: 10.1016/j.ceramint.2023.09.155_bib12
  article-title: Preparation and phase stability of La2O3 ,Y2O3 Co-doped ZrO2 ceramic powder application for thermal barrier coating
  publication-title: J. Inorg. Mater.
  doi: 10.3724/SP.J.1077.2009.01226
– year: 2021
  ident: 10.1016/j.ceramint.2023.09.155_bib30
– volume: 36
  start-page: 1059
  year: 2021
  ident: 10.1016/j.ceramint.2023.09.155_bib31
  article-title: Structure change and phase transition distribution of YSZ coating caused by CMAS corrosion
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20210013
– volume: A490
  start-page: 26
  year: 2008
  ident: 10.1016/j.ceramint.2023.09.155_bib26
  article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2008.01.006
– volume: 204
  start-page: 797
  year: 2009
  ident: 10.1016/j.ceramint.2023.09.155_bib25
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.09.055
– volume: 626
  start-page: 1
  year: 2015
  ident: 10.1016/j.ceramint.2023.09.155_bib5
  article-title: Evolution of phase composition and fluorescence properties in zirconia degraded under hydrothermal conditions
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.152
– volume: 46
  start-page: 15003
  year: 2020
  ident: 10.1016/j.ceramint.2023.09.155_bib7
  article-title: Preparation and synthesis mechanism of ytterbium monosilicate nano-powders by a cocurrent coprecipitation method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.030
– volume: 126
  start-page: 286
  year: 2017
  ident: 10.1016/j.ceramint.2023.09.155_bib29
  article-title: High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2017.07.010
– volume: 89
  start-page: 3167
  year: 2006
  ident: 10.1016/j.ceramint.2023.09.155_bib37
  article-title: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2006.01209.x
– volume: 200
  start-page: 1287
  year: 2005
  ident: 10.1016/j.ceramint.2023.09.155_bib13
  article-title: High temperature aging of YSZ coatings and subsequent transformation at low temperature
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.07.089
– volume: 205
  start-page: S451
  year: 2010
  ident: 10.1016/j.ceramint.2023.09.155_bib36
  article-title: Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.08.130
– volume: 32
  start-page: 1635
  year: 2012
  ident: 10.1016/j.ceramint.2023.09.155_bib4
  article-title: Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050°C
  publication-title: Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2012.01.006
– volume: 49
  start-page: 19318
  year: 2023
  ident: 10.1016/j.ceramint.2023.09.155_bib44
  article-title: A further step toward the understanding of phase transformation mechanism between 10 wt. % dysprosia stabilized zirconia powders and ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.03.059
– volume: 206
  start-page: 2751
  year: 2012
  ident: 10.1016/j.ceramint.2023.09.155_bib32
  article-title: Stress measurements via photoluminescence piezospectroscopy on engine run thermal barrier coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.11.026
– volume: 13
  year: 2019
  ident: 10.1016/j.ceramint.2023.09.155_bib24
  article-title: Factors influencing the penetration depth of molten volcanic ash in thermal barrier coatings: theoretical calculation and experimental testing, Results
  publication-title: Phy
– volume: 37
  start-page: 932
  year: 2012
  ident: 10.1016/j.ceramint.2023.09.155_bib21
  article-title: Environmental degradation of thermal-barrier coatings by molten deposit
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.230
– volume: 48
  start-page: 23678
  year: 2022
  ident: 10.1016/j.ceramint.2023.09.155_bib17
  article-title: Structural evolution and phase transformation behaviors of 10 wt. % dysprosia stabilized zirconia ceramic powders
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.05.016
– volume: 31
  start-page: 1881
  year: 2011
  ident: 10.1016/j.ceramint.2023.09.155_bib43
  article-title: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2011.04.006
– volume: 46
  start-page: 18698
  year: 2020
  ident: 10.1016/j.ceramint.2023.09.155_bib33
  article-title: Corrosion behavior of air plasma spraying zirconia-based thermal barrier coatings subject to Calcium-Magnesium-Aluminum-Silicate (CMAS) via burner rig test
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.184
– volume: 205
  start-page: 2287
  year: 2010
  ident: 10.1016/j.ceramint.2023.09.155_bib27
  article-title: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.09.008
– volume: 53
  start-page: 1029
  year: 2005
  ident: 10.1016/j.ceramint.2023.09.155_bib28
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.11.028
– volume: 259
  start-page: 608
  year: 2014
  ident: 10.1016/j.ceramint.2023.09.155_bib41
  article-title: Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.10.023
– year: 2016
  ident: 10.1016/j.ceramint.2023.09.155_bib3
– volume: 750
  start-page: 189
  year: 2018
  ident: 10.1016/j.ceramint.2023.09.155_bib14
  article-title: Phase transformation behavior in air plasma sprayed yttria stabilized zirconia coating
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.011
– volume: 86–87
  start-page: 116
  year: 1996
  ident: 10.1016/j.ceramint.2023.09.155_bib20
  article-title: Role ofenvironmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(96)02994-5
SSID ssj0016940
Score 2.3929286
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 38237
Title Phase and structural evolution of dysprosia stabilized zirconia ceramics under CMAS corrosion environment
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCe4FDBQVEecmH3qoN67W9j2MVgSKkVpXaSuG08mthK5RWeSA1B34Cv5mZ9T7cUgHtZZVYGSfZ-TIznnwzQ8h-JfNCZxrZ_ZmMhMl0VAhbRdKpXLAsVynDAuej43R6Lj7P5Gw0-hWwltYrPTabO-tKHqJVWAO9YpXsPTTbbwoL8Bj0C1fQMFz_S8cn38AHNel_3wa2aaHhfrTviXGgvV6CiVzWCnMGyIPdQIC5qRdwCoY14xY4jn7ZDMNdHEyODk8P4DSKAiAe1MCFIeykE6rDZOJAE3DeekzXgLHWLTYJe7_8BRxS3bOA6rV_qaqrYXVWtzThGUD3a5iWSHhA8fDWK8nA1Obihqn13UlbSCU8MJz4d2QWeGF47lOTf5h4n224GPtbNEc-bMKxVy3z_X5v9tS-5et6BmJHbrsou31K3KeMixL2eUS2Ezh24ESM8c-eMsTSQvicXfvVgorzuz9PEOwEUcvZU7LTHjfoocfOMzJy813yJGhC-ZzUDYoooIgOKKI9iuhlRXsU0QFFtEMR7VBEGxRRRBHtUUQDFL0g558-nk2mUTuAIzKcJSvwzwJ-sNq5PNZKmUwKCxa-qEzMbW5tKpiJWRUr7DgEkTjPrcyzxDqutWJcWP6SbM0v5-4VobxwOnYQzTqjsZuWYjiogEttjJGqSPeI7O5Uadru9Dgk5Xv5d03tkQ-93JXvz_IPidf3lnhDHg8If0u2QBfuHYSiK_2-wcdva4WP_g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+and+structural+evolution+of+dysprosia+stabilized+zirconia+ceramics+under+CMAS+corrosion+environment&rft.jtitle=Ceramics+international&rft.au=Cheng%2C+Huicong&rft.au=Wang%2C+Yalei&rft.au=Liu%2C+Huaifei&rft.au=Xiong%2C+Xiang&rft.date=2023-12-01&rft.issn=0272-8842&rft.volume=49&rft.issue=23&rft.spage=38237&rft.epage=38246&rft_id=info:doi/10.1016%2Fj.ceramint.2023.09.155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceramint_2023_09_155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon