Phase and structural evolution of dysprosia stabilized zirconia ceramics under CMAS corrosion environment
Saved in:
Published in | Ceramics international Vol. 49; no. 23; pp. 38237 - 38246 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Online Access | Get full text |
Cover
Loading…
Author | Cheng, Huicong Tan, Yulin Liu, Huaifei Xiong, Xiang Wang, Yalei |
---|---|
Author_xml | – sequence: 1 givenname: Huicong surname: Cheng fullname: Cheng, Huicong – sequence: 2 givenname: Yalei surname: Wang fullname: Wang, Yalei – sequence: 3 givenname: Huaifei surname: Liu fullname: Liu, Huaifei – sequence: 4 givenname: Xiang surname: Xiong fullname: Xiong, Xiang – sequence: 5 givenname: Yulin surname: Tan fullname: Tan, Yulin |
BookMark | eNqFkMtKAzEUhrOoYFt9BckLzJjrTAbclOINKgrqOmSSDKZMk5JkCu3TO0N148bVgcP_ncu3ADMfvAXgBqMSI1zdbktto9o5n0uCCC1RU2LOZ2COSE0KIRi5BIuUtmgMNwzNgXv7UslC5Q1MOQ46D1H10B5CP2QXPAwdNMe0jyE5NSZU63p3sgaeXNTBj73zPp3g4I2NcP2yeoc6xAkYcesPLga_sz5fgYtO9cle_9Ql-Hy4_1g_FZvXx-f1alNoikkuKGaC4dZagVqldM2ZIbxuOo2oEcZUDGuEO6QE5hVnnArDRU2MpW2rMGWGLsHdea4eb0jRdlK7rKZnclSulxjJSZXcyl9VclIlUSNHVSNe_cH30e1UPP4HfgMri3kS |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_03_340 |
Cites_doi | 10.1016/j.ceramint.2020.02.112 10.1016/j.irbm.2010.10.004 10.1016/j.ceramint.2020.07.149 10.1016/j.matdes.2009.12.019 10.1557/mrs.2012.232 10.1016/j.matlet.2005.03.061 10.1016/j.jallcom.2015.09.089 10.1016/j.surfcoat.2014.04.007 10.1016/j.corsci.2020.108968 10.1016/j.solidstatesciences.2010.11.043 10.1007/s11666-020-01142-2 10.1111/j.1744-7402.2009.02373.x 10.1115/1.2906754 10.3724/SP.J.1077.2009.01226 10.15541/jim20210013 10.1016/j.msea.2008.01.006 10.1016/j.surfcoat.2009.09.055 10.1016/j.jallcom.2014.11.152 10.1016/j.ceramint.2020.03.030 10.1016/j.corsci.2017.07.010 10.1111/j.1551-2916.2006.01209.x 10.1016/j.surfcoat.2005.07.089 10.1016/j.surfcoat.2010.08.130 10.1016/j.jeurceramsoc.2012.01.006 10.1016/j.ceramint.2023.03.059 10.1016/j.surfcoat.2011.11.026 10.1557/mrs.2012.230 10.1016/j.ceramint.2022.05.016 10.1016/j.jeurceramsoc.2011.04.006 10.1016/j.ceramint.2020.04.184 10.1016/j.surfcoat.2010.09.008 10.1016/j.actamat.2004.11.028 10.1016/j.surfcoat.2014.10.023 10.1016/j.jallcom.2018.03.011 10.1016/S0257-8972(96)02994-5 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2023.09.155 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 38246 |
ExternalDocumentID | 10_1016_j_ceramint_2023_09_155 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSH SSM SSZ T5K WUQ XPP ~G- |
ID | FETCH-LOGICAL-c312t-314841bee80baac754d2579fc03d8dd641c01f0a815654538d5872de3bba134d3 |
ISSN | 0272-8842 |
IngestDate | Tue Jul 01 04:23:45 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-314841bee80baac754d2579fc03d8dd641c01f0a815654538d5872de3bba134d3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2023_09_155 crossref_primary_10_1016_j_ceramint_2023_09_155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2023 |
References | Krämer (10.1016/j.ceramint.2023.09.155_bib26) 2008; A490 Wang (10.1016/j.ceramint.2023.09.155_bib33) 2020; 46 Guo (10.1016/j.ceramint.2023.09.155_bib35) 2020; 177 Habibi (10.1016/j.ceramint.2023.09.155_bib4) 2012; 32 Mercer (10.1016/j.ceramint.2023.09.155_bib28) 2005; 53 Kim (10.1016/j.ceramint.2023.09.155_bib19) 1993; 115 Pan (10.1016/j.ceramint.2023.09.155_bib2) 2018 Krämer (10.1016/j.ceramint.2023.09.155_bib37) 2006; 89 Yang (10.1016/j.ceramint.2023.09.155_bib9) 2016; 654 Li (10.1016/j.ceramint.2023.09.155_bib18) 2020; 46 Cheng (10.1016/j.ceramint.2023.09.155_bib44) 2023; 49 Clarke (10.1016/j.ceramint.2023.09.155_bib15) 2012; 37 Fan (10.1016/j.ceramint.2023.09.155_bib31) 2021; 36 Kan (10.1016/j.ceramint.2023.09.155_bib6) 2008; 179 Zheng (10.1016/j.ceramint.2023.09.155_bib29) 2017; 126 Borom (10.1016/j.ceramint.2023.09.155_bib20) 1996; 86–87 Cao (10.1016/j.ceramint.2023.09.155_bib3) 2016 Cheng (10.1016/j.ceramint.2023.09.155_bib17) 2022; 48 Ren (10.1016/j.ceramint.2023.09.155_bib14) 2018; 750 Zhao (10.1016/j.ceramint.2023.09.155_bib23) 2014; 251 Zhou (10.1016/j.ceramint.2023.09.155_bib30) 2021 Huang (10.1016/j.ceramint.2023.09.155_bib42) 2003; 32 Lughi (10.1016/j.ceramint.2023.09.155_bib13) 2005; 200 Zhang (10.1016/j.ceramint.2023.09.155_bib1) 2020; 46 Liu (10.1016/j.ceramint.2023.09.155_bib12) 2009; 24 Cheng (10.1016/j.ceramint.2023.09.155_bib16) 2022; 50 Levi (10.1016/j.ceramint.2023.09.155_bib21) 2012; 37 Kim (10.1016/j.ceramint.2023.09.155_bib36) 2010; 205 Mohan (10.1016/j.ceramint.2023.09.155_bib25) 2009; 204 Wang (10.1016/j.ceramint.2023.09.155_bib34) 2021; 30 Li (10.1016/j.ceramint.2023.09.155_bib40) 2021 Steinke (10.1016/j.ceramint.2023.09.155_bib27) 2010; 205 Majewski (10.1016/j.ceramint.2023.09.155_bib32) 2012; 206 Hui (10.1016/j.ceramint.2023.09.155_bib5) 2015; 626 Rai (10.1016/j.ceramint.2023.09.155_bib22) 2009; 7 Wu (10.1016/j.ceramint.2023.09.155_bib7) 2020; 46 Wiesner (10.1016/j.ceramint.2023.09.155_bib41) 2014; 259 Yin (10.1016/j.ceramint.2023.09.155_bib24) 2019; 13 Liu (10.1016/j.ceramint.2023.09.155_bib11) 2011; 13 Wulfman (10.1016/j.ceramint.2023.09.155_bib45) 2010; 31 Xu (10.1016/j.ceramint.2023.09.155_bib8) 2005; 59 Wu (10.1016/j.ceramint.2023.09.155_bib43) 2011; 31 Liu (10.1016/j.ceramint.2023.09.155_bib10) 2010; 31 |
References_xml | – volume: 46 start-page: 13331 year: 2020 ident: 10.1016/j.ceramint.2023.09.155_bib18 article-title: Microstructure and synthesis mechanism of dysprosia-stabilized zirconia nanocrystals via chemical coprecipitation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.112 – volume: 31 start-page: 257 year: 2010 ident: 10.1016/j.ceramint.2023.09.155_bib45 article-title: Interest of Raman spectroscopy for the study of dental material: the zirconia material example publication-title: IRBM doi: 10.1016/j.irbm.2010.10.004 – volume: 46 start-page: 26754 year: 2020 ident: 10.1016/j.ceramint.2023.09.155_bib1 article-title: Synthesis and thermophysical performances of (Nd1-xYbx)2AlTaO7 oxides for heat-insulation coating applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.149 – volume: 31 start-page: 2972 year: 2010 ident: 10.1016/j.ceramint.2023.09.155_bib10 article-title: Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.12.019 – volume: 37 start-page: 891 year: 2012 ident: 10.1016/j.ceramint.2023.09.155_bib15 article-title: Thermal-barrier coatings for more efficient gas-turbine engines publication-title: MRS Bull. doi: 10.1557/mrs.2012.232 – volume: 59 start-page: 2804 year: 2005 ident: 10.1016/j.ceramint.2023.09.155_bib8 article-title: Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings publication-title: Mater. Lett. doi: 10.1016/j.matlet.2005.03.061 – volume: 654 start-page: 435 year: 2016 ident: 10.1016/j.ceramint.2023.09.155_bib9 article-title: The pressure dependence of physical properties of La2Zr2O7: first-principles calculations and Quasi-harmonic Debye approximation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.09.089 – volume: 251 start-page: 74 year: 2014 ident: 10.1016/j.ceramint.2023.09.155_bib23 article-title: Molten silicate interactions with thermal barrier coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.04.007 – volume: 177 year: 2020 ident: 10.1016/j.ceramint.2023.09.155_bib35 article-title: Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2020.108968 – volume: 32 start-page: 228 year: 2003 ident: 10.1016/j.ceramint.2023.09.155_bib42 article-title: Dentrite study of D-i An-Ab system at large cooling-rate publication-title: J. Synth. Cryst. – year: 2021 ident: 10.1016/j.ceramint.2023.09.155_bib40 – volume: 13 start-page: 513 year: 2011 ident: 10.1016/j.ceramint.2023.09.155_bib11 article-title: Microstructure, phase stability and thermal conductivity of plasma sprayed Yb2O3, Y2O3 co-stabilized ZrO2 coatings publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.11.043 – volume: 50 start-page: 97 issue: 2022 year: 2022 ident: 10.1016/j.ceramint.2023.09.155_bib16 article-title: Synthesis of Dy2O3-ZrO2 nano powders by cocurrent coprecipitation publication-title: J. Mater. Eng. – volume: 30 start-page: 442 year: 2021 ident: 10.1016/j.ceramint.2023.09.155_bib34 article-title: Calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance of Y-Yb-Gd-stabilized zirconia thermal barrier coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01142-2 – volume: 7 start-page: 662 year: 2009 ident: 10.1016/j.ceramint.2023.09.155_bib22 article-title: CMAS-resistant thermal barrier coatings (TBC) publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/j.1744-7402.2009.02373.x – volume: 115 start-page: 641 year: 1993 ident: 10.1016/j.ceramint.2023.09.155_bib19 article-title: Deposition of volcanic materials in the hot sections of two gas turbine engines publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.2906754 – year: 2018 ident: 10.1016/j.ceramint.2023.09.155_bib2 – volume: 179 start-page: 1531 year: 2008 ident: 10.1016/j.ceramint.2023.09.155_bib6 article-title: Preparation and conductivity of Yb2O3–Y2O3 and Gd2O3–Y2O3 co-doped zirconia ceramics publication-title: Solid. St. Lon. – volume: 24 start-page: 1226 year: 2009 ident: 10.1016/j.ceramint.2023.09.155_bib12 article-title: Preparation and phase stability of La2O3 ,Y2O3 Co-doped ZrO2 ceramic powder application for thermal barrier coating publication-title: J. Inorg. Mater. doi: 10.3724/SP.J.1077.2009.01226 – year: 2021 ident: 10.1016/j.ceramint.2023.09.155_bib30 – volume: 36 start-page: 1059 year: 2021 ident: 10.1016/j.ceramint.2023.09.155_bib31 article-title: Structure change and phase transition distribution of YSZ coating caused by CMAS corrosion publication-title: J. Inorg. Mater. doi: 10.15541/jim20210013 – volume: A490 start-page: 26 year: 2008 ident: 10.1016/j.ceramint.2023.09.155_bib26 article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2008.01.006 – volume: 204 start-page: 797 year: 2009 ident: 10.1016/j.ceramint.2023.09.155_bib25 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.09.055 – volume: 626 start-page: 1 year: 2015 ident: 10.1016/j.ceramint.2023.09.155_bib5 article-title: Evolution of phase composition and fluorescence properties in zirconia degraded under hydrothermal conditions publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.152 – volume: 46 start-page: 15003 year: 2020 ident: 10.1016/j.ceramint.2023.09.155_bib7 article-title: Preparation and synthesis mechanism of ytterbium monosilicate nano-powders by a cocurrent coprecipitation method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.030 – volume: 126 start-page: 286 year: 2017 ident: 10.1016/j.ceramint.2023.09.155_bib29 article-title: High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2017.07.010 – volume: 89 start-page: 3167 year: 2006 ident: 10.1016/j.ceramint.2023.09.155_bib37 article-title: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.01209.x – volume: 200 start-page: 1287 year: 2005 ident: 10.1016/j.ceramint.2023.09.155_bib13 article-title: High temperature aging of YSZ coatings and subsequent transformation at low temperature publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.07.089 – volume: 205 start-page: S451 year: 2010 ident: 10.1016/j.ceramint.2023.09.155_bib36 article-title: Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.08.130 – volume: 32 start-page: 1635 year: 2012 ident: 10.1016/j.ceramint.2023.09.155_bib4 article-title: Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050°C publication-title: Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.01.006 – volume: 49 start-page: 19318 year: 2023 ident: 10.1016/j.ceramint.2023.09.155_bib44 article-title: A further step toward the understanding of phase transformation mechanism between 10 wt. % dysprosia stabilized zirconia powders and ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.03.059 – volume: 206 start-page: 2751 year: 2012 ident: 10.1016/j.ceramint.2023.09.155_bib32 article-title: Stress measurements via photoluminescence piezospectroscopy on engine run thermal barrier coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.11.026 – volume: 13 year: 2019 ident: 10.1016/j.ceramint.2023.09.155_bib24 article-title: Factors influencing the penetration depth of molten volcanic ash in thermal barrier coatings: theoretical calculation and experimental testing, Results publication-title: Phy – volume: 37 start-page: 932 year: 2012 ident: 10.1016/j.ceramint.2023.09.155_bib21 article-title: Environmental degradation of thermal-barrier coatings by molten deposit publication-title: MRS Bull. doi: 10.1557/mrs.2012.230 – volume: 48 start-page: 23678 year: 2022 ident: 10.1016/j.ceramint.2023.09.155_bib17 article-title: Structural evolution and phase transformation behaviors of 10 wt. % dysprosia stabilized zirconia ceramic powders publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.05.016 – volume: 31 start-page: 1881 year: 2011 ident: 10.1016/j.ceramint.2023.09.155_bib43 article-title: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.04.006 – volume: 46 start-page: 18698 year: 2020 ident: 10.1016/j.ceramint.2023.09.155_bib33 article-title: Corrosion behavior of air plasma spraying zirconia-based thermal barrier coatings subject to Calcium-Magnesium-Aluminum-Silicate (CMAS) via burner rig test publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.184 – volume: 205 start-page: 2287 year: 2010 ident: 10.1016/j.ceramint.2023.09.155_bib27 article-title: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.09.008 – volume: 53 start-page: 1029 year: 2005 ident: 10.1016/j.ceramint.2023.09.155_bib28 article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.11.028 – volume: 259 start-page: 608 year: 2014 ident: 10.1016/j.ceramint.2023.09.155_bib41 article-title: Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.10.023 – year: 2016 ident: 10.1016/j.ceramint.2023.09.155_bib3 – volume: 750 start-page: 189 year: 2018 ident: 10.1016/j.ceramint.2023.09.155_bib14 article-title: Phase transformation behavior in air plasma sprayed yttria stabilized zirconia coating publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.011 – volume: 86–87 start-page: 116 year: 1996 ident: 10.1016/j.ceramint.2023.09.155_bib20 article-title: Role ofenvironmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(96)02994-5 |
SSID | ssj0016940 |
Score | 2.3929286 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 38237 |
Title | Phase and structural evolution of dysprosia stabilized zirconia ceramics under CMAS corrosion environment |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCe4FDBQVEecmH3qoN67W9j2MVgSKkVpXaSuG08mthK5RWeSA1B34Cv5mZ9T7cUgHtZZVYGSfZ-TIznnwzQ8h-JfNCZxrZ_ZmMhMl0VAhbRdKpXLAsVynDAuej43R6Lj7P5Gw0-hWwltYrPTabO-tKHqJVWAO9YpXsPTTbbwoL8Bj0C1fQMFz_S8cn38AHNel_3wa2aaHhfrTviXGgvV6CiVzWCnMGyIPdQIC5qRdwCoY14xY4jn7ZDMNdHEyODk8P4DSKAiAe1MCFIeykE6rDZOJAE3DeekzXgLHWLTYJe7_8BRxS3bOA6rV_qaqrYXVWtzThGUD3a5iWSHhA8fDWK8nA1Obihqn13UlbSCU8MJz4d2QWeGF47lOTf5h4n224GPtbNEc-bMKxVy3z_X5v9tS-5et6BmJHbrsou31K3KeMixL2eUS2Ezh24ESM8c-eMsTSQvicXfvVgorzuz9PEOwEUcvZU7LTHjfoocfOMzJy813yJGhC-ZzUDYoooIgOKKI9iuhlRXsU0QFFtEMR7VBEGxRRRBHtUUQDFL0g558-nk2mUTuAIzKcJSvwzwJ-sNq5PNZKmUwKCxa-qEzMbW5tKpiJWRUr7DgEkTjPrcyzxDqutWJcWP6SbM0v5-4VobxwOnYQzTqjsZuWYjiogEttjJGqSPeI7O5Uadru9Dgk5Xv5d03tkQ-93JXvz_IPidf3lnhDHg8If0u2QBfuHYSiK_2-wcdva4WP_g |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+and+structural+evolution+of+dysprosia+stabilized+zirconia+ceramics+under+CMAS+corrosion+environment&rft.jtitle=Ceramics+international&rft.au=Cheng%2C+Huicong&rft.au=Wang%2C+Yalei&rft.au=Liu%2C+Huaifei&rft.au=Xiong%2C+Xiang&rft.date=2023-12-01&rft.issn=0272-8842&rft.volume=49&rft.issue=23&rft.spage=38237&rft.epage=38246&rft_id=info:doi/10.1016%2Fj.ceramint.2023.09.155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceramint_2023_09_155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |