Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins

•Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure provided an excellent blast resistance in comparison to the metallic honeycomb structure.•The Al foam-filled honeycomb has less core crushing...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 178; p. 104609
Main Authors Patel, Murlidhar, Patel, Shivdayal, Ahmad, Suhail
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure provided an excellent blast resistance in comparison to the metallic honeycomb structure.•The Al foam-filled honeycomb has less core crushing than an empty honeycomb core.•FML as front skin and steel as back skin of honeycomb structure showed the smaller deformation in comparison to the other combinations of FML and steel skin used square honeycomb structure. The explosive blast is a major threat in the form of a terrorist attack to damage defense, aerospace, as well as civilian structures. This hazard of an explosive attack affects the lives of people and property. As a result, the modern era is searching for blast resistance structures to save humans and properties from these serious attacks. However, the current numerical analysis represents an effort in the novel design of blast-proof sandwich structures to meet the current era's demand. A stainless-steel sandwich structure using a square honeycomb core was designed to perform conventional weapons effects program (CONWEP) air-blast analysis on ABAQUS/Explicit. After a mesh sensitivity study and validation of the steel sandwich structure with experimental data published in the literature, the effect on blast characteristics of the aluminum (Al) foam-filled honeycomb and carbon fiber reinforced polymer (CFRP) with steel skins using fiber metal laminate (FML) for the front, back, or both skins of the sandwich structure was investigated. The entire finite element (FE) modeled sandwich structures were subjected to 1 to 10 kg of TNT air-blast loads at stand-off distances (SoD) ranging from 150 mm to 200 mm, and their blast resistance performance was evaluated using skin deflection and energy absorption. The damage initiation and evolution of composite laminates in the FML skins were investigated by the Hashin, Puck, and Singh failure criteria, respectively. These criteria were implemented via the VUMAT code. The obtained results showed that using FML skin for the sandwich structure diminished both the front and back skin deflection while improving specific energy absorption. A positive impact on blast mitigation by sandwich structures was observed with an increase in SoD. The lightweight FML front skin and steel back skin used bare square honeycomb hybrid sandwich structure had the smallest back skin deflection and the highest energy absorption up to 3 kg TNT. For the same combination of skins, the hybrid sandwich with foam-filled square honeycomb core represented a positive impact on the blast proof characteristics for high-intensity blasts ranging from 5 kg to 10 kg TNT. However, the novel designed hybrid sandwiches are recommended as a protective structure for defense, ships, automotive, etc.
AbstractList •Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure provided an excellent blast resistance in comparison to the metallic honeycomb structure.•The Al foam-filled honeycomb has less core crushing than an empty honeycomb core.•FML as front skin and steel as back skin of honeycomb structure showed the smaller deformation in comparison to the other combinations of FML and steel skin used square honeycomb structure. The explosive blast is a major threat in the form of a terrorist attack to damage defense, aerospace, as well as civilian structures. This hazard of an explosive attack affects the lives of people and property. As a result, the modern era is searching for blast resistance structures to save humans and properties from these serious attacks. However, the current numerical analysis represents an effort in the novel design of blast-proof sandwich structures to meet the current era's demand. A stainless-steel sandwich structure using a square honeycomb core was designed to perform conventional weapons effects program (CONWEP) air-blast analysis on ABAQUS/Explicit. After a mesh sensitivity study and validation of the steel sandwich structure with experimental data published in the literature, the effect on blast characteristics of the aluminum (Al) foam-filled honeycomb and carbon fiber reinforced polymer (CFRP) with steel skins using fiber metal laminate (FML) for the front, back, or both skins of the sandwich structure was investigated. The entire finite element (FE) modeled sandwich structures were subjected to 1 to 10 kg of TNT air-blast loads at stand-off distances (SoD) ranging from 150 mm to 200 mm, and their blast resistance performance was evaluated using skin deflection and energy absorption. The damage initiation and evolution of composite laminates in the FML skins were investigated by the Hashin, Puck, and Singh failure criteria, respectively. These criteria were implemented via the VUMAT code. The obtained results showed that using FML skin for the sandwich structure diminished both the front and back skin deflection while improving specific energy absorption. A positive impact on blast mitigation by sandwich structures was observed with an increase in SoD. The lightweight FML front skin and steel back skin used bare square honeycomb hybrid sandwich structure had the smallest back skin deflection and the highest energy absorption up to 3 kg TNT. For the same combination of skins, the hybrid sandwich with foam-filled square honeycomb core represented a positive impact on the blast proof characteristics for high-intensity blasts ranging from 5 kg to 10 kg TNT. However, the novel designed hybrid sandwiches are recommended as a protective structure for defense, ships, automotive, etc.
ArticleNumber 104609
Author Patel, Shivdayal
Patel, Murlidhar
Ahmad, Suhail
Author_xml – sequence: 1
  givenname: Murlidhar
  surname: Patel
  fullname: Patel, Murlidhar
  organization: Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & Manufacturing (IIITDM), Jabalpur 482005, India
– sequence: 2
  givenname: Shivdayal
  orcidid: 0000-0002-8044-5848
  surname: Patel
  fullname: Patel, Shivdayal
  email: shivdayal@iiitdmj.ac.in
  organization: Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & Manufacturing (IIITDM), Jabalpur 482005, India
– sequence: 3
  givenname: Suhail
  surname: Ahmad
  fullname: Ahmad, Suhail
  organization: Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016, India
BookMark eNqFkNFKwzAUhoNMcJu-guQFup00bdqCF-pwKkwUp-BdSE9Tl9mlI8kce3s7pjfe7OrAD9__c74B6dnWakIuGYwYMDFejszSrNbafo5iiHkXJgKKE9JneVZEPIWiR_qQ8STKEv5xRgbeLwFYBin0yfy2UT5QZVWz88bTtqa6rg0abQNddEM7bFcl9cpWW4ML6oPbYNg47enWhAWdTF9fxvOgdUOnTzPqv4z15-S0Vo3XF793SN6nd2-Th2j2fP84uZlFyFkcIg4CCxRJrDgiqFLkKau55kIIiAssshzzXKUVVEKXCU8w4R1Y1lXFWZZnOR8ScehF13rvdC3XzqyU20kGcq9GLuWfGrlXIw9qOvDqH4gmqGBaG5wyzXH8-oDr7rlvo530e1-oK-M0Blm15ljFD6yqhtU
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2024_139094
crossref_primary_10_1080_15376494_2024_2382368
crossref_primary_10_1177_00219983241301751
crossref_primary_10_1007_s10853_023_09059_1
crossref_primary_10_1016_j_ijmecsci_2025_110082
crossref_primary_10_1016_j_jobe_2025_112213
crossref_primary_10_1016_j_tws_2024_111809
crossref_primary_10_1016_j_engfailanal_2024_108735
crossref_primary_10_1080_15376494_2024_2427933
crossref_primary_10_1063_5_0221060
crossref_primary_10_1088_1742_6596_2891_6_062031
crossref_primary_10_1016_j_mtcomm_2023_106535
crossref_primary_10_1016_j_tws_2024_111875
crossref_primary_10_1016_j_tws_2023_111376
crossref_primary_10_1080_15376494_2025_2471034
crossref_primary_10_1016_j_matdes_2024_113295
crossref_primary_10_1177_14644207241238220
crossref_primary_10_1002_pc_29315
crossref_primary_10_1016_j_matpr_2023_06_432
crossref_primary_10_1016_j_jaap_2025_106972
crossref_primary_10_1016_j_ijmecsci_2024_108972
crossref_primary_10_1016_j_jcsr_2025_109467
crossref_primary_10_1016_j_ijmecsci_2023_108795
crossref_primary_10_1002_pc_29437
crossref_primary_10_1177_10996362251317109
crossref_primary_10_1080_15376494_2025_2452370
crossref_primary_10_1177_14644207231180811
crossref_primary_10_1016_j_tws_2023_111125
crossref_primary_10_1016_j_tws_2023_111202
crossref_primary_10_1007_s10973_024_13365_4
crossref_primary_10_1002_pc_28035
crossref_primary_10_1016_j_dt_2024_10_001
crossref_primary_10_1016_j_tws_2024_112751
crossref_primary_10_1080_15376494_2024_2442494
crossref_primary_10_1016_j_istruc_2024_106452
crossref_primary_10_1016_j_matpr_2023_05_191
crossref_primary_10_1002_pc_29205
crossref_primary_10_1080_01694243_2024_2314370
crossref_primary_10_1038_s41598_024_81240_1
crossref_primary_10_3390_app14219656
crossref_primary_10_1080_15376494_2023_2243614
crossref_primary_10_3390_jmse12091513
Cites_doi 10.1016/j.compositesb.2015.02.016
10.1016/j.ijimpeng.2012.06.009
10.1016/j.ijimpeng.2012.02.007
10.1016/j.ijimpeng.2018.10.003
10.1016/j.ijimpeng.2020.103699
10.1016/j.tws.2022.108935
10.1016/j.ijimpeng.2014.02.017
10.1016/j.ijimpeng.2008.12.004
10.1016/j.tws.2019.106288
10.1177/10996362221127967
10.1177/10996362211065748
10.1016/j.ijimpeng.2007.06.008
10.1016/j.matpr.2020.07.525
10.1016/j.compositesb.2016.08.038
10.1016/j.tws.2022.108960
10.1016/j.compstruct.2020.113317
10.1016/j.compstruct.2017.08.054
10.1016/j.tws.2022.109185
10.1016/j.ijmecsci.2018.07.030
10.1016/j.ijimpeng.2022.104201
10.1016/j.compositesb.2019.107412
10.1016/j.proeng.2016.12.065
10.1016/j.compstruct.2012.03.039
10.1016/j.tws.2020.107141
10.1016/j.compstruc.2007.11.004
10.1016/j.ijimpeng.2019.103475
10.1016/j.tws.2021.107748
10.1016/j.ijimpeng.2016.10.009
10.3390/ma12244108
10.1016/j.tws.2016.12.021
10.1016/j.ijmecsci.2020.106105
10.1016/S0266-3538(01)00208-1
10.1016/j.ijimpeng.2018.08.016
10.1016/j.ijimpeng.2019.103327
10.1016/j.tws.2021.107445
10.1016/j.engstruct.2019.110125
10.1016/j.ijimpeng.2022.104186
10.1115/1.3153664
10.1016/j.compositesb.2022.109840
10.1016/j.tws.2015.12.017
10.1115/1.4035678
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijimpeng.2023.104609
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
ExternalDocumentID 10_1016_j_ijimpeng_2023_104609
S0734743X23001203
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-306c9c642a3cc0ab6851f3e3666029c978c88a5d0d6eb434c43c31bfdd3178783
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Tue Jul 01 03:54:34 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Fri Feb 23 02:36:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy
FML
Foam
Sandwich structure
TNT
Blast resistance
CFRP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-306c9c642a3cc0ab6851f3e3666029c978c88a5d0d6eb434c43c31bfdd3178783
ORCID 0000-0002-8044-5848
ParticipantIDs crossref_primary_10_1016_j_ijimpeng_2023_104609
crossref_citationtrail_10_1016_j_ijimpeng_2023_104609
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2023_104609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle International journal of impact engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Cheng, Liu, Li, Zhang, Hou (bib0015) 2016; 105
Dear, Rolfe, Kelly, Arora, Hooper (bib0030) 2017; 173
Kumar, Patel (bib0011) 2021; 46
Pratomo, Santosa, Gunawan, Widagdo, Putra (bib0012) 2020; 146
Yan, Liu, Yan, Bai, Shi, Si (bib0002) 2022; 164
Zhang, Ye, Qin (bib0029) 2019; 144
Quang, Quan, Tran (bib0004) 2022; 173
Sun, Wang, Zhang, Li, Zhang, Li (bib0020) 2020; 135
Donadon, Iannucci, Falzon, Hodgkinson, de Almeida (bib0043) 2008; 86
Puck, Schurmann (bib0041) 2002; 62
Burns, Batra (bib0005) 2022; 173
Dharmasena, Wadley, Xue, Hutchinson (bib0024) 2008; 35
Li, Ren, Zhang, Chen, Zhao, Fang (bib0026) 2021; 258
Zhu, Zhao, Lu, Gad (bib0025) 2009; 36
Patel, Soares (bib0034) 2017; 180
Zhang, Zhou, Wang, Qin, Ye, Wang (bib0013) 2018; 122
Zang, Zhou, Wang, You (bib0019) 2016; 100
Naresh, Shankar, Velmurugan, Gupta (bib0031) 2018; 126
Cai, Liu, Zhang, Li, Cheng (bib0003) 2020; 138
Kumar, Kartik, Iqbal (bib0006) 2020; 206
Jing, Liu, Su, Guo (bib0027) 2021; 161
Patel, Patel (bib0032) 2022; 24
Wang, Xu, Chung Kim Yuen (bib0035) 2019
Zhou, Jing (bib0028) 2020; 157
Yuen, Langdon, Nurick, Pickering, Balden (bib0036) 2012; 46
Shi, Swait, Soutis (bib0033) 2012; 94
Hashin (bib0040) 1980; 47
Patel, Ahmad (bib0023) 2017; 139
Singh, Namala, Mahajan (bib0042) 2015; 76
Wang, He, Yue, Li, Yu, Ji (bib0016) 2022; 237
Gargano, Das, Mouritz (bib0044) 2019; 177
Cheng, Liu, Zhang, Xiao, Zhang, Liu (bib0014) 2018; 145
Novak, Vesenjak, Duarte, Tanaka, Hokamoto, Krstulovic-Opara (bib0039) 2019; 12
Deng, Tian, Wu, Zhou, Wei, Hu (bib0007) 2022; 52
Tuzgel, Akbulut, Guzel, Yucesoy, Sahin, Tasdemirci (bib0008) 2022; 175
Balaganesan, Velmurugan, Srinivasan, Gupta, Kanny (bib0022) 2014; 74
Lv, Li, Dong (bib0017) 2021; 191
Hassan, Guan, Cantwell, Langdon, Nurick (bib0037) 2012; 50
Ma, Li, Li, Li, Wang, Wu (bib0009) 2019; 123
Sharma, Velmurugan, Shankar, Ha (bib0021) 2021; 152
Zhang, Zhu, Li, Yuan, Du, Qin (bib0001) 2022; 164
Patel, Patel (bib0038) 2022; 24
Wang, Qin, Wang, Yu, Wang, Zhang (bib0010) 2017; 105
Cong, Duc (bib0018) 2021; 163
Jing (10.1016/j.ijimpeng.2023.104609_bib0027) 2021; 161
Deng (10.1016/j.ijimpeng.2023.104609_bib0007) 2022; 52
Zang (10.1016/j.ijimpeng.2023.104609_bib0019) 2016; 100
Dharmasena (10.1016/j.ijimpeng.2023.104609_bib0024) 2008; 35
Zhang (10.1016/j.ijimpeng.2023.104609_bib0029) 2019; 144
Yan (10.1016/j.ijimpeng.2023.104609_bib0002) 2022; 164
Lv (10.1016/j.ijimpeng.2023.104609_bib0017) 2021; 191
Zhou (10.1016/j.ijimpeng.2023.104609_bib0028) 2020; 157
Wang (10.1016/j.ijimpeng.2023.104609_bib0016) 2022; 237
Hashin (10.1016/j.ijimpeng.2023.104609_bib0040) 1980; 47
Puck (10.1016/j.ijimpeng.2023.104609_bib0041) 2002; 62
Zhu (10.1016/j.ijimpeng.2023.104609_bib0025) 2009; 36
Ma (10.1016/j.ijimpeng.2023.104609_bib0009) 2019; 123
Singh (10.1016/j.ijimpeng.2023.104609_bib0042) 2015; 76
Li (10.1016/j.ijimpeng.2023.104609_bib0026) 2021; 258
Quang (10.1016/j.ijimpeng.2023.104609_bib0004) 2022; 173
Kumar (10.1016/j.ijimpeng.2023.104609_bib0006) 2020; 206
Balaganesan (10.1016/j.ijimpeng.2023.104609_bib0022) 2014; 74
Patel (10.1016/j.ijimpeng.2023.104609_bib0032) 2022; 24
Patel (10.1016/j.ijimpeng.2023.104609_bib0034) 2017; 180
Pratomo (10.1016/j.ijimpeng.2023.104609_bib0012) 2020; 146
Sun (10.1016/j.ijimpeng.2023.104609_bib0020) 2020; 135
Patel (10.1016/j.ijimpeng.2023.104609_bib0023) 2017; 139
Novak (10.1016/j.ijimpeng.2023.104609_bib0039) 2019; 12
Burns (10.1016/j.ijimpeng.2023.104609_bib0005) 2022; 173
Sharma (10.1016/j.ijimpeng.2023.104609_bib0021) 2021; 152
Dear (10.1016/j.ijimpeng.2023.104609_bib0030) 2017; 173
Cheng (10.1016/j.ijimpeng.2023.104609_bib0014) 2018; 145
Donadon (10.1016/j.ijimpeng.2023.104609_bib0043) 2008; 86
Tuzgel (10.1016/j.ijimpeng.2023.104609_bib0008) 2022; 175
Zhang (10.1016/j.ijimpeng.2023.104609_bib0015) 2016; 105
Hassan (10.1016/j.ijimpeng.2023.104609_bib0037) 2012; 50
Wang (10.1016/j.ijimpeng.2023.104609_bib0010) 2017; 105
Shi (10.1016/j.ijimpeng.2023.104609_bib0033) 2012; 94
Yuen (10.1016/j.ijimpeng.2023.104609_bib0036) 2012; 46
Patel (10.1016/j.ijimpeng.2023.104609_bib0038) 2022; 24
Zhang (10.1016/j.ijimpeng.2023.104609_bib0013) 2018; 122
Cai (10.1016/j.ijimpeng.2023.104609_bib0003) 2020; 138
Wang (10.1016/j.ijimpeng.2023.104609_bib0035) 2019
Gargano (10.1016/j.ijimpeng.2023.104609_bib0044) 2019; 177
Kumar (10.1016/j.ijimpeng.2023.104609_bib0011) 2021; 46
Cong (10.1016/j.ijimpeng.2023.104609_bib0018) 2021; 163
Zhang (10.1016/j.ijimpeng.2023.104609_bib0001) 2022; 164
Naresh (10.1016/j.ijimpeng.2023.104609_bib0031) 2018; 126
References_xml – volume: 191
  year: 2021
  ident: bib0017
  article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio
  publication-title: Int J Mech Sci
– volume: 46
  start-page: 9667
  year: 2021
  end-page: 9672
  ident: bib0011
  article-title: Failure analysis on octagonal honeycomb sandwich panel under air blast loading
  publication-title: Mater Today Proc
– volume: 35
  start-page: 1063
  year: 2008
  end-page: 1074
  ident: bib0024
  article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading
  publication-title: Int J Impact Eng
– volume: 50
  start-page: 9
  year: 2012
  end-page: 16
  ident: bib0037
  article-title: The influence of core density on the blast resistance of foam-based sandwich structures
  publication-title: Int J Impact Eng
– volume: 164
  year: 2022
  ident: bib0002
  article-title: Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet
  publication-title: Int J Impact Eng
– volume: 146
  year: 2020
  ident: bib0012
  article-title: Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8kg TNT blast loading
  publication-title: Int J Impact Eng
– volume: 157
  year: 2020
  ident: bib0028
  article-title: Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading
  publication-title: Thin-Walled Struct
– volume: 144
  year: 2019
  ident: bib0029
  article-title: On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading
  publication-title: Thin-Walled Struct
– volume: 24
  start-page: 1706
  year: 2022
  end-page: 1725
  ident: bib0038
  article-title: The efficient design of hybrid and metallic sandwich structures under air blast loading
  publication-title: J Sandw Struct Mater
– volume: 161
  year: 2021
  ident: bib0027
  article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading
  publication-title: Thin-Walled Struct
– start-page: 133
  year: 2019
  ident: bib0035
  article-title: Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load
  publication-title: Int J Impact Eng
– volume: 94
  start-page: 2902
  year: 2012
  end-page: 2913
  ident: bib0033
  article-title: Modelling damage evolution in composite laminates subjected to low velocity impact
  publication-title: Compos Struct
– volume: 12
  start-page: 4108
  year: 2019
  ident: bib0039
  article-title: Compressive behaviour of closed-cell aluminium foam at different strain rates
  publication-title: Materials (Basel)
– volume: 138
  year: 2020
  ident: bib0003
  article-title: Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading
  publication-title: Int J Impact Eng
– volume: 52
  year: 2022
  ident: bib0007
  article-title: Experimental investigation into the response of GFRP S-shaped foldcore sandwich panels to impulsive loading
  publication-title: J Build Eng
– volume: 180
  start-page: 1022
  year: 2017
  end-page: 1031
  ident: bib0034
  article-title: System probability of failure and sensitivity analyses of composite plates under low velocity impact
  publication-title: Compos Struct
– volume: 74
  start-page: 57
  year: 2014
  end-page: 66
  ident: bib0022
  article-title: Energy absorption and ballistic limit of nanocomposite laminates subjected to impact loading
  publication-title: Int J Impact Eng
– volume: 105
  start-page: 67
  year: 2016
  end-page: 81
  ident: bib0015
  article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading
  publication-title: Compos Part B Eng
– volume: 24
  start-page: 2105
  year: 2022
  end-page: 2123
  ident: bib0032
  article-title: Novel design of honeycomb hybrid sandwich structures under air-blast
  publication-title: J Sandw Struct Mater
– volume: 163
  year: 2021
  ident: bib0018
  article-title: Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments
  publication-title: Thin-Walled Struct
– volume: 46
  start-page: 97
  year: 2012
  end-page: 109
  ident: bib0036
  article-title: Response of V-shape plates to localised blast load : experiments and numerical simulation
  publication-title: Int J Impact Eng
– volume: 123
  start-page: 126
  year: 2019
  end-page: 139
  ident: bib0009
  article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins
  publication-title: Int J Impact Eng
– volume: 177
  year: 2019
  ident: bib0044
  article-title: Finite element modelling of the explosive blast response of carbon fibre-polymer laminates
  publication-title: Compos Part B Eng
– volume: 47
  start-page: 329
  year: 1980
  end-page: 334
  ident: bib0040
  article-title: Failure criteria for unidirectional fiber composites
  publication-title: J Appl Mech
– volume: 152
  year: 2021
  ident: bib0021
  article-title: High-velocity impact response of titanium-based fiber metal laminates. Part I: experimental investigations
  publication-title: Int J Impact Eng
– volume: 135
  year: 2020
  ident: bib0020
  article-title: Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse
  publication-title: Int J Impact Eng
– volume: 122
  start-page: 265
  year: 2018
  end-page: 275
  ident: bib0013
  article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading
  publication-title: Int J Impact Eng
– volume: 173
  start-page: 471
  year: 2017
  end-page: 478
  ident: bib0030
  article-title: Blast performance of composite sandwich structures
  publication-title: Procedia Eng
– volume: 126
  start-page: 150
  year: 2018
  end-page: 161
  ident: bib0031
  article-title: Statistical analysis of the tensile strength of GFRP, CFRP and hybrid composites
  publication-title: Thin-Walled Struct
– volume: 173
  year: 2022
  ident: bib0004
  article-title: Static buckling analysis and geometrical optimization of magneto-electro-elastic sandwich plate with auxetic honeycomb core
  publication-title: Thin-Walled Struct
– volume: 206
  year: 2020
  ident: bib0006
  article-title: Experimental and numerical investigation of reinforced concrete slabs under blast loading
  publication-title: Eng Struct
– volume: 237
  year: 2022
  ident: bib0016
  article-title: Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels
  publication-title: Compos Part B Eng
– volume: 76
  start-page: 235
  year: 2015
  end-page: 248
  ident: bib0042
  article-title: A damage evolution study of E-glass/epoxy composite under low velocity impact
  publication-title: Compos Part B Eng
– volume: 175
  year: 2022
  ident: bib0008
  article-title: Testing and modeling blast loading of a sandwich structure cored with a bio-inspired (balanus) core
  publication-title: Thin-Walled Struct
– volume: 105
  start-page: 24
  year: 2017
  end-page: 38
  ident: bib0010
  article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations
  publication-title: Int J Impact Eng
– volume: 86
  start-page: 1232
  year: 2008
  end-page: 1252
  ident: bib0043
  article-title: A progressive failure model for composite laminates subjected to low velocity impact damage
  publication-title: Comput Struct
– volume: 36
  start-page: 687
  year: 2009
  end-page: 699
  ident: bib0025
  article-title: A numerical simulation of the blast impact of square metallic sandwich panels
  publication-title: Int J Impact Eng
– volume: 258
  year: 2021
  ident: bib0026
  article-title: Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading
  publication-title: Compos Struct
– volume: 145
  start-page: 378
  year: 2018
  end-page: 388
  ident: bib0014
  article-title: The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading – experimental investigations
  publication-title: Int J Mech Sci
– volume: 62
  start-page: 1633
  year: 2002
  end-page: 1662
  ident: bib0041
  article-title: Failure analysis of FRP laminates by means of physically based phenomenological models
  publication-title: Compos Sci Technol
– volume: 173
  year: 2022
  ident: bib0005
  article-title: First failure load of sandwich beams under transient loading using a space–time coupled finite element method
  publication-title: Thin-Walled Struct
– volume: 164
  year: 2022
  ident: bib0001
  article-title: Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations
  publication-title: Int J Impact Eng
– volume: 139
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib0023
  article-title: Probabilistic failure of graphite epoxy composite plates due to low velocity impact
  publication-title: J Mech Des Trans ASME
– volume: 100
  start-page: 170
  year: 2016
  end-page: 179
  ident: bib0019
  article-title: Foldcores made of thermoplastic materials: experimental study and finite element analysis
  publication-title: Thin-Walled Struct
– volume: 76
  start-page: 235
  year: 2015
  ident: 10.1016/j.ijimpeng.2023.104609_bib0042
  article-title: A damage evolution study of E-glass/epoxy composite under low velocity impact
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2015.02.016
– volume: 50
  start-page: 9
  year: 2012
  ident: 10.1016/j.ijimpeng.2023.104609_bib0037
  article-title: The influence of core density on the blast resistance of foam-based sandwich structures
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.06.009
– volume: 46
  start-page: 97
  year: 2012
  ident: 10.1016/j.ijimpeng.2023.104609_bib0036
  article-title: Response of V-shape plates to localised blast load : experiments and numerical simulation
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.02.007
– volume: 123
  start-page: 126
  year: 2019
  ident: 10.1016/j.ijimpeng.2023.104609_bib0009
  article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2018.10.003
– volume: 146
  year: 2020
  ident: 10.1016/j.ijimpeng.2023.104609_bib0012
  article-title: Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8kg TNT blast loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2020.103699
– volume: 173
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0004
  article-title: Static buckling analysis and geometrical optimization of magneto-electro-elastic sandwich plate with auxetic honeycomb core
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2022.108935
– volume: 74
  start-page: 57
  year: 2014
  ident: 10.1016/j.ijimpeng.2023.104609_bib0022
  article-title: Energy absorption and ballistic limit of nanocomposite laminates subjected to impact loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.02.017
– volume: 36
  start-page: 687
  year: 2009
  ident: 10.1016/j.ijimpeng.2023.104609_bib0025
  article-title: A numerical simulation of the blast impact of square metallic sandwich panels
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.12.004
– volume: 144
  year: 2019
  ident: 10.1016/j.ijimpeng.2023.104609_bib0029
  article-title: On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2019.106288
– volume: 24
  start-page: 2105
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0032
  article-title: Novel design of honeycomb hybrid sandwich structures under air-blast
  publication-title: J Sandw Struct Mater
  doi: 10.1177/10996362221127967
– volume: 24
  start-page: 1706
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0038
  article-title: The efficient design of hybrid and metallic sandwich structures under air blast loading
  publication-title: J Sandw Struct Mater
  doi: 10.1177/10996362211065748
– volume: 35
  start-page: 1063
  year: 2008
  ident: 10.1016/j.ijimpeng.2023.104609_bib0024
  article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.06.008
– volume: 46
  start-page: 9667
  year: 2021
  ident: 10.1016/j.ijimpeng.2023.104609_bib0011
  article-title: Failure analysis on octagonal honeycomb sandwich panel under air blast loading
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.07.525
– volume: 105
  start-page: 67
  year: 2016
  ident: 10.1016/j.ijimpeng.2023.104609_bib0015
  article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2016.08.038
– volume: 173
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0005
  article-title: First failure load of sandwich beams under transient loading using a space–time coupled finite element method
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2022.108960
– volume: 258
  year: 2021
  ident: 10.1016/j.ijimpeng.2023.104609_bib0026
  article-title: Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.113317
– volume: 180
  start-page: 1022
  year: 2017
  ident: 10.1016/j.ijimpeng.2023.104609_bib0034
  article-title: System probability of failure and sensitivity analyses of composite plates under low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.08.054
– volume: 175
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0008
  article-title: Testing and modeling blast loading of a sandwich structure cored with a bio-inspired (balanus) core
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2022.109185
– volume: 145
  start-page: 378
  year: 2018
  ident: 10.1016/j.ijimpeng.2023.104609_bib0014
  article-title: The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading – experimental investigations
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.07.030
– volume: 164
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0001
  article-title: Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2022.104201
– volume: 177
  year: 2019
  ident: 10.1016/j.ijimpeng.2023.104609_bib0044
  article-title: Finite element modelling of the explosive blast response of carbon fibre-polymer laminates
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2019.107412
– volume: 173
  start-page: 471
  year: 2017
  ident: 10.1016/j.ijimpeng.2023.104609_bib0030
  article-title: Blast performance of composite sandwich structures
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2016.12.065
– volume: 94
  start-page: 2902
  year: 2012
  ident: 10.1016/j.ijimpeng.2023.104609_bib0033
  article-title: Modelling damage evolution in composite laminates subjected to low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.03.039
– volume: 157
  year: 2020
  ident: 10.1016/j.ijimpeng.2023.104609_bib0028
  article-title: Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2020.107141
– volume: 86
  start-page: 1232
  year: 2008
  ident: 10.1016/j.ijimpeng.2023.104609_bib0043
  article-title: A progressive failure model for composite laminates subjected to low velocity impact damage
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2007.11.004
– volume: 138
  year: 2020
  ident: 10.1016/j.ijimpeng.2023.104609_bib0003
  article-title: Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2019.103475
– volume: 163
  year: 2021
  ident: 10.1016/j.ijimpeng.2023.104609_bib0018
  article-title: Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2021.107748
– volume: 105
  start-page: 24
  year: 2017
  ident: 10.1016/j.ijimpeng.2023.104609_bib0010
  article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.10.009
– volume: 12
  start-page: 4108
  year: 2019
  ident: 10.1016/j.ijimpeng.2023.104609_bib0039
  article-title: Compressive behaviour of closed-cell aluminium foam at different strain rates
  publication-title: Materials (Basel)
  doi: 10.3390/ma12244108
– volume: 126
  start-page: 150
  year: 2018
  ident: 10.1016/j.ijimpeng.2023.104609_bib0031
  article-title: Statistical analysis of the tensile strength of GFRP, CFRP and hybrid composites
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2016.12.021
– volume: 191
  year: 2021
  ident: 10.1016/j.ijimpeng.2023.104609_bib0017
  article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2020.106105
– volume: 62
  start-page: 1633
  year: 2002
  ident: 10.1016/j.ijimpeng.2023.104609_bib0041
  article-title: Failure analysis of FRP laminates by means of physically based phenomenological models
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(01)00208-1
– volume: 122
  start-page: 265
  year: 2018
  ident: 10.1016/j.ijimpeng.2023.104609_bib0013
  article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2018.08.016
– volume: 135
  year: 2020
  ident: 10.1016/j.ijimpeng.2023.104609_bib0020
  article-title: Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2019.103327
– volume: 161
  year: 2021
  ident: 10.1016/j.ijimpeng.2023.104609_bib0027
  article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2021.107445
– start-page: 133
  year: 2019
  ident: 10.1016/j.ijimpeng.2023.104609_bib0035
  article-title: Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load
  publication-title: Int J Impact Eng
– volume: 206
  year: 2020
  ident: 10.1016/j.ijimpeng.2023.104609_bib0006
  article-title: Experimental and numerical investigation of reinforced concrete slabs under blast loading
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.110125
– volume: 152
  year: 2021
  ident: 10.1016/j.ijimpeng.2023.104609_bib0021
  article-title: High-velocity impact response of titanium-based fiber metal laminates. Part I: experimental investigations
  publication-title: Int J Impact Eng
– volume: 52
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0007
  article-title: Experimental investigation into the response of GFRP S-shaped foldcore sandwich panels to impulsive loading
  publication-title: J Build Eng
– volume: 164
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0002
  article-title: Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2022.104186
– volume: 47
  start-page: 329
  year: 1980
  ident: 10.1016/j.ijimpeng.2023.104609_bib0040
  article-title: Failure criteria for unidirectional fiber composites
  publication-title: J Appl Mech
  doi: 10.1115/1.3153664
– volume: 237
  year: 2022
  ident: 10.1016/j.ijimpeng.2023.104609_bib0016
  article-title: Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2022.109840
– volume: 100
  start-page: 170
  year: 2016
  ident: 10.1016/j.ijimpeng.2023.104609_bib0019
  article-title: Foldcores made of thermoplastic materials: experimental study and finite element analysis
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2015.12.017
– volume: 139
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijimpeng.2023.104609_bib0023
  article-title: Probabilistic failure of graphite epoxy composite plates due to low velocity impact
  publication-title: J Mech Des Trans ASME
  doi: 10.1115/1.4035678
SSID ssj0017050
Score 2.5965502
Snippet •Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104609
SubjectTerms Blast resistance
CFRP
Energy
FML
Foam
Sandwich structure
TNT
Title Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins
URI https://dx.doi.org/10.1016/j.ijimpeng.2023.104609
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVXEcyZY9pqEmfSSUpoFsRpLlxiY4gbiULv3tPfkRUihk6GYbnbFP57vv5LtPCN0qHnUjyihREJ0JE9wmIvIF0R4cKurFTs_0O4_G7nDKHmfOrIEGdS-MKausfH_p0wtvXV2xKm1aqySxJmCcDOLfDEC06QA1jJ-McWPlne9NmYdhiynWWWAwMaO3uoTTTpImAE6z947ZRLz43WkKE_8KUFtBJzhChxVaxP3ygY5RQ2cn6GCLQ_AUTe4A_-ZYVOQieBljXdBCQDTB82Wmv-DVJF6LLPpM1ByXhLEfkGVjswaLB8HrizXJtV7gYPSM16Zm5gxNg_u3wZBUOyUQRe1eTgD3K19BKiGoUl0hXcBRMdUUcpNuz1eQKSrPEw5Mi6slo0wxCoIyjiKADx736DlqZvBEFwhzDjfQ8JlDIGcAFqUbMS51rIX0uW37LeTU6glVRSNudrNYhHW9WBrWag2NWsNSrS1kbeRWJZHGTgm_1n74yyRC8PY7ZC__IXuF9s1ZWeV3jZowLfoGkEcu24VptdFe_-FpOP4BoGPYmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RnxuQc9lkJ3oe3Bg6IE5BEjkHCr2-1WSkghAUO4-Kf8g872QTAx4WC4NW1ms_12MvPt7jwAboXpFTzKqCbQO2uMm0WNezbXpIWPglp-yVD5zq12udZjL_1SPwPfaS6MCqtMbH9s0yNrnbzREzT1SRDoHVROhv6vjyRaZYCmHawbcjHHfdv0vv6Ei3xnGNXnbqWmJa0FNEGLxkxDoixsgdybUyEK3C0j8fCppEjmC4YtcGslLIuX8D_K0mWUCUZR0PU9D_2tZVoUx92CbYbmQrVNyH8t40pUeZroYAdnp6npraQlD_PBMEA2HH7kVdfy6H5VRUL-5RFXvFz1APYTekoeYgQOISPDI9hbKVp4DJ1HJNwzwpNqJmTsExnVoUD3RQbjUC4QS5dMeejNAzEgcYXaT9zWE3XoSyrVt1e9M5NyRKqtJpmqIJ0T6G0Ev1PIhjijMyCmiQNItCvIHBiyU7fsMdOVvuSubRaLdg5KKTyOSOqWq_YZIycNUBs6KayOgtWJYc2BvpSbxJU71krYKfrOLx100L2skT3_h-wN7NS6rabTrLcbF7CrvsQhhpeQxSWSV0h7Zu51pGYE3jet1z8XWBNN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blast+analysis+of+efficient+honeycomb+sandwich+structures+with+CFRP%2FSteel+FML+skins&rft.jtitle=International+journal+of+impact+engineering&rft.au=Patel%2C+Murlidhar&rft.au=Patel%2C+Shivdayal&rft.au=Ahmad%2C+Suhail&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=178&rft_id=info:doi/10.1016%2Fj.ijimpeng.2023.104609&rft.externalDocID=S0734743X23001203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon