Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins
•Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure provided an excellent blast resistance in comparison to the metallic honeycomb structure.•The Al foam-filled honeycomb has less core crushing...
Saved in:
Published in | International journal of impact engineering Vol. 178; p. 104609 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure provided an excellent blast resistance in comparison to the metallic honeycomb structure.•The Al foam-filled honeycomb has less core crushing than an empty honeycomb core.•FML as front skin and steel as back skin of honeycomb structure showed the smaller deformation in comparison to the other combinations of FML and steel skin used square honeycomb structure.
The explosive blast is a major threat in the form of a terrorist attack to damage defense, aerospace, as well as civilian structures. This hazard of an explosive attack affects the lives of people and property. As a result, the modern era is searching for blast resistance structures to save humans and properties from these serious attacks. However, the current numerical analysis represents an effort in the novel design of blast-proof sandwich structures to meet the current era's demand. A stainless-steel sandwich structure using a square honeycomb core was designed to perform conventional weapons effects program (CONWEP) air-blast analysis on ABAQUS/Explicit. After a mesh sensitivity study and validation of the steel sandwich structure with experimental data published in the literature, the effect on blast characteristics of the aluminum (Al) foam-filled honeycomb and carbon fiber reinforced polymer (CFRP) with steel skins using fiber metal laminate (FML) for the front, back, or both skins of the sandwich structure was investigated. The entire finite element (FE) modeled sandwich structures were subjected to 1 to 10 kg of TNT air-blast loads at stand-off distances (SoD) ranging from 150 mm to 200 mm, and their blast resistance performance was evaluated using skin deflection and energy absorption. The damage initiation and evolution of composite laminates in the FML skins were investigated by the Hashin, Puck, and Singh failure criteria, respectively. These criteria were implemented via the VUMAT code. The obtained results showed that using FML skin for the sandwich structure diminished both the front and back skin deflection while improving specific energy absorption. A positive impact on blast mitigation by sandwich structures was observed with an increase in SoD. The lightweight FML front skin and steel back skin used bare square honeycomb hybrid sandwich structure had the smallest back skin deflection and the highest energy absorption up to 3 kg TNT. For the same combination of skins, the hybrid sandwich with foam-filled square honeycomb core represented a positive impact on the blast proof characteristics for high-intensity blasts ranging from 5 kg to 10 kg TNT. However, the novel designed hybrid sandwiches are recommended as a protective structure for defense, ships, automotive, etc. |
---|---|
AbstractList | •Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure provided an excellent blast resistance in comparison to the metallic honeycomb structure.•The Al foam-filled honeycomb has less core crushing than an empty honeycomb core.•FML as front skin and steel as back skin of honeycomb structure showed the smaller deformation in comparison to the other combinations of FML and steel skin used square honeycomb structure.
The explosive blast is a major threat in the form of a terrorist attack to damage defense, aerospace, as well as civilian structures. This hazard of an explosive attack affects the lives of people and property. As a result, the modern era is searching for blast resistance structures to save humans and properties from these serious attacks. However, the current numerical analysis represents an effort in the novel design of blast-proof sandwich structures to meet the current era's demand. A stainless-steel sandwich structure using a square honeycomb core was designed to perform conventional weapons effects program (CONWEP) air-blast analysis on ABAQUS/Explicit. After a mesh sensitivity study and validation of the steel sandwich structure with experimental data published in the literature, the effect on blast characteristics of the aluminum (Al) foam-filled honeycomb and carbon fiber reinforced polymer (CFRP) with steel skins using fiber metal laminate (FML) for the front, back, or both skins of the sandwich structure was investigated. The entire finite element (FE) modeled sandwich structures were subjected to 1 to 10 kg of TNT air-blast loads at stand-off distances (SoD) ranging from 150 mm to 200 mm, and their blast resistance performance was evaluated using skin deflection and energy absorption. The damage initiation and evolution of composite laminates in the FML skins were investigated by the Hashin, Puck, and Singh failure criteria, respectively. These criteria were implemented via the VUMAT code. The obtained results showed that using FML skin for the sandwich structure diminished both the front and back skin deflection while improving specific energy absorption. A positive impact on blast mitigation by sandwich structures was observed with an increase in SoD. The lightweight FML front skin and steel back skin used bare square honeycomb hybrid sandwich structure had the smallest back skin deflection and the highest energy absorption up to 3 kg TNT. For the same combination of skins, the hybrid sandwich with foam-filled square honeycomb core represented a positive impact on the blast proof characteristics for high-intensity blasts ranging from 5 kg to 10 kg TNT. However, the novel designed hybrid sandwiches are recommended as a protective structure for defense, ships, automotive, etc. |
ArticleNumber | 104609 |
Author | Patel, Shivdayal Patel, Murlidhar Ahmad, Suhail |
Author_xml | – sequence: 1 givenname: Murlidhar surname: Patel fullname: Patel, Murlidhar organization: Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & Manufacturing (IIITDM), Jabalpur 482005, India – sequence: 2 givenname: Shivdayal orcidid: 0000-0002-8044-5848 surname: Patel fullname: Patel, Shivdayal email: shivdayal@iiitdmj.ac.in organization: Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & Manufacturing (IIITDM), Jabalpur 482005, India – sequence: 3 givenname: Suhail surname: Ahmad fullname: Ahmad, Suhail organization: Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016, India |
BookMark | eNqFkNFKwzAUhoNMcJu-guQFup00bdqCF-pwKkwUp-BdSE9Tl9mlI8kce3s7pjfe7OrAD9__c74B6dnWakIuGYwYMDFejszSrNbafo5iiHkXJgKKE9JneVZEPIWiR_qQ8STKEv5xRgbeLwFYBin0yfy2UT5QZVWz88bTtqa6rg0abQNddEM7bFcl9cpWW4ML6oPbYNg47enWhAWdTF9fxvOgdUOnTzPqv4z15-S0Vo3XF793SN6nd2-Th2j2fP84uZlFyFkcIg4CCxRJrDgiqFLkKau55kIIiAssshzzXKUVVEKXCU8w4R1Y1lXFWZZnOR8ScehF13rvdC3XzqyU20kGcq9GLuWfGrlXIw9qOvDqH4gmqGBaG5wyzXH8-oDr7rlvo530e1-oK-M0Blm15ljFD6yqhtU |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2024_139094 crossref_primary_10_1080_15376494_2024_2382368 crossref_primary_10_1177_00219983241301751 crossref_primary_10_1007_s10853_023_09059_1 crossref_primary_10_1016_j_ijmecsci_2025_110082 crossref_primary_10_1016_j_jobe_2025_112213 crossref_primary_10_1016_j_tws_2024_111809 crossref_primary_10_1016_j_engfailanal_2024_108735 crossref_primary_10_1080_15376494_2024_2427933 crossref_primary_10_1063_5_0221060 crossref_primary_10_1088_1742_6596_2891_6_062031 crossref_primary_10_1016_j_mtcomm_2023_106535 crossref_primary_10_1016_j_tws_2024_111875 crossref_primary_10_1016_j_tws_2023_111376 crossref_primary_10_1080_15376494_2025_2471034 crossref_primary_10_1016_j_matdes_2024_113295 crossref_primary_10_1177_14644207241238220 crossref_primary_10_1002_pc_29315 crossref_primary_10_1016_j_matpr_2023_06_432 crossref_primary_10_1016_j_jaap_2025_106972 crossref_primary_10_1016_j_ijmecsci_2024_108972 crossref_primary_10_1016_j_jcsr_2025_109467 crossref_primary_10_1016_j_ijmecsci_2023_108795 crossref_primary_10_1002_pc_29437 crossref_primary_10_1177_10996362251317109 crossref_primary_10_1080_15376494_2025_2452370 crossref_primary_10_1177_14644207231180811 crossref_primary_10_1016_j_tws_2023_111125 crossref_primary_10_1016_j_tws_2023_111202 crossref_primary_10_1007_s10973_024_13365_4 crossref_primary_10_1002_pc_28035 crossref_primary_10_1016_j_dt_2024_10_001 crossref_primary_10_1016_j_tws_2024_112751 crossref_primary_10_1080_15376494_2024_2442494 crossref_primary_10_1016_j_istruc_2024_106452 crossref_primary_10_1016_j_matpr_2023_05_191 crossref_primary_10_1002_pc_29205 crossref_primary_10_1080_01694243_2024_2314370 crossref_primary_10_1038_s41598_024_81240_1 crossref_primary_10_3390_app14219656 crossref_primary_10_1080_15376494_2023_2243614 crossref_primary_10_3390_jmse12091513 |
Cites_doi | 10.1016/j.compositesb.2015.02.016 10.1016/j.ijimpeng.2012.06.009 10.1016/j.ijimpeng.2012.02.007 10.1016/j.ijimpeng.2018.10.003 10.1016/j.ijimpeng.2020.103699 10.1016/j.tws.2022.108935 10.1016/j.ijimpeng.2014.02.017 10.1016/j.ijimpeng.2008.12.004 10.1016/j.tws.2019.106288 10.1177/10996362221127967 10.1177/10996362211065748 10.1016/j.ijimpeng.2007.06.008 10.1016/j.matpr.2020.07.525 10.1016/j.compositesb.2016.08.038 10.1016/j.tws.2022.108960 10.1016/j.compstruct.2020.113317 10.1016/j.compstruct.2017.08.054 10.1016/j.tws.2022.109185 10.1016/j.ijmecsci.2018.07.030 10.1016/j.ijimpeng.2022.104201 10.1016/j.compositesb.2019.107412 10.1016/j.proeng.2016.12.065 10.1016/j.compstruct.2012.03.039 10.1016/j.tws.2020.107141 10.1016/j.compstruc.2007.11.004 10.1016/j.ijimpeng.2019.103475 10.1016/j.tws.2021.107748 10.1016/j.ijimpeng.2016.10.009 10.3390/ma12244108 10.1016/j.tws.2016.12.021 10.1016/j.ijmecsci.2020.106105 10.1016/S0266-3538(01)00208-1 10.1016/j.ijimpeng.2018.08.016 10.1016/j.ijimpeng.2019.103327 10.1016/j.tws.2021.107445 10.1016/j.engstruct.2019.110125 10.1016/j.ijimpeng.2022.104186 10.1115/1.3153664 10.1016/j.compositesb.2022.109840 10.1016/j.tws.2015.12.017 10.1115/1.4035678 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijimpeng.2023.104609 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2023_104609 S0734743X23001203 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-306c9c642a3cc0ab6851f3e3666029c978c88a5d0d6eb434c43c31bfdd3178783 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Tue Jul 01 03:54:34 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Fri Feb 23 02:36:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy FML Foam Sandwich structure TNT Blast resistance CFRP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-306c9c642a3cc0ab6851f3e3666029c978c88a5d0d6eb434c43c31bfdd3178783 |
ORCID | 0000-0002-8044-5848 |
ParticipantIDs | crossref_primary_10_1016_j_ijimpeng_2023_104609 crossref_citationtrail_10_1016_j_ijimpeng_2023_104609 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2023_104609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Cheng, Liu, Li, Zhang, Hou (bib0015) 2016; 105 Dear, Rolfe, Kelly, Arora, Hooper (bib0030) 2017; 173 Kumar, Patel (bib0011) 2021; 46 Pratomo, Santosa, Gunawan, Widagdo, Putra (bib0012) 2020; 146 Yan, Liu, Yan, Bai, Shi, Si (bib0002) 2022; 164 Zhang, Ye, Qin (bib0029) 2019; 144 Quang, Quan, Tran (bib0004) 2022; 173 Sun, Wang, Zhang, Li, Zhang, Li (bib0020) 2020; 135 Donadon, Iannucci, Falzon, Hodgkinson, de Almeida (bib0043) 2008; 86 Puck, Schurmann (bib0041) 2002; 62 Burns, Batra (bib0005) 2022; 173 Dharmasena, Wadley, Xue, Hutchinson (bib0024) 2008; 35 Li, Ren, Zhang, Chen, Zhao, Fang (bib0026) 2021; 258 Zhu, Zhao, Lu, Gad (bib0025) 2009; 36 Patel, Soares (bib0034) 2017; 180 Zhang, Zhou, Wang, Qin, Ye, Wang (bib0013) 2018; 122 Zang, Zhou, Wang, You (bib0019) 2016; 100 Naresh, Shankar, Velmurugan, Gupta (bib0031) 2018; 126 Cai, Liu, Zhang, Li, Cheng (bib0003) 2020; 138 Kumar, Kartik, Iqbal (bib0006) 2020; 206 Jing, Liu, Su, Guo (bib0027) 2021; 161 Patel, Patel (bib0032) 2022; 24 Wang, Xu, Chung Kim Yuen (bib0035) 2019 Zhou, Jing (bib0028) 2020; 157 Yuen, Langdon, Nurick, Pickering, Balden (bib0036) 2012; 46 Shi, Swait, Soutis (bib0033) 2012; 94 Hashin (bib0040) 1980; 47 Patel, Ahmad (bib0023) 2017; 139 Singh, Namala, Mahajan (bib0042) 2015; 76 Wang, He, Yue, Li, Yu, Ji (bib0016) 2022; 237 Gargano, Das, Mouritz (bib0044) 2019; 177 Cheng, Liu, Zhang, Xiao, Zhang, Liu (bib0014) 2018; 145 Novak, Vesenjak, Duarte, Tanaka, Hokamoto, Krstulovic-Opara (bib0039) 2019; 12 Deng, Tian, Wu, Zhou, Wei, Hu (bib0007) 2022; 52 Tuzgel, Akbulut, Guzel, Yucesoy, Sahin, Tasdemirci (bib0008) 2022; 175 Balaganesan, Velmurugan, Srinivasan, Gupta, Kanny (bib0022) 2014; 74 Lv, Li, Dong (bib0017) 2021; 191 Hassan, Guan, Cantwell, Langdon, Nurick (bib0037) 2012; 50 Ma, Li, Li, Li, Wang, Wu (bib0009) 2019; 123 Sharma, Velmurugan, Shankar, Ha (bib0021) 2021; 152 Zhang, Zhu, Li, Yuan, Du, Qin (bib0001) 2022; 164 Patel, Patel (bib0038) 2022; 24 Wang, Qin, Wang, Yu, Wang, Zhang (bib0010) 2017; 105 Cong, Duc (bib0018) 2021; 163 Jing (10.1016/j.ijimpeng.2023.104609_bib0027) 2021; 161 Deng (10.1016/j.ijimpeng.2023.104609_bib0007) 2022; 52 Zang (10.1016/j.ijimpeng.2023.104609_bib0019) 2016; 100 Dharmasena (10.1016/j.ijimpeng.2023.104609_bib0024) 2008; 35 Zhang (10.1016/j.ijimpeng.2023.104609_bib0029) 2019; 144 Yan (10.1016/j.ijimpeng.2023.104609_bib0002) 2022; 164 Lv (10.1016/j.ijimpeng.2023.104609_bib0017) 2021; 191 Zhou (10.1016/j.ijimpeng.2023.104609_bib0028) 2020; 157 Wang (10.1016/j.ijimpeng.2023.104609_bib0016) 2022; 237 Hashin (10.1016/j.ijimpeng.2023.104609_bib0040) 1980; 47 Puck (10.1016/j.ijimpeng.2023.104609_bib0041) 2002; 62 Zhu (10.1016/j.ijimpeng.2023.104609_bib0025) 2009; 36 Ma (10.1016/j.ijimpeng.2023.104609_bib0009) 2019; 123 Singh (10.1016/j.ijimpeng.2023.104609_bib0042) 2015; 76 Li (10.1016/j.ijimpeng.2023.104609_bib0026) 2021; 258 Quang (10.1016/j.ijimpeng.2023.104609_bib0004) 2022; 173 Kumar (10.1016/j.ijimpeng.2023.104609_bib0006) 2020; 206 Balaganesan (10.1016/j.ijimpeng.2023.104609_bib0022) 2014; 74 Patel (10.1016/j.ijimpeng.2023.104609_bib0032) 2022; 24 Patel (10.1016/j.ijimpeng.2023.104609_bib0034) 2017; 180 Pratomo (10.1016/j.ijimpeng.2023.104609_bib0012) 2020; 146 Sun (10.1016/j.ijimpeng.2023.104609_bib0020) 2020; 135 Patel (10.1016/j.ijimpeng.2023.104609_bib0023) 2017; 139 Novak (10.1016/j.ijimpeng.2023.104609_bib0039) 2019; 12 Burns (10.1016/j.ijimpeng.2023.104609_bib0005) 2022; 173 Sharma (10.1016/j.ijimpeng.2023.104609_bib0021) 2021; 152 Dear (10.1016/j.ijimpeng.2023.104609_bib0030) 2017; 173 Cheng (10.1016/j.ijimpeng.2023.104609_bib0014) 2018; 145 Donadon (10.1016/j.ijimpeng.2023.104609_bib0043) 2008; 86 Tuzgel (10.1016/j.ijimpeng.2023.104609_bib0008) 2022; 175 Zhang (10.1016/j.ijimpeng.2023.104609_bib0015) 2016; 105 Hassan (10.1016/j.ijimpeng.2023.104609_bib0037) 2012; 50 Wang (10.1016/j.ijimpeng.2023.104609_bib0010) 2017; 105 Shi (10.1016/j.ijimpeng.2023.104609_bib0033) 2012; 94 Yuen (10.1016/j.ijimpeng.2023.104609_bib0036) 2012; 46 Patel (10.1016/j.ijimpeng.2023.104609_bib0038) 2022; 24 Zhang (10.1016/j.ijimpeng.2023.104609_bib0013) 2018; 122 Cai (10.1016/j.ijimpeng.2023.104609_bib0003) 2020; 138 Wang (10.1016/j.ijimpeng.2023.104609_bib0035) 2019 Gargano (10.1016/j.ijimpeng.2023.104609_bib0044) 2019; 177 Kumar (10.1016/j.ijimpeng.2023.104609_bib0011) 2021; 46 Cong (10.1016/j.ijimpeng.2023.104609_bib0018) 2021; 163 Zhang (10.1016/j.ijimpeng.2023.104609_bib0001) 2022; 164 Naresh (10.1016/j.ijimpeng.2023.104609_bib0031) 2018; 126 |
References_xml | – volume: 191 year: 2021 ident: bib0017 article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio publication-title: Int J Mech Sci – volume: 46 start-page: 9667 year: 2021 end-page: 9672 ident: bib0011 article-title: Failure analysis on octagonal honeycomb sandwich panel under air blast loading publication-title: Mater Today Proc – volume: 35 start-page: 1063 year: 2008 end-page: 1074 ident: bib0024 article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading publication-title: Int J Impact Eng – volume: 50 start-page: 9 year: 2012 end-page: 16 ident: bib0037 article-title: The influence of core density on the blast resistance of foam-based sandwich structures publication-title: Int J Impact Eng – volume: 164 year: 2022 ident: bib0002 article-title: Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet publication-title: Int J Impact Eng – volume: 146 year: 2020 ident: bib0012 article-title: Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8kg TNT blast loading publication-title: Int J Impact Eng – volume: 157 year: 2020 ident: bib0028 article-title: Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading publication-title: Thin-Walled Struct – volume: 144 year: 2019 ident: bib0029 article-title: On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading publication-title: Thin-Walled Struct – volume: 24 start-page: 1706 year: 2022 end-page: 1725 ident: bib0038 article-title: The efficient design of hybrid and metallic sandwich structures under air blast loading publication-title: J Sandw Struct Mater – volume: 161 year: 2021 ident: bib0027 article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading publication-title: Thin-Walled Struct – start-page: 133 year: 2019 ident: bib0035 article-title: Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load publication-title: Int J Impact Eng – volume: 94 start-page: 2902 year: 2012 end-page: 2913 ident: bib0033 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct – volume: 12 start-page: 4108 year: 2019 ident: bib0039 article-title: Compressive behaviour of closed-cell aluminium foam at different strain rates publication-title: Materials (Basel) – volume: 138 year: 2020 ident: bib0003 article-title: Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading publication-title: Int J Impact Eng – volume: 52 year: 2022 ident: bib0007 article-title: Experimental investigation into the response of GFRP S-shaped foldcore sandwich panels to impulsive loading publication-title: J Build Eng – volume: 180 start-page: 1022 year: 2017 end-page: 1031 ident: bib0034 article-title: System probability of failure and sensitivity analyses of composite plates under low velocity impact publication-title: Compos Struct – volume: 74 start-page: 57 year: 2014 end-page: 66 ident: bib0022 article-title: Energy absorption and ballistic limit of nanocomposite laminates subjected to impact loading publication-title: Int J Impact Eng – volume: 105 start-page: 67 year: 2016 end-page: 81 ident: bib0015 article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading publication-title: Compos Part B Eng – volume: 24 start-page: 2105 year: 2022 end-page: 2123 ident: bib0032 article-title: Novel design of honeycomb hybrid sandwich structures under air-blast publication-title: J Sandw Struct Mater – volume: 163 year: 2021 ident: bib0018 article-title: Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments publication-title: Thin-Walled Struct – volume: 46 start-page: 97 year: 2012 end-page: 109 ident: bib0036 article-title: Response of V-shape plates to localised blast load : experiments and numerical simulation publication-title: Int J Impact Eng – volume: 123 start-page: 126 year: 2019 end-page: 139 ident: bib0009 article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins publication-title: Int J Impact Eng – volume: 177 year: 2019 ident: bib0044 article-title: Finite element modelling of the explosive blast response of carbon fibre-polymer laminates publication-title: Compos Part B Eng – volume: 47 start-page: 329 year: 1980 end-page: 334 ident: bib0040 article-title: Failure criteria for unidirectional fiber composites publication-title: J Appl Mech – volume: 152 year: 2021 ident: bib0021 article-title: High-velocity impact response of titanium-based fiber metal laminates. Part I: experimental investigations publication-title: Int J Impact Eng – volume: 135 year: 2020 ident: bib0020 article-title: Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse publication-title: Int J Impact Eng – volume: 122 start-page: 265 year: 2018 end-page: 275 ident: bib0013 article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading publication-title: Int J Impact Eng – volume: 173 start-page: 471 year: 2017 end-page: 478 ident: bib0030 article-title: Blast performance of composite sandwich structures publication-title: Procedia Eng – volume: 126 start-page: 150 year: 2018 end-page: 161 ident: bib0031 article-title: Statistical analysis of the tensile strength of GFRP, CFRP and hybrid composites publication-title: Thin-Walled Struct – volume: 173 year: 2022 ident: bib0004 article-title: Static buckling analysis and geometrical optimization of magneto-electro-elastic sandwich plate with auxetic honeycomb core publication-title: Thin-Walled Struct – volume: 206 year: 2020 ident: bib0006 article-title: Experimental and numerical investigation of reinforced concrete slabs under blast loading publication-title: Eng Struct – volume: 237 year: 2022 ident: bib0016 article-title: Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels publication-title: Compos Part B Eng – volume: 76 start-page: 235 year: 2015 end-page: 248 ident: bib0042 article-title: A damage evolution study of E-glass/epoxy composite under low velocity impact publication-title: Compos Part B Eng – volume: 175 year: 2022 ident: bib0008 article-title: Testing and modeling blast loading of a sandwich structure cored with a bio-inspired (balanus) core publication-title: Thin-Walled Struct – volume: 105 start-page: 24 year: 2017 end-page: 38 ident: bib0010 article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations publication-title: Int J Impact Eng – volume: 86 start-page: 1232 year: 2008 end-page: 1252 ident: bib0043 article-title: A progressive failure model for composite laminates subjected to low velocity impact damage publication-title: Comput Struct – volume: 36 start-page: 687 year: 2009 end-page: 699 ident: bib0025 article-title: A numerical simulation of the blast impact of square metallic sandwich panels publication-title: Int J Impact Eng – volume: 258 year: 2021 ident: bib0026 article-title: Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading publication-title: Compos Struct – volume: 145 start-page: 378 year: 2018 end-page: 388 ident: bib0014 article-title: The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading – experimental investigations publication-title: Int J Mech Sci – volume: 62 start-page: 1633 year: 2002 end-page: 1662 ident: bib0041 article-title: Failure analysis of FRP laminates by means of physically based phenomenological models publication-title: Compos Sci Technol – volume: 173 year: 2022 ident: bib0005 article-title: First failure load of sandwich beams under transient loading using a space–time coupled finite element method publication-title: Thin-Walled Struct – volume: 164 year: 2022 ident: bib0001 article-title: Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations publication-title: Int J Impact Eng – volume: 139 start-page: 1 year: 2017 end-page: 4 ident: bib0023 article-title: Probabilistic failure of graphite epoxy composite plates due to low velocity impact publication-title: J Mech Des Trans ASME – volume: 100 start-page: 170 year: 2016 end-page: 179 ident: bib0019 article-title: Foldcores made of thermoplastic materials: experimental study and finite element analysis publication-title: Thin-Walled Struct – volume: 76 start-page: 235 year: 2015 ident: 10.1016/j.ijimpeng.2023.104609_bib0042 article-title: A damage evolution study of E-glass/epoxy composite under low velocity impact publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2015.02.016 – volume: 50 start-page: 9 year: 2012 ident: 10.1016/j.ijimpeng.2023.104609_bib0037 article-title: The influence of core density on the blast resistance of foam-based sandwich structures publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.06.009 – volume: 46 start-page: 97 year: 2012 ident: 10.1016/j.ijimpeng.2023.104609_bib0036 article-title: Response of V-shape plates to localised blast load : experiments and numerical simulation publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.02.007 – volume: 123 start-page: 126 year: 2019 ident: 10.1016/j.ijimpeng.2023.104609_bib0009 article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2018.10.003 – volume: 146 year: 2020 ident: 10.1016/j.ijimpeng.2023.104609_bib0012 article-title: Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8kg TNT blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2020.103699 – volume: 173 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0004 article-title: Static buckling analysis and geometrical optimization of magneto-electro-elastic sandwich plate with auxetic honeycomb core publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2022.108935 – volume: 74 start-page: 57 year: 2014 ident: 10.1016/j.ijimpeng.2023.104609_bib0022 article-title: Energy absorption and ballistic limit of nanocomposite laminates subjected to impact loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.02.017 – volume: 36 start-page: 687 year: 2009 ident: 10.1016/j.ijimpeng.2023.104609_bib0025 article-title: A numerical simulation of the blast impact of square metallic sandwich panels publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.12.004 – volume: 144 year: 2019 ident: 10.1016/j.ijimpeng.2023.104609_bib0029 article-title: On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2019.106288 – volume: 24 start-page: 2105 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0032 article-title: Novel design of honeycomb hybrid sandwich structures under air-blast publication-title: J Sandw Struct Mater doi: 10.1177/10996362221127967 – volume: 24 start-page: 1706 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0038 article-title: The efficient design of hybrid and metallic sandwich structures under air blast loading publication-title: J Sandw Struct Mater doi: 10.1177/10996362211065748 – volume: 35 start-page: 1063 year: 2008 ident: 10.1016/j.ijimpeng.2023.104609_bib0024 article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.06.008 – volume: 46 start-page: 9667 year: 2021 ident: 10.1016/j.ijimpeng.2023.104609_bib0011 article-title: Failure analysis on octagonal honeycomb sandwich panel under air blast loading publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.07.525 – volume: 105 start-page: 67 year: 2016 ident: 10.1016/j.ijimpeng.2023.104609_bib0015 article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2016.08.038 – volume: 173 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0005 article-title: First failure load of sandwich beams under transient loading using a space–time coupled finite element method publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2022.108960 – volume: 258 year: 2021 ident: 10.1016/j.ijimpeng.2023.104609_bib0026 article-title: Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.113317 – volume: 180 start-page: 1022 year: 2017 ident: 10.1016/j.ijimpeng.2023.104609_bib0034 article-title: System probability of failure and sensitivity analyses of composite plates under low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.08.054 – volume: 175 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0008 article-title: Testing and modeling blast loading of a sandwich structure cored with a bio-inspired (balanus) core publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2022.109185 – volume: 145 start-page: 378 year: 2018 ident: 10.1016/j.ijimpeng.2023.104609_bib0014 article-title: The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading – experimental investigations publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.07.030 – volume: 164 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0001 article-title: Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2022.104201 – volume: 177 year: 2019 ident: 10.1016/j.ijimpeng.2023.104609_bib0044 article-title: Finite element modelling of the explosive blast response of carbon fibre-polymer laminates publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2019.107412 – volume: 173 start-page: 471 year: 2017 ident: 10.1016/j.ijimpeng.2023.104609_bib0030 article-title: Blast performance of composite sandwich structures publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.12.065 – volume: 94 start-page: 2902 year: 2012 ident: 10.1016/j.ijimpeng.2023.104609_bib0033 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.03.039 – volume: 157 year: 2020 ident: 10.1016/j.ijimpeng.2023.104609_bib0028 article-title: Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2020.107141 – volume: 86 start-page: 1232 year: 2008 ident: 10.1016/j.ijimpeng.2023.104609_bib0043 article-title: A progressive failure model for composite laminates subjected to low velocity impact damage publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.11.004 – volume: 138 year: 2020 ident: 10.1016/j.ijimpeng.2023.104609_bib0003 article-title: Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2019.103475 – volume: 163 year: 2021 ident: 10.1016/j.ijimpeng.2023.104609_bib0018 article-title: Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2021.107748 – volume: 105 start-page: 24 year: 2017 ident: 10.1016/j.ijimpeng.2023.104609_bib0010 article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.10.009 – volume: 12 start-page: 4108 year: 2019 ident: 10.1016/j.ijimpeng.2023.104609_bib0039 article-title: Compressive behaviour of closed-cell aluminium foam at different strain rates publication-title: Materials (Basel) doi: 10.3390/ma12244108 – volume: 126 start-page: 150 year: 2018 ident: 10.1016/j.ijimpeng.2023.104609_bib0031 article-title: Statistical analysis of the tensile strength of GFRP, CFRP and hybrid composites publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2016.12.021 – volume: 191 year: 2021 ident: 10.1016/j.ijimpeng.2023.104609_bib0017 article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.106105 – volume: 62 start-page: 1633 year: 2002 ident: 10.1016/j.ijimpeng.2023.104609_bib0041 article-title: Failure analysis of FRP laminates by means of physically based phenomenological models publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(01)00208-1 – volume: 122 start-page: 265 year: 2018 ident: 10.1016/j.ijimpeng.2023.104609_bib0013 article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2018.08.016 – volume: 135 year: 2020 ident: 10.1016/j.ijimpeng.2023.104609_bib0020 article-title: Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2019.103327 – volume: 161 year: 2021 ident: 10.1016/j.ijimpeng.2023.104609_bib0027 article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2021.107445 – start-page: 133 year: 2019 ident: 10.1016/j.ijimpeng.2023.104609_bib0035 article-title: Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load publication-title: Int J Impact Eng – volume: 206 year: 2020 ident: 10.1016/j.ijimpeng.2023.104609_bib0006 article-title: Experimental and numerical investigation of reinforced concrete slabs under blast loading publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.110125 – volume: 152 year: 2021 ident: 10.1016/j.ijimpeng.2023.104609_bib0021 article-title: High-velocity impact response of titanium-based fiber metal laminates. Part I: experimental investigations publication-title: Int J Impact Eng – volume: 52 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0007 article-title: Experimental investigation into the response of GFRP S-shaped foldcore sandwich panels to impulsive loading publication-title: J Build Eng – volume: 164 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0002 article-title: Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2022.104186 – volume: 47 start-page: 329 year: 1980 ident: 10.1016/j.ijimpeng.2023.104609_bib0040 article-title: Failure criteria for unidirectional fiber composites publication-title: J Appl Mech doi: 10.1115/1.3153664 – volume: 237 year: 2022 ident: 10.1016/j.ijimpeng.2023.104609_bib0016 article-title: Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2022.109840 – volume: 100 start-page: 170 year: 2016 ident: 10.1016/j.ijimpeng.2023.104609_bib0019 article-title: Foldcores made of thermoplastic materials: experimental study and finite element analysis publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2015.12.017 – volume: 139 start-page: 1 year: 2017 ident: 10.1016/j.ijimpeng.2023.104609_bib0023 article-title: Probabilistic failure of graphite epoxy composite plates due to low velocity impact publication-title: J Mech Des Trans ASME doi: 10.1115/1.4035678 |
SSID | ssj0017050 |
Score | 2.5965502 |
Snippet | •Novel efficient design of honeycomb sandwich structures were developed using a FML skin of carbon/epoxy and steel.•The FML used honeycomb sandwich structure... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104609 |
SubjectTerms | Blast resistance CFRP Energy FML Foam Sandwich structure TNT |
Title | Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2023.104609 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVXEcyZY9pqEmfSSUpoFsRpLlxiY4gbiULv3tPfkRUihk6GYbnbFP57vv5LtPCN0qHnUjyihREJ0JE9wmIvIF0R4cKurFTs_0O4_G7nDKHmfOrIEGdS-MKausfH_p0wtvXV2xKm1aqySxJmCcDOLfDEC06QA1jJ-McWPlne9NmYdhiynWWWAwMaO3uoTTTpImAE6z947ZRLz43WkKE_8KUFtBJzhChxVaxP3ygY5RQ2cn6GCLQ_AUTe4A_-ZYVOQieBljXdBCQDTB82Wmv-DVJF6LLPpM1ByXhLEfkGVjswaLB8HrizXJtV7gYPSM16Zm5gxNg_u3wZBUOyUQRe1eTgD3K19BKiGoUl0hXcBRMdUUcpNuz1eQKSrPEw5Mi6slo0wxCoIyjiKADx736DlqZvBEFwhzDjfQ8JlDIGcAFqUbMS51rIX0uW37LeTU6glVRSNudrNYhHW9WBrWag2NWsNSrS1kbeRWJZHGTgm_1n74yyRC8PY7ZC__IXuF9s1ZWeV3jZowLfoGkEcu24VptdFe_-FpOP4BoGPYmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RnxuQc9lkJ3oe3Bg6IE5BEjkHCr2-1WSkghAUO4-Kf8g872QTAx4WC4NW1ms_12MvPt7jwAboXpFTzKqCbQO2uMm0WNezbXpIWPglp-yVD5zq12udZjL_1SPwPfaS6MCqtMbH9s0yNrnbzREzT1SRDoHVROhv6vjyRaZYCmHawbcjHHfdv0vv6Ei3xnGNXnbqWmJa0FNEGLxkxDoixsgdybUyEK3C0j8fCppEjmC4YtcGslLIuX8D_K0mWUCUZR0PU9D_2tZVoUx92CbYbmQrVNyH8t40pUeZroYAdnp6npraQlD_PBMEA2HH7kVdfy6H5VRUL-5RFXvFz1APYTekoeYgQOISPDI9hbKVp4DJ1HJNwzwpNqJmTsExnVoUD3RQbjUC4QS5dMeejNAzEgcYXaT9zWE3XoSyrVt1e9M5NyRKqtJpmqIJ0T6G0Ev1PIhjijMyCmiQNItCvIHBiyU7fsMdOVvuSubRaLdg5KKTyOSOqWq_YZIycNUBs6KayOgtWJYc2BvpSbxJU71krYKfrOLx100L2skT3_h-wN7NS6rabTrLcbF7CrvsQhhpeQxSWSV0h7Zu51pGYE3jet1z8XWBNN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blast+analysis+of+efficient+honeycomb+sandwich+structures+with+CFRP%2FSteel+FML+skins&rft.jtitle=International+journal+of+impact+engineering&rft.au=Patel%2C+Murlidhar&rft.au=Patel%2C+Shivdayal&rft.au=Ahmad%2C+Suhail&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=178&rft_id=info:doi/10.1016%2Fj.ijimpeng.2023.104609&rft.externalDocID=S0734743X23001203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |