A thin-walled cavity structure with double-layer tapered scatterer locally resonant metamaterial plates for extreme low-frequency attenuation

•A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed structure coupled the local resonant, cavity, and convex mechanisms to open a broad stopband of 64.9805.6Hz.•The tapered scatterer generates a wi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 293; p. 112742
Main Authors Ravanbod, Mohammad, Ebrahimi-Nejad, Salman, Mollajafari, Morteza
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0020-7683
1879-2146
DOI10.1016/j.ijsolstr.2024.112742

Cover

Loading…
Abstract •A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed structure coupled the local resonant, cavity, and convex mechanisms to open a broad stopband of 64.9805.6Hz.•The tapered scatterer generates a wide stopband, low stopband opening frequency, and outstanding dispersion features.•64.9-805.6Hz286%, 35.42dB0-1KHz). The cavity mechanism boosts the STL levels while maintaining the dispersion characteristics given by the convex structure.•The results indicated a broad stopband with a total SCF of, allowing the structure to block incoming acoustic waves with 35.42dB RMSNA. Locally resonant acoustic metamaterials (LRAMs) are effective spatial frequency filters due to their local resonance system. However, they own narrow stopbands, charge additional weight on the primary system, and operate only at the adjusted frequency range. In this paper, a novel dual-target LRAM is proposed based on coupling the cavity and convex mechanisms, utilizing the benefits of both sound-barrier and sound-absorbing types of acoustic metamaterials. A combination of the cavity and convex structures is presented and investigated for the first time, which exploits both the reflection and absorption theories simultaneously to improve the sound attenuation performance of acoustic metamaterials. By arranging two-layer finite periodic of 5×5 proposed convex unit cells along x and y directions and separating them by an air cavity, a supercell named hybrid locally resonant acoustic metamaterials (HLRAM) baffle is designed. The band structures, transmission spectrum, and displacement vector fields are calculated employing the finite element method (FEM). In addition, vibration modes at the edges of stopbands are computed and carefully analyzed to determine the formation mechanism, mechanics/dynamic response, and dispersion features of stopbands. Meanwhile, sensitivity analyses have been conducted on the model to investigate the influence of material and geometry parameters on dispersion characteristics. Equivalent spring-mass analytic models are used to direct the modifications of structure and the adjustment of structural and material parameters in order to achieve a wide stopband with a low opening frequency. Thereby, the effective stiffness and mass values influencing the starting and cutoff frequencies are adjusted in a desirable manner. The results show that the structure can generate a wide stopband that covers the frequency range of 64.9-805.6Hz, allowing the structure to block incoming acoustic waves with 35.42dB root mean square of noise attenuation (RMSNA) the given frequency range (0-1kHz). This study indicates that the HLRAM has a preponderance among conventional techniques as we can manipulate dispersion characteristics and the sound transmission loss (STL) based on the desired sound reduction level and shift stopbands to the intended frequency range. This can be achieved by altering cavity size, material, or geometry parameters.
AbstractList •A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed structure coupled the local resonant, cavity, and convex mechanisms to open a broad stopband of 64.9805.6Hz.•The tapered scatterer generates a wide stopband, low stopband opening frequency, and outstanding dispersion features.•64.9-805.6Hz286%, 35.42dB0-1KHz). The cavity mechanism boosts the STL levels while maintaining the dispersion characteristics given by the convex structure.•The results indicated a broad stopband with a total SCF of, allowing the structure to block incoming acoustic waves with 35.42dB RMSNA. Locally resonant acoustic metamaterials (LRAMs) are effective spatial frequency filters due to their local resonance system. However, they own narrow stopbands, charge additional weight on the primary system, and operate only at the adjusted frequency range. In this paper, a novel dual-target LRAM is proposed based on coupling the cavity and convex mechanisms, utilizing the benefits of both sound-barrier and sound-absorbing types of acoustic metamaterials. A combination of the cavity and convex structures is presented and investigated for the first time, which exploits both the reflection and absorption theories simultaneously to improve the sound attenuation performance of acoustic metamaterials. By arranging two-layer finite periodic of 5×5 proposed convex unit cells along x and y directions and separating them by an air cavity, a supercell named hybrid locally resonant acoustic metamaterials (HLRAM) baffle is designed. The band structures, transmission spectrum, and displacement vector fields are calculated employing the finite element method (FEM). In addition, vibration modes at the edges of stopbands are computed and carefully analyzed to determine the formation mechanism, mechanics/dynamic response, and dispersion features of stopbands. Meanwhile, sensitivity analyses have been conducted on the model to investigate the influence of material and geometry parameters on dispersion characteristics. Equivalent spring-mass analytic models are used to direct the modifications of structure and the adjustment of structural and material parameters in order to achieve a wide stopband with a low opening frequency. Thereby, the effective stiffness and mass values influencing the starting and cutoff frequencies are adjusted in a desirable manner. The results show that the structure can generate a wide stopband that covers the frequency range of 64.9-805.6Hz, allowing the structure to block incoming acoustic waves with 35.42dB root mean square of noise attenuation (RMSNA) the given frequency range (0-1kHz). This study indicates that the HLRAM has a preponderance among conventional techniques as we can manipulate dispersion characteristics and the sound transmission loss (STL) based on the desired sound reduction level and shift stopbands to the intended frequency range. This can be achieved by altering cavity size, material, or geometry parameters.
ArticleNumber 112742
Author Ebrahimi-Nejad, Salman
Mollajafari, Morteza
Ravanbod, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-6944-5847
  surname: Ravanbod
  fullname: Ravanbod, Mohammad
  organization: Automotive Research Centre, Department of Mechanical and Energy Systems Engineering, University of Bradford, Bradford, West Yorkshire, UK
– sequence: 2
  givenname: Salman
  orcidid: 0000-0002-1591-023X
  surname: Ebrahimi-Nejad
  fullname: Ebrahimi-Nejad, Salman
  organization: Vehicle Dynamical Systems Research Lab, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran
– sequence: 3
  givenname: Morteza
  orcidid: 0000-0002-2717-6335
  surname: Mollajafari
  fullname: Mollajafari, Morteza
  email: mollajafari@iust.ac.ir
  organization: Vehicle Electrical and Electronic Research Lab, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran
BookMark eNqFkM1KAzEQx4NUsK2-guQFtibZdD_Ag6X4BYIXPYdsMktT0k1Nsq37EL6zqdWLl55mYOb3Z-Y3QaPOdYDQNSUzSmhxs56ZdXA2RD9jhPEZpazk7AyNaVXWGaO8GKExIYxkZVHlF2gSwpoQwvOajNHXAseV6bK9tBY0VnJn4oBTVq9i7wHvTVxh7frGQmblAB5HuQWfVoOSMabOY-tUogfsIbhOdhFvIMqNTEMjLd7a1AXcOo_hM3rYQAL2Wevho4dODfgQ0_UyGtddovNW2gBXv3WK3h_u35ZP2cvr4_Ny8ZKpnLKYMQmsJjDXVZkXrMorxokGrhWQUjWK6ipv6qLmkDfFnNZNw0sy123LWVGW6fF8iopjrvIuBA-t2HqzkX4QlIiDVLEWf1LFQao4Sk3g7T9QmfhzevTS2NP43RGH9NzOgBdBmSQBtPGgotDOnIr4BmaanuI
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109696
crossref_primary_10_1088_1361_6463_ad8ad0
crossref_primary_10_1007_s00339_024_08141_y
crossref_primary_10_1016_j_ijmecsci_2025_110056
crossref_primary_10_1177_1045389X241273049
crossref_primary_10_1016_j_mtcomm_2024_110420
crossref_primary_10_1371_journal_pone_0311745
crossref_primary_10_1016_j_ijmecsci_2024_109527
crossref_primary_10_1080_15376494_2024_2442499
crossref_primary_10_1007_s00339_024_07690_6
crossref_primary_10_1002_admt_202400934
crossref_primary_10_1007_s11071_024_10278_7
crossref_primary_10_3390_ma18030682
crossref_primary_10_1088_2053_1591_ad9dbc
crossref_primary_10_1016_j_conbuildmat_2024_139316
crossref_primary_10_1016_j_ijsolstr_2024_113159
crossref_primary_10_1016_j_jmps_2024_105889
crossref_primary_10_1016_j_ymssp_2024_111744
crossref_primary_10_1007_s11431_024_2739_x
crossref_primary_10_1142_S0217984925500794
Cites_doi 10.1063/1.5117283
10.1088/0964-1726/24/9/095011
10.1088/2053-1591/aadbe2
10.1016/j.ijsolstr.2019.08.032
10.1063/1.4889846
10.1016/j.apacoust.2022.109046
10.1016/j.advengsoft.2018.08.002
10.1016/j.jmps.2019.02.016
10.1115/1.4035307
10.1103/PhysRevB.79.214305
10.1103/PhysRevA.80.033802
10.1016/j.physleta.2021.127432
10.1515/rams-2022-0010
10.1088/1367-2630/aa83f3
10.1088/2631-8695/acbfa4
10.1177/1077546316685209
10.1016/j.eml.2016.10.004
10.1016/j.ijsolstr.2015.03.036
10.1016/j.tws.2022.110465
10.1088/2631-8695/ac1989
10.1080/15376494.2023.2280997
10.1016/j.ijsolstr.2017.05.042
10.1007/s00339-019-2448-5
10.1016/j.ijsolstr.2017.06.019
10.1007/s00339-021-04637-z
10.1177/1045389X19898751
10.1126/science.289.5485.1734
10.1016/j.apacoust.2022.109019
10.1016/j.ijsolstr.2018.12.015
10.1016/j.ijsolstr.2020.01.020
10.1016/j.apacoust.2023.109297
10.1016/j.tws.2022.110521
10.1088/2053-1591/aaed4b
10.1016/j.tws.2021.107665
10.1016/j.physleta.2020.126885
10.1142/S1758825120500751
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijsolstr.2024.112742
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2146
ExternalDocumentID 10_1016_j_ijsolstr_2024_112742
S0020768324000994
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
TR2
XPP
ZMT
~02
~G-
29J
6TJ
AAFWJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
LY7
M24
M41
R2-
SET
SMS
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c312t-2ae290e5d87362838240de4dce07cbc1d83b9694e3b6519bb4705dff426770433
IEDL.DBID .~1
ISSN 0020-7683
IngestDate Tue Jul 01 01:20:06 EDT 2025
Thu Apr 24 22:52:20 EDT 2025
Sat Apr 06 16:23:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cavity structure
Local resonance
Tunable stopbands
Absorptive-reflective metamaterial
Acoustic metamaterials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-2ae290e5d87362838240de4dce07cbc1d83b9694e3b6519bb4705dff426770433
ORCID 0000-0002-1591-023X
0000-0002-6944-5847
0000-0002-2717-6335
ParticipantIDs crossref_primary_10_1016_j_ijsolstr_2024_112742
crossref_citationtrail_10_1016_j_ijsolstr_2024_112742
elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2024_112742
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of solids and structures
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Li, Xia, Man (b0125) 2018; 132–133
Li, Miao, You, Fang, Liang, Lei (b0105) 2019; 125
Li, Chen, Wang, Ma, Jiang (b0090) 2014; 116
Shen, Li, Peng, Cummer (b0175) 2018; 2
Kheybari, M., Ebrahimi-Nejad, S., 2021. Dual-target-frequency-range stop-band acoustic metamaterial muffler: acoustic and CFD approach. Eng. Res. Express, 3(3), 035027. https://doi.org/10.1088/2631-8695/ac1989.
Krushynska, Miniaci, Bosia, Pugno (b0080) 2017; 12
Li, Zhang, Hou, Su, Zeng, Xu (b0115) 2023; 184
Ravanbod, Ebrahimi-Nejad (b0165) 2023
COMSOL AB, Stockholm, Sweden.
Panahi, Hosseinkhani, Khansanami, Younesian, Ranjbar (b0150) 2021; 163
Liu (b0120) 2000; 289
Meaud, Che (b0130) 2017; 122
Langfeldt, Khatokar, Gleine (b0085) 2022; 199
Akbari-Farahani, Ebrahimi-Nejad (b0005) 2023; 365
Deymier (b0025) 2013
Kitagawa, Sakai (b0060) 2009; 80
Ravanbod, Ebrahimi-Nejad (b0160) 2023; 129
Wang, Chen, Cheng (b0190) 2023; 184
Wang, Lee, Xu (b0195) 2020; 12
Li, Wang, Wang (b0110) 2019; 162
Firoozy, P., Ebrahimi-Nejad, S., 2020. Broadband energy harvesting from time-delayed nonlinear oscillations of magnetic levitation. J. Intell. Mater. Syst. Struct., 31(5), 737-755. https://doi.org/10.1177/1045389X1989875.
Mousanezhad, Ebrahimi, Haghpanah, Ghosh, Ajdari, Hamouda, Vaziri (b0145) 2015; 66
Bucay, Roussel, Vasseur, Deymier, Hladky-Hennion, Pennec, Muralidharan, Djafari-Rouhani, Dubus (b0015) 2009; 79
COMSOL Multiphysics®, v. 5.6.
Yang, Song, Wen, Zhu, Tan, Liu, Liu, Sun (b0200) 2020; 384
Tan, Sun, Tian, Zhu, Song, Wen, Liu, Liu (b0185) 2021; 405
Jin, Jiang, Hongping (b0045) 2022; 61
Li, Gang, Sun, Zhang, Zhang (b0095) 2018; 125
Krushynska, Bosia, Miniaci, Pugno (b0070) 2017; 19
Krattiger, Hussein (b0065) 2014; 90
Ebrahimi-Nejad, Kheybari (b0030) 2018; 5
Meng, Deng, Zhang, Xu, Wen (b0135) 2015; 24
Zeng, Yang, Yang, Muzamil, Rui, Deng, Peng, Qiujiao (b0205) 2020; 185
Sarıgül, Karagözlü (b0170) 2017; 24
Sun, Guo, Jin, Zhang, Liu, Yuan, Ma, Wang (b0180) 2022; 200
Kheybari, Ebrahimi-Nejad (b0055) 2018; 6
Mokhtari, Lu, Srivastava (b0140) 2019; 126
Ravanbod, Ebrahimi-Nejad, Mollajafari, SalehiRad (b0155) 2023; 5
Zhao, Song, Tian, Xu, Gao, Sun (b0210) 2021; 127
An, Lai, Fan, Zhang (b0010) 2020; 191–192
Li, Liu, Liu, Li, Yang, Tong, Shi, Schmidt, Schröder (b0100) 2023; 205
Krushynska, Miniaci, Kouznetsova, Geers (b0075) 2017; 139
Fujita, K., Tomoda, M., Wright, O. and Matsuda, O., 2019. Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array. Appl. Phys. Lett. 115(8), 081905. https://doi.org/10.1063/1.5117283.
10.1016/j.ijsolstr.2024.112742_b0035
Ravanbod (10.1016/j.ijsolstr.2024.112742_b0160) 2023; 129
An (10.1016/j.ijsolstr.2024.112742_b0010) 2020; 191–192
Panahi (10.1016/j.ijsolstr.2024.112742_b0150) 2021; 163
Wang (10.1016/j.ijsolstr.2024.112742_b0195) 2020; 12
Zhao (10.1016/j.ijsolstr.2024.112742_b0210) 2021; 127
Wang (10.1016/j.ijsolstr.2024.112742_b0190) 2023; 184
Krushynska (10.1016/j.ijsolstr.2024.112742_b0070) 2017; 19
10.1016/j.ijsolstr.2024.112742_b0050
Mokhtari (10.1016/j.ijsolstr.2024.112742_b0140) 2019; 126
Meng (10.1016/j.ijsolstr.2024.112742_b0135) 2015; 24
Jin (10.1016/j.ijsolstr.2024.112742_b0045) 2022; 61
Langfeldt (10.1016/j.ijsolstr.2024.112742_b0085) 2022; 199
Krattiger (10.1016/j.ijsolstr.2024.112742_b0065) 2014; 90
Li (10.1016/j.ijsolstr.2024.112742_b0115) 2023; 184
Li (10.1016/j.ijsolstr.2024.112742_b0105) 2019; 125
Mousanezhad (10.1016/j.ijsolstr.2024.112742_b0145) 2015; 66
Ebrahimi-Nejad (10.1016/j.ijsolstr.2024.112742_b0030) 2018; 5
Shen (10.1016/j.ijsolstr.2024.112742_b0175) 2018; 2
Yang (10.1016/j.ijsolstr.2024.112742_b0200) 2020; 384
Krushynska (10.1016/j.ijsolstr.2024.112742_b0075) 2017; 139
Liu (10.1016/j.ijsolstr.2024.112742_b0125) 2018; 132–133
Li (10.1016/j.ijsolstr.2024.112742_b0110) 2019; 162
Liu (10.1016/j.ijsolstr.2024.112742_b0120) 2000; 289
10.1016/j.ijsolstr.2024.112742_b0020
Meaud (10.1016/j.ijsolstr.2024.112742_b0130) 2017; 122
Sun (10.1016/j.ijsolstr.2024.112742_b0180) 2022; 200
Krushynska (10.1016/j.ijsolstr.2024.112742_b0080) 2017; 12
10.1016/j.ijsolstr.2024.112742_b0040
Kheybari (10.1016/j.ijsolstr.2024.112742_b0055) 2018; 6
Akbari-Farahani (10.1016/j.ijsolstr.2024.112742_b0005) 2023; 365
Sarıgül (10.1016/j.ijsolstr.2024.112742_b0170) 2017; 24
Li (10.1016/j.ijsolstr.2024.112742_b0090) 2014; 116
Li (10.1016/j.ijsolstr.2024.112742_b0100) 2023; 205
Zeng (10.1016/j.ijsolstr.2024.112742_b0205) 2020; 185
Ravanbod (10.1016/j.ijsolstr.2024.112742_b0155) 2023; 5
Deymier (10.1016/j.ijsolstr.2024.112742_b0025) 2013
Kitagawa (10.1016/j.ijsolstr.2024.112742_b0060) 2009; 80
Bucay (10.1016/j.ijsolstr.2024.112742_b0015) 2009; 79
Li (10.1016/j.ijsolstr.2024.112742_b0095) 2018; 125
Ravanbod (10.1016/j.ijsolstr.2024.112742_b0165) 2023
Tan (10.1016/j.ijsolstr.2024.112742_b0185) 2021; 405
References_xml – volume: 191–192
  start-page: 293
  year: 2020
  end-page: 306
  ident: b0010
  article-title: 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation
  publication-title: Int. J. Solids Struct.
– volume: 79
  year: 2009
  ident: b0015
  article-title: Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study
  publication-title: Phys. Rev. B
– volume: 184
  year: 2023
  ident: b0190
  article-title: A metamaterial plate with magnetorheological elastomers and gradient resonators for tuneable, low-frequency and broadband flexural wave manipulation
  publication-title: Thin-Walled Struct.
– reference: COMSOL Multiphysics®, v. 5.6.
– volume: 184
  year: 2023
  ident: b0115
  article-title: Mechanical properties of re-entrant anti-chiral auxetic metamaterial under the in-plane compression
  publication-title: Thin-Walled Struct.
– start-page: 367
  year: 2013
  end-page: 371
  ident: b0025
  article-title: Acoustic Metamaterials and Phononic Crystals
– volume: 61
  start-page: 68
  year: 2022
  end-page: 78
  ident: b0045
  article-title: Multiple wide band gaps in a convex-like Holey phononic crystal strip
  publication-title: Rev. Adv. Mater. Sci.
– volume: 205
  year: 2023
  ident: b0100
  article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator
  publication-title: Appl. Acoust.
– reference: . COMSOL AB, Stockholm, Sweden.
– volume: 5
  year: 2023
  ident: b0155
  article-title: Porous liner coated inlet duct: A novel approach to attenuate automotive turbocharger inlet flow-induced sound propagation
  publication-title: Eng. Res. Express
– volume: 12
  start-page: 2050075
  year: 2020
  ident: b0195
  article-title: Bandgap properties of two-layered locally resonant phononic crystals
  publication-title: Int. J. Appl. Mech.
– volume: 365
  year: 2023
  ident: b0005
  article-title: From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting
  publication-title: Sens. Actuators A: Phys.
– volume: 66
  start-page: 218
  year: 2015
  end-page: 227
  ident: b0145
  article-title: Spiderweb Honeycombs
  publication-title: Int. J. Solids Struct.
– volume: 125
  year: 2019
  ident: b0105
  article-title: Effects of material parameters on the band gaps of two-dimensional three-component phononic crystals
  publication-title: Appl. Phys. A
– volume: 132–133
  start-page: 20
  year: 2018
  end-page: 30
  ident: b0125
  article-title: Fractal labyrinthine acoustic metamaterial in planar lattices
  publication-title: Int. J. Solids Struct.
– volume: 162
  start-page: 271
  year: 2019
  end-page: 284
  ident: b0110
  article-title: Modelling of Elastic Metamaterials with Negative Mass and Modulus Based on Translational Resonance
  publication-title: Int. J. Solids Struct.
– reference: Kheybari, M., Ebrahimi-Nejad, S., 2021. Dual-target-frequency-range stop-band acoustic metamaterial muffler: acoustic and CFD approach. Eng. Res. Express, 3(3), 035027. https://doi.org/10.1088/2631-8695/ac1989.
– volume: 384
  year: 2020
  ident: b0200
  article-title: Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency
  publication-title: Phys. Lett. A
– volume: 24
  year: 2015
  ident: b0135
  article-title: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio
  publication-title: Smart Mater. Struct.
– volume: 24
  start-page: 2274
  year: 2017
  end-page: 2283
  ident: b0170
  article-title: Vibro-acoustic coupling in composite plate-cavity systems
  publication-title: J. Vib. Control
– volume: 185
  start-page: 334
  year: 2020
  end-page: 341
  ident: b0205
  article-title: A matryoshka-like seismic metamaterial with wide band-gap characteristics
  publication-title: Int. J. Solids Struct.
– volume: 5
  year: 2018
  ident: b0030
  article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior
  publication-title: Mater. Res. Express
– volume: 139
  year: 2017
  ident: b0075
  article-title: Multilayered inclusions in locally resonant metamaterials: two-dimensional versus three-dimensional modeling
  publication-title: J. Vib. Acoust.
– volume: 116
  year: 2014
  ident: b0090
  article-title: Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states
  publication-title: J. Appl. Phys.
– volume: 125
  start-page: 19
  year: 2018
  end-page: 26
  ident: b0095
  article-title: Design of phononic crystals plate and application in vehicle sound insulation
  publication-title: Adv. Eng. Softw.
– volume: 200
  year: 2022
  ident: b0180
  article-title: Mechanics and extreme low-frequency band gaps of auxetic hexachiral acoustic metamaterial with internal resonant unit
  publication-title: Appl. Acoust.
– volume: 163
  year: 2021
  ident: b0150
  article-title: Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: Design, modeling and testing
  publication-title: Thin-Walled Struct.
– volume: 127
  year: 2021
  ident: b0210
  article-title: Extending and lowering bandgaps by cross-like beams phononic crystals with perforation
  publication-title: Appl. Phys. A
– start-page: 1
  year: 2023
  end-page: 16
  ident: b0165
  article-title: Perforated auxetic honeycomb booster with reentrant chirality: a new design for high-efficiency piezoelectric energy harvesting
  publication-title: Mech. Adv. Mater. Struct.
– reference: Fujita, K., Tomoda, M., Wright, O. and Matsuda, O., 2019. Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array. Appl. Phys. Lett. 115(8), 081905. https://doi.org/10.1063/1.5117283.
– volume: 199
  year: 2022
  ident: b0085
  article-title: Plate-type acoustic metamaterials with integrated Helmholtz resonators
  publication-title: Appl. Acoust.
– volume: 289
  start-page: 1734
  year: 2000
  end-page: 1736
  ident: b0120
  article-title: Locally resonant sonic materials
  publication-title: Science
– volume: 126
  start-page: 256
  year: 2019
  ident: b0140
  article-title: On the emergence of negative effective density and modulus in 2-phase phononic crystals
  publication-title: J. Mech. Phys. Solids
– volume: 6
  year: 2018
  ident: b0055
  article-title: Locally resonant stop band acoustic metamaterial muffler with tuned resonance frequency range
  publication-title: Mater. Res. Express
– volume: 405
  year: 2021
  ident: b0185
  article-title: The mechanism of bandgap opening and merging in 2D spherical phononic crystals
  publication-title: Phys. Lett. A
– volume: 129
  year: 2023
  ident: b0160
  article-title: Innovative lightweight re-entrant cross-like beam phononic crystal with perforated host for broadband vibration attenuation
  publication-title: Appl. Phys. A
– volume: 19
  year: 2017
  ident: b0070
  article-title: Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control
  publication-title: New J. Phys.
– reference: Firoozy, P., Ebrahimi-Nejad, S., 2020. Broadband energy harvesting from time-delayed nonlinear oscillations of magnetic levitation. J. Intell. Mater. Syst. Struct., 31(5), 737-755. https://doi.org/10.1177/1045389X1989875.
– volume: 80
  year: 2009
  ident: b0060
  article-title: Bloch theorem in cylindrical coordinates and its application to a Bragg fiber
  publication-title: Phys. Rev. A
– volume: 122
  start-page: 69
  year: 2017
  end-page: 80
  ident: b0130
  article-title: Tuning elastic wave propagation in multistable architected materials
  publication-title: Int. J. Solids Struct.
– volume: 2
  year: 2018
  ident: b0175
  article-title: Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems
  publication-title: Phys. Rev. Mater.
– volume: 12
  start-page: 30
  year: 2017
  end-page: 36
  ident: b0080
  article-title: Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials
  publication-title: Extreme Mech. Lett.
– volume: 90
  year: 2014
  ident: b0065
  article-title: Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations
  publication-title: Phys. Rev. E
– volume: 2
  issue: 12
  year: 2018
  ident: 10.1016/j.ijsolstr.2024.112742_b0175
  article-title: Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems
  publication-title: Phys. Rev. Mater.
– ident: 10.1016/j.ijsolstr.2024.112742_b0040
  doi: 10.1063/1.5117283
– volume: 24
  issue: 9
  year: 2015
  ident: 10.1016/j.ijsolstr.2024.112742_b0135
  article-title: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/9/095011
– volume: 5
  issue: 10
  year: 2018
  ident: 10.1016/j.ijsolstr.2024.112742_b0030
  article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aadbe2
– volume: 365
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0005
  article-title: From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting
  publication-title: Sens. Actuators A: Phys.
– volume: 185
  start-page: 334
  issue: 186
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.112742_b0205
  article-title: A matryoshka-like seismic metamaterial with wide band-gap characteristics
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2019.08.032
– volume: 116
  issue: 2
  year: 2014
  ident: 10.1016/j.ijsolstr.2024.112742_b0090
  article-title: Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4889846
– volume: 200
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.112742_b0180
  article-title: Mechanics and extreme low-frequency band gaps of auxetic hexachiral acoustic metamaterial with internal resonant unit
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.109046
– volume: 125
  start-page: 19
  year: 2018
  ident: 10.1016/j.ijsolstr.2024.112742_b0095
  article-title: Design of phononic crystals plate and application in vehicle sound insulation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2018.08.002
– volume: 126
  start-page: 256
  year: 2019
  ident: 10.1016/j.ijsolstr.2024.112742_b0140
  article-title: On the emergence of negative effective density and modulus in 2-phase phononic crystals
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.02.016
– volume: 139
  issue: 2
  year: 2017
  ident: 10.1016/j.ijsolstr.2024.112742_b0075
  article-title: Multilayered inclusions in locally resonant metamaterials: two-dimensional versus three-dimensional modeling
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4035307
– volume: 79
  issue: 21
  year: 2009
  ident: 10.1016/j.ijsolstr.2024.112742_b0015
  article-title: Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.214305
– volume: 80
  issue: 3
  year: 2009
  ident: 10.1016/j.ijsolstr.2024.112742_b0060
  article-title: Bloch theorem in cylindrical coordinates and its application to a Bragg fiber
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.033802
– volume: 405
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.112742_b0185
  article-title: The mechanism of bandgap opening and merging in 2D spherical phononic crystals
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2021.127432
– volume: 61
  start-page: 68
  issue: 1
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.112742_b0045
  article-title: Multiple wide band gaps in a convex-like Holey phononic crystal strip
  publication-title: Rev. Adv. Mater. Sci.
  doi: 10.1515/rams-2022-0010
– volume: 19
  issue: 10
  year: 2017
  ident: 10.1016/j.ijsolstr.2024.112742_b0070
  article-title: Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa83f3
– volume: 5
  issue: 1
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0155
  article-title: Porous liner coated inlet duct: A novel approach to attenuate automotive turbocharger inlet flow-induced sound propagation
  publication-title: Eng. Res. Express
  doi: 10.1088/2631-8695/acbfa4
– volume: 24
  start-page: 2274
  issue: 11
  year: 2017
  ident: 10.1016/j.ijsolstr.2024.112742_b0170
  article-title: Vibro-acoustic coupling in composite plate-cavity systems
  publication-title: J. Vib. Control
  doi: 10.1177/1077546316685209
– volume: 12
  start-page: 30
  year: 2017
  ident: 10.1016/j.ijsolstr.2024.112742_b0080
  article-title: Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2016.10.004
– volume: 66
  start-page: 218
  year: 2015
  ident: 10.1016/j.ijsolstr.2024.112742_b0145
  article-title: Spiderweb Honeycombs
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.03.036
– volume: 184
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0115
  article-title: Mechanical properties of re-entrant anti-chiral auxetic metamaterial under the in-plane compression
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.110465
– ident: 10.1016/j.ijsolstr.2024.112742_b0050
  doi: 10.1088/2631-8695/ac1989
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0165
  article-title: Perforated auxetic honeycomb booster with reentrant chirality: a new design for high-efficiency piezoelectric energy harvesting
  publication-title: Mech. Adv. Mater. Struct.
  doi: 10.1080/15376494.2023.2280997
– volume: 122
  start-page: 69
  issue: 123
  year: 2017
  ident: 10.1016/j.ijsolstr.2024.112742_b0130
  article-title: Tuning elastic wave propagation in multistable architected materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.05.042
– start-page: 367
  year: 2013
  ident: 10.1016/j.ijsolstr.2024.112742_b0025
– volume: 90
  issue: 6
  year: 2014
  ident: 10.1016/j.ijsolstr.2024.112742_b0065
  article-title: Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations
  publication-title: Phys. Rev. E
– volume: 125
  issue: 3
  year: 2019
  ident: 10.1016/j.ijsolstr.2024.112742_b0105
  article-title: Effects of material parameters on the band gaps of two-dimensional three-component phononic crystals
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2448-5
– volume: 132–133
  start-page: 20
  year: 2018
  ident: 10.1016/j.ijsolstr.2024.112742_b0125
  article-title: Fractal labyrinthine acoustic metamaterial in planar lattices
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.06.019
– volume: 127
  issue: 7
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.112742_b0210
  article-title: Extending and lowering bandgaps by cross-like beams phononic crystals with perforation
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-021-04637-z
– ident: 10.1016/j.ijsolstr.2024.112742_b0035
  doi: 10.1177/1045389X19898751
– volume: 289
  start-page: 1734
  issue: 5485
  year: 2000
  ident: 10.1016/j.ijsolstr.2024.112742_b0120
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 199
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.112742_b0085
  article-title: Plate-type acoustic metamaterials with integrated Helmholtz resonators
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.109019
– volume: 162
  start-page: 271
  year: 2019
  ident: 10.1016/j.ijsolstr.2024.112742_b0110
  article-title: Modelling of Elastic Metamaterials with Negative Mass and Modulus Based on Translational Resonance
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2018.12.015
– volume: 191–192
  start-page: 293
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.112742_b0010
  article-title: 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2020.01.020
– volume: 205
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0100
  article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109297
– ident: 10.1016/j.ijsolstr.2024.112742_b0020
– volume: 184
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0190
  article-title: A metamaterial plate with magnetorheological elastomers and gradient resonators for tuneable, low-frequency and broadband flexural wave manipulation
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.110521
– volume: 129
  issue: 102
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.112742_b0160
  article-title: Innovative lightweight re-entrant cross-like beam phononic crystal with perforated host for broadband vibration attenuation
  publication-title: Appl. Phys. A
– volume: 6
  year: 2018
  ident: 10.1016/j.ijsolstr.2024.112742_b0055
  article-title: Locally resonant stop band acoustic metamaterial muffler with tuned resonance frequency range
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaed4b
– volume: 163
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.112742_b0150
  article-title: Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: Design, modeling and testing
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.107665
– volume: 384
  issue: 35
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.112742_b0200
  article-title: Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126885
– volume: 12
  start-page: 2050075
  issue: 07
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.112742_b0195
  article-title: Bandgap properties of two-layered locally resonant phononic crystals
  publication-title: Int. J. Appl. Mech.
  doi: 10.1142/S1758825120500751
SSID ssj0004390
Score 2.554361
Snippet •A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112742
SubjectTerms Absorptive-reflective metamaterial
Acoustic metamaterials
Cavity structure
Local resonance
Tunable stopbands
Title A thin-walled cavity structure with double-layer tapered scatterer locally resonant metamaterial plates for extreme low-frequency attenuation
URI https://dx.doi.org/10.1016/j.ijsolstr.2024.112742
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPrE-yh68btskm01yLGKpip4UvIV9BVNiWtqIePEf-J-dySZaQejBY0ImhJ1lvm82M98QcqGkUiJTgkVGG8aNFEzFnkTdWy2FyHRi8Wjg7l5MHvnNU_i0QS7bXhgsq2xiv4vpdbRu7gya1RzM8xx7fH38jYSKcshzUBOU8wj18_sfP2UeALiuDQXSJHx6pUt42s-n4OBlhbqgPsdumoj7fwPUCuiMd8lOwxbpyH3QHtmw5T7ZXtEQPCCfI1o95yV7w6EohmqJwyCok4V9XViKB63UzF5VYVkhgWDTSs5xQCdd6lpbE-7UgFa8U0i9Z1gYQ19sJYHK1ruTzgvkoxTYLYVIjueJYPDGsoWrwn6n-JrSSYYfksfx1cPlhDUzFpgOPL9ivrR-MrShiSOAsjiIYTWN5UZbcJbSnokDlYiE20AJIHtK8WgYmiwDYI8iFD87Ip1yVtpjQiGX9G0oYh7rkGdAPDG1454KZBxoLZIuCduFTXUjQI5zMIq0rTSbpq1DUnRI6hzSJYNvu7mT4FhrkbR-S39tphRwYo3tyT9sT8kWXrl6yDPSAVfbc-AslerVm7JHNkfXt5P7LxTx8QI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPagH8Ylv9-B1rU02m-RYiqVa7amF3sK-gi0xLTZS-iP8z850E60gePC6YULYGWa-mcx8Q8iNkkqJVAkWGm0YN1IwFTUl8t5qKUSqY4ulgee-6A754ygY1Ui7moXBtsrS9zufvvLW5UmjvM3GbDzGGV8PfyMhoxziHL5BNpGdCox9s_XQ6_a_xyN9V2rBTAkF1gaFJ7fjCeh4XiA1qMdxoCbk3u8xai3udPbIbgkYact90z6p2fyA7KzRCB6SjxYtXsY5W-BeFEO1xH0Q1DHDvr9ZirVWaqbvKrMsk4CxaSFnuKOTzvWKXhNOVjEtW1LIvqfYG0NfbSEBza4MlM4yhKQUAC4FZ44lRRBYsPTNNWIvKb4md6zhR2TYuR-0u6xcs8C03_QK5knrxXc2MFEI0SzyI7hQY7nRFvSldNNEvopFzK2vBOA9pXh4F5g0hdgehsh_dkzq-TS3J4RCOunZQEQ80gFPAXtidsebypeRr7WIT0lQXWyiSw5yXIWRJVWz2SSpFJKgQhKnkFPS-JKbORaOPyXiSm_JD3tKIFT8IXv2D9lrstUdPD8lTw_93jnZxieuPfKC1EHt9hIgTKGuShP9BE-K87M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thin-walled+cavity+structure+with+double-layer+tapered+scatterer+locally+resonant+metamaterial+plates+for+extreme+low-frequency+attenuation&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Ravanbod%2C+Mohammad&rft.au=Ebrahimi-Nejad%2C+Salman&rft.au=Mollajafari%2C+Morteza&rft.date=2024-05-01&rft.issn=0020-7683&rft.volume=293&rft.spage=112742&rft_id=info:doi/10.1016%2Fj.ijsolstr.2024.112742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijsolstr_2024_112742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon