A thin-walled cavity structure with double-layer tapered scatterer locally resonant metamaterial plates for extreme low-frequency attenuation
•A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed structure coupled the local resonant, cavity, and convex mechanisms to open a broad stopband of 64.9805.6Hz.•The tapered scatterer generates a wi...
Saved in:
Published in | International journal of solids and structures Vol. 293; p. 112742 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-7683 1879-2146 |
DOI | 10.1016/j.ijsolstr.2024.112742 |
Cover
Loading…
Abstract | •A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed structure coupled the local resonant, cavity, and convex mechanisms to open a broad stopband of 64.9805.6Hz.•The tapered scatterer generates a wide stopband, low stopband opening frequency, and outstanding dispersion features.•64.9-805.6Hz286%, 35.42dB0-1KHz). The cavity mechanism boosts the STL levels while maintaining the dispersion characteristics given by the convex structure.•The results indicated a broad stopband with a total SCF of, allowing the structure to block incoming acoustic waves with 35.42dB RMSNA.
Locally resonant acoustic metamaterials (LRAMs) are effective spatial frequency filters due to their local resonance system. However, they own narrow stopbands, charge additional weight on the primary system, and operate only at the adjusted frequency range. In this paper, a novel dual-target LRAM is proposed based on coupling the cavity and convex mechanisms, utilizing the benefits of both sound-barrier and sound-absorbing types of acoustic metamaterials. A combination of the cavity and convex structures is presented and investigated for the first time, which exploits both the reflection and absorption theories simultaneously to improve the sound attenuation performance of acoustic metamaterials. By arranging two-layer finite periodic of 5×5 proposed convex unit cells along x and y directions and separating them by an air cavity, a supercell named hybrid locally resonant acoustic metamaterials (HLRAM) baffle is designed. The band structures, transmission spectrum, and displacement vector fields are calculated employing the finite element method (FEM). In addition, vibration modes at the edges of stopbands are computed and carefully analyzed to determine the formation mechanism, mechanics/dynamic response, and dispersion features of stopbands. Meanwhile, sensitivity analyses have been conducted on the model to investigate the influence of material and geometry parameters on dispersion characteristics. Equivalent spring-mass analytic models are used to direct the modifications of structure and the adjustment of structural and material parameters in order to achieve a wide stopband with a low opening frequency. Thereby, the effective stiffness and mass values influencing the starting and cutoff frequencies are adjusted in a desirable manner. The results show that the structure can generate a wide stopband that covers the frequency range of 64.9-805.6Hz, allowing the structure to block incoming acoustic waves with 35.42dB root mean square of noise attenuation (RMSNA) the given frequency range (0-1kHz). This study indicates that the HLRAM has a preponderance among conventional techniques as we can manipulate dispersion characteristics and the sound transmission loss (STL) based on the desired sound reduction level and shift stopbands to the intended frequency range. This can be achieved by altering cavity size, material, or geometry parameters. |
---|---|
AbstractList | •A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed structure coupled the local resonant, cavity, and convex mechanisms to open a broad stopband of 64.9805.6Hz.•The tapered scatterer generates a wide stopband, low stopband opening frequency, and outstanding dispersion features.•64.9-805.6Hz286%, 35.42dB0-1KHz). The cavity mechanism boosts the STL levels while maintaining the dispersion characteristics given by the convex structure.•The results indicated a broad stopband with a total SCF of, allowing the structure to block incoming acoustic waves with 35.42dB RMSNA.
Locally resonant acoustic metamaterials (LRAMs) are effective spatial frequency filters due to their local resonance system. However, they own narrow stopbands, charge additional weight on the primary system, and operate only at the adjusted frequency range. In this paper, a novel dual-target LRAM is proposed based on coupling the cavity and convex mechanisms, utilizing the benefits of both sound-barrier and sound-absorbing types of acoustic metamaterials. A combination of the cavity and convex structures is presented and investigated for the first time, which exploits both the reflection and absorption theories simultaneously to improve the sound attenuation performance of acoustic metamaterials. By arranging two-layer finite periodic of 5×5 proposed convex unit cells along x and y directions and separating them by an air cavity, a supercell named hybrid locally resonant acoustic metamaterials (HLRAM) baffle is designed. The band structures, transmission spectrum, and displacement vector fields are calculated employing the finite element method (FEM). In addition, vibration modes at the edges of stopbands are computed and carefully analyzed to determine the formation mechanism, mechanics/dynamic response, and dispersion features of stopbands. Meanwhile, sensitivity analyses have been conducted on the model to investigate the influence of material and geometry parameters on dispersion characteristics. Equivalent spring-mass analytic models are used to direct the modifications of structure and the adjustment of structural and material parameters in order to achieve a wide stopband with a low opening frequency. Thereby, the effective stiffness and mass values influencing the starting and cutoff frequencies are adjusted in a desirable manner. The results show that the structure can generate a wide stopband that covers the frequency range of 64.9-805.6Hz, allowing the structure to block incoming acoustic waves with 35.42dB root mean square of noise attenuation (RMSNA) the given frequency range (0-1kHz). This study indicates that the HLRAM has a preponderance among conventional techniques as we can manipulate dispersion characteristics and the sound transmission loss (STL) based on the desired sound reduction level and shift stopbands to the intended frequency range. This can be achieved by altering cavity size, material, or geometry parameters. |
ArticleNumber | 112742 |
Author | Ebrahimi-Nejad, Salman Mollajafari, Morteza Ravanbod, Mohammad |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0002-6944-5847 surname: Ravanbod fullname: Ravanbod, Mohammad organization: Automotive Research Centre, Department of Mechanical and Energy Systems Engineering, University of Bradford, Bradford, West Yorkshire, UK – sequence: 2 givenname: Salman orcidid: 0000-0002-1591-023X surname: Ebrahimi-Nejad fullname: Ebrahimi-Nejad, Salman organization: Vehicle Dynamical Systems Research Lab, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran – sequence: 3 givenname: Morteza orcidid: 0000-0002-2717-6335 surname: Mollajafari fullname: Mollajafari, Morteza email: mollajafari@iust.ac.ir organization: Vehicle Electrical and Electronic Research Lab, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran |
BookMark | eNqFkM1KAzEQx4NUsK2-guQFtibZdD_Ag6X4BYIXPYdsMktT0k1Nsq37EL6zqdWLl55mYOb3Z-Y3QaPOdYDQNSUzSmhxs56ZdXA2RD9jhPEZpazk7AyNaVXWGaO8GKExIYxkZVHlF2gSwpoQwvOajNHXAseV6bK9tBY0VnJn4oBTVq9i7wHvTVxh7frGQmblAB5HuQWfVoOSMabOY-tUogfsIbhOdhFvIMqNTEMjLd7a1AXcOo_hM3rYQAL2Wevho4dODfgQ0_UyGtddovNW2gBXv3WK3h_u35ZP2cvr4_Ny8ZKpnLKYMQmsJjDXVZkXrMorxokGrhWQUjWK6ipv6qLmkDfFnNZNw0sy123LWVGW6fF8iopjrvIuBA-t2HqzkX4QlIiDVLEWf1LFQao4Sk3g7T9QmfhzevTS2NP43RGH9NzOgBdBmSQBtPGgotDOnIr4BmaanuI |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109696 crossref_primary_10_1088_1361_6463_ad8ad0 crossref_primary_10_1007_s00339_024_08141_y crossref_primary_10_1016_j_ijmecsci_2025_110056 crossref_primary_10_1177_1045389X241273049 crossref_primary_10_1016_j_mtcomm_2024_110420 crossref_primary_10_1371_journal_pone_0311745 crossref_primary_10_1016_j_ijmecsci_2024_109527 crossref_primary_10_1080_15376494_2024_2442499 crossref_primary_10_1007_s00339_024_07690_6 crossref_primary_10_1002_admt_202400934 crossref_primary_10_1007_s11071_024_10278_7 crossref_primary_10_3390_ma18030682 crossref_primary_10_1088_2053_1591_ad9dbc crossref_primary_10_1016_j_conbuildmat_2024_139316 crossref_primary_10_1016_j_ijsolstr_2024_113159 crossref_primary_10_1016_j_jmps_2024_105889 crossref_primary_10_1016_j_ymssp_2024_111744 crossref_primary_10_1007_s11431_024_2739_x crossref_primary_10_1142_S0217984925500794 |
Cites_doi | 10.1063/1.5117283 10.1088/0964-1726/24/9/095011 10.1088/2053-1591/aadbe2 10.1016/j.ijsolstr.2019.08.032 10.1063/1.4889846 10.1016/j.apacoust.2022.109046 10.1016/j.advengsoft.2018.08.002 10.1016/j.jmps.2019.02.016 10.1115/1.4035307 10.1103/PhysRevB.79.214305 10.1103/PhysRevA.80.033802 10.1016/j.physleta.2021.127432 10.1515/rams-2022-0010 10.1088/1367-2630/aa83f3 10.1088/2631-8695/acbfa4 10.1177/1077546316685209 10.1016/j.eml.2016.10.004 10.1016/j.ijsolstr.2015.03.036 10.1016/j.tws.2022.110465 10.1088/2631-8695/ac1989 10.1080/15376494.2023.2280997 10.1016/j.ijsolstr.2017.05.042 10.1007/s00339-019-2448-5 10.1016/j.ijsolstr.2017.06.019 10.1007/s00339-021-04637-z 10.1177/1045389X19898751 10.1126/science.289.5485.1734 10.1016/j.apacoust.2022.109019 10.1016/j.ijsolstr.2018.12.015 10.1016/j.ijsolstr.2020.01.020 10.1016/j.apacoust.2023.109297 10.1016/j.tws.2022.110521 10.1088/2053-1591/aaed4b 10.1016/j.tws.2021.107665 10.1016/j.physleta.2020.126885 10.1142/S1758825120500751 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijsolstr.2024.112742 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2146 |
ExternalDocumentID | 10_1016_j_ijsolstr_2024_112742 S0020768324000994 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABVKL ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K TN5 TR2 XPP ZMT ~02 ~G- 29J 6TJ AAFWJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 LY7 M24 M41 R2- SET SMS SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c312t-2ae290e5d87362838240de4dce07cbc1d83b9694e3b6519bb4705dff426770433 |
IEDL.DBID | .~1 |
ISSN | 0020-7683 |
IngestDate | Tue Jul 01 01:20:06 EDT 2025 Thu Apr 24 22:52:20 EDT 2025 Sat Apr 06 16:23:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cavity structure Local resonance Tunable stopbands Absorptive-reflective metamaterial Acoustic metamaterials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-2ae290e5d87362838240de4dce07cbc1d83b9694e3b6519bb4705dff426770433 |
ORCID | 0000-0002-1591-023X 0000-0002-6944-5847 0000-0002-2717-6335 |
ParticipantIDs | crossref_primary_10_1016_j_ijsolstr_2024_112742 crossref_citationtrail_10_1016_j_ijsolstr_2024_112742 elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2024_112742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of solids and structures |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Li, Xia, Man (b0125) 2018; 132–133 Li, Miao, You, Fang, Liang, Lei (b0105) 2019; 125 Li, Chen, Wang, Ma, Jiang (b0090) 2014; 116 Shen, Li, Peng, Cummer (b0175) 2018; 2 Kheybari, M., Ebrahimi-Nejad, S., 2021. Dual-target-frequency-range stop-band acoustic metamaterial muffler: acoustic and CFD approach. Eng. Res. Express, 3(3), 035027. https://doi.org/10.1088/2631-8695/ac1989. Krushynska, Miniaci, Bosia, Pugno (b0080) 2017; 12 Li, Zhang, Hou, Su, Zeng, Xu (b0115) 2023; 184 Ravanbod, Ebrahimi-Nejad (b0165) 2023 COMSOL AB, Stockholm, Sweden. Panahi, Hosseinkhani, Khansanami, Younesian, Ranjbar (b0150) 2021; 163 Liu (b0120) 2000; 289 Meaud, Che (b0130) 2017; 122 Langfeldt, Khatokar, Gleine (b0085) 2022; 199 Akbari-Farahani, Ebrahimi-Nejad (b0005) 2023; 365 Deymier (b0025) 2013 Kitagawa, Sakai (b0060) 2009; 80 Ravanbod, Ebrahimi-Nejad (b0160) 2023; 129 Wang, Chen, Cheng (b0190) 2023; 184 Wang, Lee, Xu (b0195) 2020; 12 Li, Wang, Wang (b0110) 2019; 162 Firoozy, P., Ebrahimi-Nejad, S., 2020. Broadband energy harvesting from time-delayed nonlinear oscillations of magnetic levitation. J. Intell. Mater. Syst. Struct., 31(5), 737-755. https://doi.org/10.1177/1045389X1989875. Mousanezhad, Ebrahimi, Haghpanah, Ghosh, Ajdari, Hamouda, Vaziri (b0145) 2015; 66 Bucay, Roussel, Vasseur, Deymier, Hladky-Hennion, Pennec, Muralidharan, Djafari-Rouhani, Dubus (b0015) 2009; 79 COMSOL Multiphysics®, v. 5.6. Yang, Song, Wen, Zhu, Tan, Liu, Liu, Sun (b0200) 2020; 384 Tan, Sun, Tian, Zhu, Song, Wen, Liu, Liu (b0185) 2021; 405 Jin, Jiang, Hongping (b0045) 2022; 61 Li, Gang, Sun, Zhang, Zhang (b0095) 2018; 125 Krushynska, Bosia, Miniaci, Pugno (b0070) 2017; 19 Krattiger, Hussein (b0065) 2014; 90 Ebrahimi-Nejad, Kheybari (b0030) 2018; 5 Meng, Deng, Zhang, Xu, Wen (b0135) 2015; 24 Zeng, Yang, Yang, Muzamil, Rui, Deng, Peng, Qiujiao (b0205) 2020; 185 Sarıgül, Karagözlü (b0170) 2017; 24 Sun, Guo, Jin, Zhang, Liu, Yuan, Ma, Wang (b0180) 2022; 200 Kheybari, Ebrahimi-Nejad (b0055) 2018; 6 Mokhtari, Lu, Srivastava (b0140) 2019; 126 Ravanbod, Ebrahimi-Nejad, Mollajafari, SalehiRad (b0155) 2023; 5 Zhao, Song, Tian, Xu, Gao, Sun (b0210) 2021; 127 An, Lai, Fan, Zhang (b0010) 2020; 191–192 Li, Liu, Liu, Li, Yang, Tong, Shi, Schmidt, Schröder (b0100) 2023; 205 Krushynska, Miniaci, Kouznetsova, Geers (b0075) 2017; 139 Fujita, K., Tomoda, M., Wright, O. and Matsuda, O., 2019. Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array. Appl. Phys. Lett. 115(8), 081905. https://doi.org/10.1063/1.5117283. 10.1016/j.ijsolstr.2024.112742_b0035 Ravanbod (10.1016/j.ijsolstr.2024.112742_b0160) 2023; 129 An (10.1016/j.ijsolstr.2024.112742_b0010) 2020; 191–192 Panahi (10.1016/j.ijsolstr.2024.112742_b0150) 2021; 163 Wang (10.1016/j.ijsolstr.2024.112742_b0195) 2020; 12 Zhao (10.1016/j.ijsolstr.2024.112742_b0210) 2021; 127 Wang (10.1016/j.ijsolstr.2024.112742_b0190) 2023; 184 Krushynska (10.1016/j.ijsolstr.2024.112742_b0070) 2017; 19 10.1016/j.ijsolstr.2024.112742_b0050 Mokhtari (10.1016/j.ijsolstr.2024.112742_b0140) 2019; 126 Meng (10.1016/j.ijsolstr.2024.112742_b0135) 2015; 24 Jin (10.1016/j.ijsolstr.2024.112742_b0045) 2022; 61 Langfeldt (10.1016/j.ijsolstr.2024.112742_b0085) 2022; 199 Krattiger (10.1016/j.ijsolstr.2024.112742_b0065) 2014; 90 Li (10.1016/j.ijsolstr.2024.112742_b0115) 2023; 184 Li (10.1016/j.ijsolstr.2024.112742_b0105) 2019; 125 Mousanezhad (10.1016/j.ijsolstr.2024.112742_b0145) 2015; 66 Ebrahimi-Nejad (10.1016/j.ijsolstr.2024.112742_b0030) 2018; 5 Shen (10.1016/j.ijsolstr.2024.112742_b0175) 2018; 2 Yang (10.1016/j.ijsolstr.2024.112742_b0200) 2020; 384 Krushynska (10.1016/j.ijsolstr.2024.112742_b0075) 2017; 139 Liu (10.1016/j.ijsolstr.2024.112742_b0125) 2018; 132–133 Li (10.1016/j.ijsolstr.2024.112742_b0110) 2019; 162 Liu (10.1016/j.ijsolstr.2024.112742_b0120) 2000; 289 10.1016/j.ijsolstr.2024.112742_b0020 Meaud (10.1016/j.ijsolstr.2024.112742_b0130) 2017; 122 Sun (10.1016/j.ijsolstr.2024.112742_b0180) 2022; 200 Krushynska (10.1016/j.ijsolstr.2024.112742_b0080) 2017; 12 10.1016/j.ijsolstr.2024.112742_b0040 Kheybari (10.1016/j.ijsolstr.2024.112742_b0055) 2018; 6 Akbari-Farahani (10.1016/j.ijsolstr.2024.112742_b0005) 2023; 365 Sarıgül (10.1016/j.ijsolstr.2024.112742_b0170) 2017; 24 Li (10.1016/j.ijsolstr.2024.112742_b0090) 2014; 116 Li (10.1016/j.ijsolstr.2024.112742_b0100) 2023; 205 Zeng (10.1016/j.ijsolstr.2024.112742_b0205) 2020; 185 Ravanbod (10.1016/j.ijsolstr.2024.112742_b0155) 2023; 5 Deymier (10.1016/j.ijsolstr.2024.112742_b0025) 2013 Kitagawa (10.1016/j.ijsolstr.2024.112742_b0060) 2009; 80 Bucay (10.1016/j.ijsolstr.2024.112742_b0015) 2009; 79 Li (10.1016/j.ijsolstr.2024.112742_b0095) 2018; 125 Ravanbod (10.1016/j.ijsolstr.2024.112742_b0165) 2023 Tan (10.1016/j.ijsolstr.2024.112742_b0185) 2021; 405 |
References_xml | – volume: 191–192 start-page: 293 year: 2020 end-page: 306 ident: b0010 article-title: 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation publication-title: Int. J. Solids Struct. – volume: 79 year: 2009 ident: b0015 article-title: Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study publication-title: Phys. Rev. B – volume: 184 year: 2023 ident: b0190 article-title: A metamaterial plate with magnetorheological elastomers and gradient resonators for tuneable, low-frequency and broadband flexural wave manipulation publication-title: Thin-Walled Struct. – reference: COMSOL Multiphysics®, v. 5.6. – volume: 184 year: 2023 ident: b0115 article-title: Mechanical properties of re-entrant anti-chiral auxetic metamaterial under the in-plane compression publication-title: Thin-Walled Struct. – start-page: 367 year: 2013 end-page: 371 ident: b0025 article-title: Acoustic Metamaterials and Phononic Crystals – volume: 61 start-page: 68 year: 2022 end-page: 78 ident: b0045 article-title: Multiple wide band gaps in a convex-like Holey phononic crystal strip publication-title: Rev. Adv. Mater. Sci. – volume: 205 year: 2023 ident: b0100 article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator publication-title: Appl. Acoust. – reference: . COMSOL AB, Stockholm, Sweden. – volume: 5 year: 2023 ident: b0155 article-title: Porous liner coated inlet duct: A novel approach to attenuate automotive turbocharger inlet flow-induced sound propagation publication-title: Eng. Res. Express – volume: 12 start-page: 2050075 year: 2020 ident: b0195 article-title: Bandgap properties of two-layered locally resonant phononic crystals publication-title: Int. J. Appl. Mech. – volume: 365 year: 2023 ident: b0005 article-title: From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting publication-title: Sens. Actuators A: Phys. – volume: 66 start-page: 218 year: 2015 end-page: 227 ident: b0145 article-title: Spiderweb Honeycombs publication-title: Int. J. Solids Struct. – volume: 125 year: 2019 ident: b0105 article-title: Effects of material parameters on the band gaps of two-dimensional three-component phononic crystals publication-title: Appl. Phys. A – volume: 132–133 start-page: 20 year: 2018 end-page: 30 ident: b0125 article-title: Fractal labyrinthine acoustic metamaterial in planar lattices publication-title: Int. J. Solids Struct. – volume: 162 start-page: 271 year: 2019 end-page: 284 ident: b0110 article-title: Modelling of Elastic Metamaterials with Negative Mass and Modulus Based on Translational Resonance publication-title: Int. J. Solids Struct. – reference: Kheybari, M., Ebrahimi-Nejad, S., 2021. Dual-target-frequency-range stop-band acoustic metamaterial muffler: acoustic and CFD approach. Eng. Res. Express, 3(3), 035027. https://doi.org/10.1088/2631-8695/ac1989. – volume: 384 year: 2020 ident: b0200 article-title: Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency publication-title: Phys. Lett. A – volume: 24 year: 2015 ident: b0135 article-title: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio publication-title: Smart Mater. Struct. – volume: 24 start-page: 2274 year: 2017 end-page: 2283 ident: b0170 article-title: Vibro-acoustic coupling in composite plate-cavity systems publication-title: J. Vib. Control – volume: 185 start-page: 334 year: 2020 end-page: 341 ident: b0205 article-title: A matryoshka-like seismic metamaterial with wide band-gap characteristics publication-title: Int. J. Solids Struct. – volume: 5 year: 2018 ident: b0030 article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior publication-title: Mater. Res. Express – volume: 139 year: 2017 ident: b0075 article-title: Multilayered inclusions in locally resonant metamaterials: two-dimensional versus three-dimensional modeling publication-title: J. Vib. Acoust. – volume: 116 year: 2014 ident: b0090 article-title: Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states publication-title: J. Appl. Phys. – volume: 125 start-page: 19 year: 2018 end-page: 26 ident: b0095 article-title: Design of phononic crystals plate and application in vehicle sound insulation publication-title: Adv. Eng. Softw. – volume: 200 year: 2022 ident: b0180 article-title: Mechanics and extreme low-frequency band gaps of auxetic hexachiral acoustic metamaterial with internal resonant unit publication-title: Appl. Acoust. – volume: 163 year: 2021 ident: b0150 article-title: Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: Design, modeling and testing publication-title: Thin-Walled Struct. – volume: 127 year: 2021 ident: b0210 article-title: Extending and lowering bandgaps by cross-like beams phononic crystals with perforation publication-title: Appl. Phys. A – start-page: 1 year: 2023 end-page: 16 ident: b0165 article-title: Perforated auxetic honeycomb booster with reentrant chirality: a new design for high-efficiency piezoelectric energy harvesting publication-title: Mech. Adv. Mater. Struct. – reference: Fujita, K., Tomoda, M., Wright, O. and Matsuda, O., 2019. Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array. Appl. Phys. Lett. 115(8), 081905. https://doi.org/10.1063/1.5117283. – volume: 199 year: 2022 ident: b0085 article-title: Plate-type acoustic metamaterials with integrated Helmholtz resonators publication-title: Appl. Acoust. – volume: 289 start-page: 1734 year: 2000 end-page: 1736 ident: b0120 article-title: Locally resonant sonic materials publication-title: Science – volume: 126 start-page: 256 year: 2019 ident: b0140 article-title: On the emergence of negative effective density and modulus in 2-phase phononic crystals publication-title: J. Mech. Phys. Solids – volume: 6 year: 2018 ident: b0055 article-title: Locally resonant stop band acoustic metamaterial muffler with tuned resonance frequency range publication-title: Mater. Res. Express – volume: 405 year: 2021 ident: b0185 article-title: The mechanism of bandgap opening and merging in 2D spherical phononic crystals publication-title: Phys. Lett. A – volume: 129 year: 2023 ident: b0160 article-title: Innovative lightweight re-entrant cross-like beam phononic crystal with perforated host for broadband vibration attenuation publication-title: Appl. Phys. A – volume: 19 year: 2017 ident: b0070 article-title: Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control publication-title: New J. Phys. – reference: Firoozy, P., Ebrahimi-Nejad, S., 2020. Broadband energy harvesting from time-delayed nonlinear oscillations of magnetic levitation. J. Intell. Mater. Syst. Struct., 31(5), 737-755. https://doi.org/10.1177/1045389X1989875. – volume: 80 year: 2009 ident: b0060 article-title: Bloch theorem in cylindrical coordinates and its application to a Bragg fiber publication-title: Phys. Rev. A – volume: 122 start-page: 69 year: 2017 end-page: 80 ident: b0130 article-title: Tuning elastic wave propagation in multistable architected materials publication-title: Int. J. Solids Struct. – volume: 2 year: 2018 ident: b0175 article-title: Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems publication-title: Phys. Rev. Mater. – volume: 12 start-page: 30 year: 2017 end-page: 36 ident: b0080 article-title: Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials publication-title: Extreme Mech. Lett. – volume: 90 year: 2014 ident: b0065 article-title: Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations publication-title: Phys. Rev. E – volume: 2 issue: 12 year: 2018 ident: 10.1016/j.ijsolstr.2024.112742_b0175 article-title: Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems publication-title: Phys. Rev. Mater. – ident: 10.1016/j.ijsolstr.2024.112742_b0040 doi: 10.1063/1.5117283 – volume: 24 issue: 9 year: 2015 ident: 10.1016/j.ijsolstr.2024.112742_b0135 article-title: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/9/095011 – volume: 5 issue: 10 year: 2018 ident: 10.1016/j.ijsolstr.2024.112742_b0030 article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aadbe2 – volume: 365 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0005 article-title: From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting publication-title: Sens. Actuators A: Phys. – volume: 185 start-page: 334 issue: 186 year: 2020 ident: 10.1016/j.ijsolstr.2024.112742_b0205 article-title: A matryoshka-like seismic metamaterial with wide band-gap characteristics publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.08.032 – volume: 116 issue: 2 year: 2014 ident: 10.1016/j.ijsolstr.2024.112742_b0090 article-title: Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states publication-title: J. Appl. Phys. doi: 10.1063/1.4889846 – volume: 200 year: 2022 ident: 10.1016/j.ijsolstr.2024.112742_b0180 article-title: Mechanics and extreme low-frequency band gaps of auxetic hexachiral acoustic metamaterial with internal resonant unit publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2022.109046 – volume: 125 start-page: 19 year: 2018 ident: 10.1016/j.ijsolstr.2024.112742_b0095 article-title: Design of phononic crystals plate and application in vehicle sound insulation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2018.08.002 – volume: 126 start-page: 256 year: 2019 ident: 10.1016/j.ijsolstr.2024.112742_b0140 article-title: On the emergence of negative effective density and modulus in 2-phase phononic crystals publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.02.016 – volume: 139 issue: 2 year: 2017 ident: 10.1016/j.ijsolstr.2024.112742_b0075 article-title: Multilayered inclusions in locally resonant metamaterials: two-dimensional versus three-dimensional modeling publication-title: J. Vib. Acoust. doi: 10.1115/1.4035307 – volume: 79 issue: 21 year: 2009 ident: 10.1016/j.ijsolstr.2024.112742_b0015 article-title: Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.214305 – volume: 80 issue: 3 year: 2009 ident: 10.1016/j.ijsolstr.2024.112742_b0060 article-title: Bloch theorem in cylindrical coordinates and its application to a Bragg fiber publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.033802 – volume: 405 year: 2021 ident: 10.1016/j.ijsolstr.2024.112742_b0185 article-title: The mechanism of bandgap opening and merging in 2D spherical phononic crystals publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127432 – volume: 61 start-page: 68 issue: 1 year: 2022 ident: 10.1016/j.ijsolstr.2024.112742_b0045 article-title: Multiple wide band gaps in a convex-like Holey phononic crystal strip publication-title: Rev. Adv. Mater. Sci. doi: 10.1515/rams-2022-0010 – volume: 19 issue: 10 year: 2017 ident: 10.1016/j.ijsolstr.2024.112742_b0070 article-title: Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control publication-title: New J. Phys. doi: 10.1088/1367-2630/aa83f3 – volume: 5 issue: 1 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0155 article-title: Porous liner coated inlet duct: A novel approach to attenuate automotive turbocharger inlet flow-induced sound propagation publication-title: Eng. Res. Express doi: 10.1088/2631-8695/acbfa4 – volume: 24 start-page: 2274 issue: 11 year: 2017 ident: 10.1016/j.ijsolstr.2024.112742_b0170 article-title: Vibro-acoustic coupling in composite plate-cavity systems publication-title: J. Vib. Control doi: 10.1177/1077546316685209 – volume: 12 start-page: 30 year: 2017 ident: 10.1016/j.ijsolstr.2024.112742_b0080 article-title: Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2016.10.004 – volume: 66 start-page: 218 year: 2015 ident: 10.1016/j.ijsolstr.2024.112742_b0145 article-title: Spiderweb Honeycombs publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.03.036 – volume: 184 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0115 article-title: Mechanical properties of re-entrant anti-chiral auxetic metamaterial under the in-plane compression publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110465 – ident: 10.1016/j.ijsolstr.2024.112742_b0050 doi: 10.1088/2631-8695/ac1989 – start-page: 1 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0165 article-title: Perforated auxetic honeycomb booster with reentrant chirality: a new design for high-efficiency piezoelectric energy harvesting publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2023.2280997 – volume: 122 start-page: 69 issue: 123 year: 2017 ident: 10.1016/j.ijsolstr.2024.112742_b0130 article-title: Tuning elastic wave propagation in multistable architected materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.05.042 – start-page: 367 year: 2013 ident: 10.1016/j.ijsolstr.2024.112742_b0025 – volume: 90 issue: 6 year: 2014 ident: 10.1016/j.ijsolstr.2024.112742_b0065 article-title: Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations publication-title: Phys. Rev. E – volume: 125 issue: 3 year: 2019 ident: 10.1016/j.ijsolstr.2024.112742_b0105 article-title: Effects of material parameters on the band gaps of two-dimensional three-component phononic crystals publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2448-5 – volume: 132–133 start-page: 20 year: 2018 ident: 10.1016/j.ijsolstr.2024.112742_b0125 article-title: Fractal labyrinthine acoustic metamaterial in planar lattices publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.06.019 – volume: 127 issue: 7 year: 2021 ident: 10.1016/j.ijsolstr.2024.112742_b0210 article-title: Extending and lowering bandgaps by cross-like beams phononic crystals with perforation publication-title: Appl. Phys. A doi: 10.1007/s00339-021-04637-z – ident: 10.1016/j.ijsolstr.2024.112742_b0035 doi: 10.1177/1045389X19898751 – volume: 289 start-page: 1734 issue: 5485 year: 2000 ident: 10.1016/j.ijsolstr.2024.112742_b0120 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 199 year: 2022 ident: 10.1016/j.ijsolstr.2024.112742_b0085 article-title: Plate-type acoustic metamaterials with integrated Helmholtz resonators publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2022.109019 – volume: 162 start-page: 271 year: 2019 ident: 10.1016/j.ijsolstr.2024.112742_b0110 article-title: Modelling of Elastic Metamaterials with Negative Mass and Modulus Based on Translational Resonance publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2018.12.015 – volume: 191–192 start-page: 293 year: 2020 ident: 10.1016/j.ijsolstr.2024.112742_b0010 article-title: 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2020.01.020 – volume: 205 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0100 article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2023.109297 – ident: 10.1016/j.ijsolstr.2024.112742_b0020 – volume: 184 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0190 article-title: A metamaterial plate with magnetorheological elastomers and gradient resonators for tuneable, low-frequency and broadband flexural wave manipulation publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110521 – volume: 129 issue: 102 year: 2023 ident: 10.1016/j.ijsolstr.2024.112742_b0160 article-title: Innovative lightweight re-entrant cross-like beam phononic crystal with perforated host for broadband vibration attenuation publication-title: Appl. Phys. A – volume: 6 year: 2018 ident: 10.1016/j.ijsolstr.2024.112742_b0055 article-title: Locally resonant stop band acoustic metamaterial muffler with tuned resonance frequency range publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaed4b – volume: 163 year: 2021 ident: 10.1016/j.ijsolstr.2024.112742_b0150 article-title: Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: Design, modeling and testing publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.107665 – volume: 384 issue: 35 year: 2020 ident: 10.1016/j.ijsolstr.2024.112742_b0200 article-title: Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126885 – volume: 12 start-page: 2050075 issue: 07 year: 2020 ident: 10.1016/j.ijsolstr.2024.112742_b0195 article-title: Bandgap properties of two-layered locally resonant phononic crystals publication-title: Int. J. Appl. Mech. doi: 10.1142/S1758825120500751 |
SSID | ssj0004390 |
Score | 2.554361 |
Snippet | •A novel thin-walled structure with dual-function reflection and absorption is designed for wide sound filtration in the low-frequency range.•The proposed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112742 |
SubjectTerms | Absorptive-reflective metamaterial Acoustic metamaterials Cavity structure Local resonance Tunable stopbands |
Title | A thin-walled cavity structure with double-layer tapered scatterer locally resonant metamaterial plates for extreme low-frequency attenuation |
URI | https://dx.doi.org/10.1016/j.ijsolstr.2024.112742 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPrE-yh68btskm01yLGKpip4UvIV9BVNiWtqIePEf-J-dySZaQejBY0ImhJ1lvm82M98QcqGkUiJTgkVGG8aNFEzFnkTdWy2FyHRi8Wjg7l5MHvnNU_i0QS7bXhgsq2xiv4vpdbRu7gya1RzM8xx7fH38jYSKcshzUBOU8wj18_sfP2UeALiuDQXSJHx6pUt42s-n4OBlhbqgPsdumoj7fwPUCuiMd8lOwxbpyH3QHtmw5T7ZXtEQPCCfI1o95yV7w6EohmqJwyCok4V9XViKB63UzF5VYVkhgWDTSs5xQCdd6lpbE-7UgFa8U0i9Z1gYQ19sJYHK1ruTzgvkoxTYLYVIjueJYPDGsoWrwn6n-JrSSYYfksfx1cPlhDUzFpgOPL9ivrR-MrShiSOAsjiIYTWN5UZbcJbSnokDlYiE20AJIHtK8WgYmiwDYI8iFD87Ip1yVtpjQiGX9G0oYh7rkGdAPDG1454KZBxoLZIuCduFTXUjQI5zMIq0rTSbpq1DUnRI6hzSJYNvu7mT4FhrkbR-S39tphRwYo3tyT9sT8kWXrl6yDPSAVfbc-AslerVm7JHNkfXt5P7LxTx8QI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPagH8Ylv9-B1rU02m-RYiqVa7amF3sK-gi0xLTZS-iP8z850E60gePC6YULYGWa-mcx8Q8iNkkqJVAkWGm0YN1IwFTUl8t5qKUSqY4ulgee-6A754ygY1Ui7moXBtsrS9zufvvLW5UmjvM3GbDzGGV8PfyMhoxziHL5BNpGdCox9s_XQ6_a_xyN9V2rBTAkF1gaFJ7fjCeh4XiA1qMdxoCbk3u8xai3udPbIbgkYact90z6p2fyA7KzRCB6SjxYtXsY5W-BeFEO1xH0Q1DHDvr9ZirVWaqbvKrMsk4CxaSFnuKOTzvWKXhNOVjEtW1LIvqfYG0NfbSEBza4MlM4yhKQUAC4FZ44lRRBYsPTNNWIvKb4md6zhR2TYuR-0u6xcs8C03_QK5knrxXc2MFEI0SzyI7hQY7nRFvSldNNEvopFzK2vBOA9pXh4F5g0hdgehsh_dkzq-TS3J4RCOunZQEQ80gFPAXtidsebypeRr7WIT0lQXWyiSw5yXIWRJVWz2SSpFJKgQhKnkFPS-JKbORaOPyXiSm_JD3tKIFT8IXv2D9lrstUdPD8lTw_93jnZxieuPfKC1EHt9hIgTKGuShP9BE-K87M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thin-walled+cavity+structure+with+double-layer+tapered+scatterer+locally+resonant+metamaterial+plates+for+extreme+low-frequency+attenuation&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Ravanbod%2C+Mohammad&rft.au=Ebrahimi-Nejad%2C+Salman&rft.au=Mollajafari%2C+Morteza&rft.date=2024-05-01&rft.issn=0020-7683&rft.volume=293&rft.spage=112742&rft_id=info:doi/10.1016%2Fj.ijsolstr.2024.112742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijsolstr_2024_112742 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon |