Self-locking mechanism for variable stiffness rigid-soft gripper
Pneumatic soft grippers made of silicone have been successfully applied in the industrial field of grabbing fragile objects. But their inherent low stiffness often limits the practical application in scenarios required high stiffness or large load capacity. To expand the application of soft grippers...
Saved in:
Published in | Smart materials and structures Vol. 29; no. 3; pp. 35033 - 35048 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pneumatic soft grippers made of silicone have been successfully applied in the industrial field of grabbing fragile objects. But their inherent low stiffness often limits the practical application in scenarios required high stiffness or large load capacity. To expand the application of soft grippers, a self-locking mechanism realized by an exoskeleton structure is proposed in this work. The stiffness, load carrying capacity, and grabbing stability of this soft-rigid grippers can be enhanced in the premise of maintaining sufficient compliance. The resulted rigid-soft gripper has the ability of tuning its stiffness, simply by locking and unlocking the ratchet-and-pawl of the exoskeleton structure. The locking process is automatically implemented with the bending deformation of soft gripper, and the unlocking process is realized quickly by a simple pneumatic unlocking actuator. The stiffness, grasping motion and output force of the gripper are experimentally characterized theoretically and experimentally. And the capability of unlocking actuators is also verified and tested. Experimental results demonstrate that the rigid-soft gripper has a load capacity up to 9 kg. The gripper can achieve quick, flexible and reliable grasping for objects of various dimensions and shapes, with no compressed gas needed for holding. The proposed self-locking mechanism provides a simple but effective method to enhance the performance of soft grippers and simplify the operation for variable-stiffness grasping. |
---|---|
AbstractList | Pneumatic soft grippers made of silicone have been successfully applied in the industrial field of grabbing fragile objects. But their inherent low stiffness often limits the practical application in scenarios required high stiffness or large load capacity. To expand the application of soft grippers, a self-locking mechanism realized by an exoskeleton structure is proposed in this work. The stiffness, load carrying capacity, and grabbing stability of this soft-rigid grippers can be enhanced in the premise of maintaining sufficient compliance. The resulted rigid-soft gripper has the ability of tuning its stiffness, simply by locking and unlocking the ratchet-and-pawl of the exoskeleton structure. The locking process is automatically implemented with the bending deformation of soft gripper, and the unlocking process is realized quickly by a simple pneumatic unlocking actuator. The stiffness, grasping motion and output force of the gripper are experimentally characterized theoretically and experimentally. And the capability of unlocking actuators is also verified and tested. Experimental results demonstrate that the rigid-soft gripper has a load capacity up to 9 kg. The gripper can achieve quick, flexible and reliable grasping for objects of various dimensions and shapes, with no compressed gas needed for holding. The proposed self-locking mechanism provides a simple but effective method to enhance the performance of soft grippers and simplify the operation for variable-stiffness grasping. |
Author | Fei, Yan-Qiong Gao, Qiu-Hua Li, Wen-Bo Zhang, Wen-Ming Guo, Xin-Yu Yan, Han |
Author_xml | – sequence: 1 givenname: Xin-Yu surname: Guo fullname: Guo, Xin-Yu organization: Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 800 Dongchuan Road, Shanghai 200240, People's Republic of China – sequence: 2 givenname: Wen-Bo surname: Li fullname: Li, Wen-Bo organization: Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 800 Dongchuan Road, Shanghai 200240, People's Republic of China – sequence: 3 givenname: Qiu-Hua surname: Gao fullname: Gao, Qiu-Hua organization: Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 800 Dongchuan Road, Shanghai 200240, People's Republic of China – sequence: 4 givenname: Han surname: Yan fullname: Yan, Han organization: Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 800 Dongchuan Road, Shanghai 200240, People's Republic of China – sequence: 5 givenname: Yan-Qiong surname: Fei fullname: Fei, Yan-Qiong organization: Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 800 Dongchuan Road, Shanghai 200240, People's Republic of China – sequence: 6 givenname: Wen-Ming orcidid: 0000-0001-6743-1006 surname: Zhang fullname: Zhang, Wen-Ming email: wenmingz@sjtu.edu.cn organization: Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 800 Dongchuan Road, Shanghai 200240, People's Republic of China |
BookMark | eNp9kEFLwzAYhoNMcJvePfbmxbgvSZsmN2U4FQYe3MFbSNNkZrZNSargv3dl4kHU0wcf7_PC887QpAudReicwBUBIRaEcYI5L54XuioJuCM0_X5N0BQkzzEpKT9Bs5R2AIQIRqbo-sk2DjfBvPpum7XWvOjOpzZzIWbvOnpdNTZLg3eusyll0W99jVNwQ7aNvu9tPEXHTjfJnn3dOdqsbjfLe7x-vHtY3qyxYYQOmOpcSNA5LStbCWmclLWkAGCc5kJqsMKVua15BS63hnGni7LOZcULS6ljc8QPtSaGlKJ1yvhBDz50Q9S-UQTUOIMandXorA4z7EH4AfbRtzp-_IdcHBAferULb7Hbi6nUJkWlYgpYAYypvh6Tl78k_yz-BH4DfqE |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1089_soro_2024_0062 crossref_primary_10_3390_s21020493 crossref_primary_10_1016_j_sna_2024_116108 crossref_primary_10_1017_S0263574722000686 crossref_primary_10_1002_advs_202104347 crossref_primary_10_1109_LRA_2022_3187615 crossref_primary_10_1109_TMECH_2024_3402357 crossref_primary_10_1016_j_mechatronics_2023_103002 crossref_primary_10_1007_s40430_024_04820_2 crossref_primary_10_1126_sciadv_adg1203 crossref_primary_10_1016_j_ijmecsci_2025_110021 crossref_primary_10_1089_soro_2022_0242 crossref_primary_10_1108_IR_04_2022_0103 crossref_primary_10_1088_1361_665X_ac383e crossref_primary_10_1007_s11431_020_1766_y crossref_primary_10_1039_D1SM00618E crossref_primary_10_1017_S026357472300156X crossref_primary_10_1089_soro_2022_0148 crossref_primary_10_1002_adem_202301275 crossref_primary_10_1109_LRA_2023_3254461 crossref_primary_10_1088_1361_665X_abe3a9 crossref_primary_10_3390_act10100252 crossref_primary_10_3390_app14062620 crossref_primary_10_1088_1361_665X_abeb2f crossref_primary_10_1088_1361_665X_ac95e3 crossref_primary_10_1080_17452759_2020_1795209 crossref_primary_10_3389_fbioe_2024_1385076 crossref_primary_10_1115_1_4066548 crossref_primary_10_1016_j_sna_2023_114294 crossref_primary_10_1177_02783649231220674 crossref_primary_10_1109_LRA_2024_3455758 crossref_primary_10_1016_j_mechmachtheory_2022_105083 crossref_primary_10_1088_1361_665X_abbff6 crossref_primary_10_1089_soro_2023_0067 crossref_primary_10_3390_s23031518 crossref_primary_10_3390_app131810140 crossref_primary_10_1109_TMECH_2023_3272359 crossref_primary_10_1115_1_4051722 crossref_primary_10_1089_soro_2021_0126 crossref_primary_10_1089_soro_2023_0052 crossref_primary_10_1007_s11431_023_2382_x crossref_primary_10_1115_1_4054510 crossref_primary_10_1002_aisy_202400503 |
Cites_doi | 10.3233/JAE-160091 10.1016/j.compositesb.2016.05.030 10.1126/sciadv.1602045 10.1002/adfm.201303288 10.1089/soro.2016.0044 10.1039/c3ra44412k 10.1089/soro.2017.0145 10.1007/978-3-319-65289-4_15 10.1063/1.3653239 10.1109/TRO.2011.2171093 10.1038/srep20869 10.1163/156855312X626343 10.1089/soro.2018.0015 10.1089/soro.2016.0081 10.1126/scitranslmed.aaf3925 10.1002/adma.201304018 10.1002/adma.201707035 10.1063/1.1505674 10.1089/soro.2016.0060 10.1002/adma.200803638 10.1242/jeb.038588 10.1089/soro.2016.0027 10.1109/TRO.2014.2325992 10.5254/1.3538343 10.1080/1023697X.2015.1038321 10.1109/TMECH.2012.2204070 10.1007/s11012-015-0261-6 10.1089/soro.2018.0005 10.1089/soro.2016.0034 |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd |
Copyright_xml | – notice: 2020 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/ab710f |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Self-locking mechanism for variable stiffness rigid-soft gripper |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_ab710f smsab710f |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars grantid: 11625208 – fundername: Program of Shanghai Key Laboratory of Spacecraft Mechanism and National Natural Science Foundation for Distinguished Young Scholars of China grantid: 11625208 – fundername: Program of Shanghai Academic/Technology Research Leader grantid: 19XD1421600 – fundername: National Natural Science Foundation of China grantid: 91748118 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c312t-2a4890a427beb89cf99d92000cfa689a0e8f74ed6b0f4ec36fa57d49b65e22f3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:43 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Wed Aug 21 03:40:36 EDT 2024 Thu Jan 07 13:52:43 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-2a4890a427beb89cf99d92000cfa689a0e8f74ed6b0f4ec36fa57d49b65e22f3 |
Notes | SMS-109237.R1 |
ORCID | 0000-0001-6743-1006 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_1088_1361_665X_ab710f crossref_citationtrail_10_1088_1361_665X_ab710f crossref_primary_10_1088_1361_665X_ab710f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 24 25 27 28 29 30 31 10 32 11 12 13 14 15 16 17 18 19 Li W-B (26) 2017; 26 1 3 4 5 6 7 Zolfagharian A (2) 2019; 28 Larry D P (8) 2013; 22 9 20 21 |
References_xml | – volume: 28 issn: 0964-1726 year: 2019 ident: 2 publication-title: Smart Mater. Struct. – ident: 24 doi: 10.3233/JAE-160091 – ident: 25 doi: 10.1016/j.compositesb.2016.05.030 – ident: 28 doi: 10.1126/sciadv.1602045 – ident: 3 doi: 10.1002/adfm.201303288 – ident: 9 doi: 10.1089/soro.2016.0044 – ident: 22 doi: 10.1039/c3ra44412k – volume: 22 issn: 0964-1726 year: 2013 ident: 8 publication-title: Smart Mater. Struct. – ident: 23 doi: 10.1089/soro.2017.0145 – ident: 21 doi: 10.1007/978-3-319-65289-4_15 – ident: 31 doi: 10.1063/1.3653239 – ident: 19 doi: 10.1109/TRO.2011.2171093 – ident: 6 doi: 10.1038/srep20869 – ident: 10 doi: 10.1163/156855312X626343 – ident: 7 doi: 10.1089/soro.2018.0015 – ident: 14 doi: 10.1089/soro.2016.0081 – ident: 5 doi: 10.1126/scitranslmed.aaf3925 – ident: 16 doi: 10.1002/adma.201304018 – ident: 13 doi: 10.1002/adma.201707035 – ident: 27 doi: 10.1063/1.1505674 – ident: 29 doi: 10.1089/soro.2016.0060 – ident: 1 doi: 10.1002/adma.200803638 – ident: 4 doi: 10.1242/jeb.038588 – ident: 12 doi: 10.1089/soro.2016.0027 – ident: 18 doi: 10.1109/TRO.2014.2325992 – ident: 32 doi: 10.5254/1.3538343 – ident: 11 doi: 10.1080/1023697X.2015.1038321 – ident: 20 doi: 10.1109/TMECH.2012.2204070 – ident: 17 doi: 10.1007/s11012-015-0261-6 – ident: 30 doi: 10.1089/soro.2018.0005 – ident: 15 doi: 10.1089/soro.2016.0034 – volume: 26 issn: 0964-1726 year: 2017 ident: 26 publication-title: Smart Mater. Struct. |
SSID | ssj0011831 |
Score | 2.5257838 |
Snippet | Pneumatic soft grippers made of silicone have been successfully applied in the industrial field of grabbing fragile objects. But their inherent low stiffness... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 35033 |
SubjectTerms | exoskeleton rigid-soft gripper self-locking soft gripper variable stiffness |
Title | Self-locking mechanism for variable stiffness rigid-soft gripper |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/ab710f |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSxwxEB70iqAP2lrF3-ShPviQu9skm03wpaVURLAtVOEeCiHJJlLqnYd754N_vZPdvUNFRHzbh0k2DLPzTXZmvgH4YhmzukwZVh4cFbHg1JZ9TX2O6I_2w2xNx3D-U55eirNBPliA43kvzM24df1dfGyIghsVtgVxqpdxmVEp80HPOsTHuAgfuELgTN17v37PUwhoq_W4PC0FRZSe5Shf2uEJJi3iex9BzMka_J0drqks-d-dTlzX3z_jbXzn6T_Caht6km-N6CdYCKN1WHlESLgOS3VBqK8-w9c_4TpSRLr0K50MQ2oQ_lcNCca45A7v16njiqB7iDH5SpLGa5W0Qp9OrtANjcPtBlyc_Lj4fkrbaQvU84xNKLNC6b4VrHDBKe2j1qVOjTw-Wqm07QcVCxFK6fpRBM9ltHlRCu1kHhiLfBM6o5tR2ALCMQazURexcFa4EtEA13kVgs-cyDzbht5M3ca3TORpIMa1qTPiSpmkJJOUZBolbcPRfMW4YeF4RfYQdW_aT7F6RY48kauGlWHacJNyrZybcRl33rjVLiyzdA2vS9P2oDO5nYZ9jFUm7qC2yQeUauFx |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PTxQxFH8BjAYPiKgRQelBDh66u9N2OtMDCUTc8EeRREz21rSd1hh2lw2zQORD8VX4SrzOzG7AGOKFA7c5vDbte-37vc77B_DRMGZUET2s3FsqQsapKTqKuhTRH88PM1U5hm8Hcuen2OulvRm4mubCnIwa1d_Cz7pQcM3CJiAubydcJlTKtNc2FvExtEdFaKIq9_2fC3yzlRu72yjgdca6X44-79CmrQB1PGFjyozIVccIlllvc-WCUoWKGSsuGJkr0_F5yIQvpO0E4R2XwaRZIZSVqWcscJx2Fp6kHKE6Jgx-P5x6LfB6VB36lBQUDYOJW_Rfi74Dg7O41Vuo1n0B1xN-1MEsx62zsW25y79KRT4ehi3CQmNgk616dS9hxg-X4PmtsotL8LQKe3XlK9j84fuBIp5HhwEZ-JgG_bscELTkybnBu2n7nqASDCEiAolNxApaInKRX6hsR_70NRw9xF7ewNzwZOjfAuFoaZqgspBZI2yBmIfjXO69S6xIHFuG9kTC2jX11mPbj76u_P55rqNcdJSLruWyDJ-mI0Z1rZF7aNdR3LpROOU9dOQOXTkoNVOa6-hR5lzjUXj3n1OtwbPD7a7-unuwvwLzLP53qGLxVmFufHrm36NxNrYfqhtBQD_wgboB3vFBcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-locking+mechanism+for+variable+stiffness+rigid%E2%80%93soft+gripper&rft.jtitle=Smart+materials+and+structures&rft.au=Guo%2C+Xin-Yu&rft.au=Li%2C+Wen-Bo&rft.au=Gao%2C+Qiu-Hua&rft.au=Yan%2C+Han&rft.date=2020-03-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=29&rft.issue=3&rft.spage=35033&rft_id=info:doi/10.1088%2F1361-665X%2Fab710f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ab710f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |