Design and development of papain-urea loaded PVA nanofibers for wound debridement
Devitalized tissues present in a wound bed serve as a reservoir for bacterial growth and contain elevated levels of inflammatory mediators that promote chronic inflammation and impair cellular migration necessary for wound repair. Effective wound cleansing and debridement are essential for granulati...
Saved in:
Published in | RSC advances Vol. 4; no. 14; pp. 629 - 6215 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Devitalized tissues present in a wound bed serve as a reservoir for bacterial growth and contain elevated levels of inflammatory mediators that promote chronic inflammation and impair cellular migration necessary for wound repair. Effective wound cleansing and debridement are essential for granulation and re-epithelization. Among various debridement methods, enzymatic debridement is a highly selective method that uses naturally occurring proteolytic enzymes. Papain combined with urea has been widely used to remove necrotic/devitalized tissues. Our approach is to encapsulate papain and urea in PVA nanofibers to bring out sustained release to enable breakdown of fibrinous material in necrotic tissue and enhance wound healing. Physico-chemical characterization of nanofibers depicted the enzyme interaction with the polymer and also confirmed that the enzyme was evenly distributed in the nanofibers in an amorphous state. Fluorescence spectroscopy confirmed that the structural integrity of the enzyme was maintained after encapsulation. The results of antibacterial activity along with cell compatibility assays confirm the structural and functional integrity of the enzyme preparation along with the biocompatibility of the electrospun nanofiber and thereby provide more suitability as a dressing for wound debridement.
Nanofiber based delivery of enzyme for wound debridement with sustained functional integrity. |
---|---|
AbstractList | Devitalized tissues present in a wound bed serve as a reservoir for bacterial growth and contain elevated levels of inflammatory mediators that promote chronic inflammation and impair cellular migration necessary for wound repair. Effective wound cleansing and debridement are essential for granulation and re-epithelization. Among various debridement methods, enzymatic debridement is a highly selective method that uses naturally occurring proteolytic enzymes. Papain combined with urea has been widely used to remove necrotic/devitalized tissues. Our approach is to encapsulate papain and urea in PVA nanofibers to bring out sustained release to enable breakdown of fibrinous material in necrotic tissue and enhance wound healing. Physico-chemical characterization of nanofibers depicted the enzyme interaction with the polymer and also confirmed that the enzyme was evenly distributed in the nanofibers in an amorphous state. Fluorescence spectroscopy confirmed that the structural integrity of the enzyme was maintained after encapsulation. The results of antibacterial activity along with cell compatibility assays confirm the structural and functional integrity of the enzyme preparation along with the biocompatibility of the electrospun nanofiber and thereby provide more suitability as a dressing for wound debridement. Devitalized tissues present in a wound bed serve as a reservoir for bacterial growth and contain elevated levels of inflammatory mediators that promote chronic inflammation and impair cellular migration necessary for wound repair. Effective wound cleansing and debridement are essential for granulation and re-epithelization. Among various debridement methods, enzymatic debridement is a highly selective method that uses naturally occurring proteolytic enzymes. Papain combined with urea has been widely used to remove necrotic/devitalized tissues. Our approach is to encapsulate papain and urea in PVA nanofibers to bring out sustained release to enable breakdown of fibrinous material in necrotic tissue and enhance wound healing. Physico-chemical characterization of nanofibers depicted the enzyme interaction with the polymer and also confirmed that the enzyme was evenly distributed in the nanofibers in an amorphous state. Fluorescence spectroscopy confirmed that the structural integrity of the enzyme was maintained after encapsulation. The results of antibacterial activity along with cell compatibility assays confirm the structural and functional integrity of the enzyme preparation along with the biocompatibility of the electrospun nanofiber and thereby provide more suitability as a dressing for wound debridement. Nanofiber based delivery of enzyme for wound debridement with sustained functional integrity. |
Author | Lakra, Rachita Shoba, Ekambaram Korrapati, Purna Sai Kiran, Manikantan Syamala |
AuthorAffiliation | CSIR - Central Leather Research Institute Biomaterials Department |
AuthorAffiliation_xml | – name: Biomaterials Department – name: CSIR - Central Leather Research Institute |
Author_xml | – sequence: 1 givenname: Ekambaram surname: Shoba fullname: Shoba, Ekambaram – sequence: 2 givenname: Rachita surname: Lakra fullname: Lakra, Rachita – sequence: 3 givenname: Manikantan Syamala surname: Kiran fullname: Kiran, Manikantan Syamala – sequence: 4 givenname: Purna Sai surname: Korrapati fullname: Korrapati, Purna Sai |
BookMark | eNp90MtLAzEQBvAgFay1F-9CvImwmtemm2OpjwqCD9TrMs1OdGWbrElX8b-3D1FPzmXm8Pvm8O2Sng8eCdnn7IQzaU6tisCZkOZli_QFUzoTTJven3uHDFN6ZcvRORea98ndGab62VPwFa3wHZvQztEvaHC0hRZqn3URgTYBKqzo7dOYevDB1TOMiboQ6Ufo1tFZrCtcRffItoMm4fB7D8jjxfnDZJpd31xeTcbXmZVcLDJRaKWRF9ICKK65NAVTVpnCKRhJO1JCSTOzWksBhTMyB6GlzDUYzEfMzeSAHG3-tjG8dZgW5bxOFpsGPIYulVxrxnKRm2JJjzfUxpBSRFe2sZ5D_Cw5K1fVlRN1P15XN13iww2Oyf6432rLtnJLc_CfkV-VGnZU |
CitedBy_id | crossref_primary_10_1021_acsomega_4c01102 crossref_primary_10_1080_00914037_2016_1252357 crossref_primary_10_3390_gels7020059 crossref_primary_10_1088_1748_605X_aa6684 crossref_primary_10_1016_j_eurpolymj_2019_05_020 crossref_primary_10_1039_C5RA04438C crossref_primary_10_1039_C6RA05092A crossref_primary_10_1088_1748_605X_aa7d5a crossref_primary_10_1039_C5RA14142G crossref_primary_10_1016_j_eurpolymj_2020_110224 crossref_primary_10_1080_22297928_2019_1605929 crossref_primary_10_1016_j_cej_2017_10_098 crossref_primary_10_1016_j_msec_2016_05_074 crossref_primary_10_1088_1748_605X_ab6b2f crossref_primary_10_1016_j_biopha_2023_115041 crossref_primary_10_1002_ejoc_201501242 crossref_primary_10_1016_j_inoche_2024_112162 crossref_primary_10_1021_acs_jafc_0c02513 crossref_primary_10_1002_term_2563 crossref_primary_10_1039_C5RA17754E crossref_primary_10_1016_j_clay_2018_08_015 crossref_primary_10_1007_s12011_019_01742_2 crossref_primary_10_3390_polym13234061 crossref_primary_10_1016_j_micromeso_2021_111316 crossref_primary_10_1016_j_eurpolymj_2018_11_032 crossref_primary_10_1039_C5RA08721J crossref_primary_10_1016_j_ijpharm_2017_03_013 crossref_primary_10_1016_j_ijbiomac_2023_123258 crossref_primary_10_1016_j_ijbiomac_2017_12_066 crossref_primary_10_3390_pharmaceutics14071494 crossref_primary_10_1016_j_colsurfa_2021_128185 crossref_primary_10_1016_j_ejpb_2016_12_001 |
Cites_doi | 10.1016/j.colsurfb.2010.12.022 10.1016/S0142-9612(03)00122-4 10.1016/j.molcatb.2006.01.003 10.1007/BF02875403 10.1002/jbm.820060305 10.1074/jbc.M006615200 10.1007/s12257-008-0268-0 10.1016/j.memsci.2007.10.008 10.1016/0168-1656(95)00182-4 10.1007/s10971-006-6431-1 10.1002/jctb.1378 10.1016/j.colsurfb.2012.07.003 10.1002/bit.260350510 10.1016/j.memsci.2004.10.024 10.1016/j.ces.2005.05.067 10.1038/218929a0 10.1016/j.molcatb.2008.05.005 10.1016/j.biotechadv.2010.01.004 10.1111/j.1745-4514.1987.tb00120.x 10.1002/jctb.1177 10.1002/app.38054 10.1016/j.biotechadv.2011.01.005 10.1016/j.addr.2007.04.022 10.1021/bm061091g 10.1016/0022-1759(83)90303-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c4ra10239h |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 6215 |
ExternalDocumentID | 10_1039_C4RA10239H c4ra10239h |
GroupedDBID | 0-7 0R AAEMU AAGNR AAIWI ABASK ABGFH ACGFS ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AUNWK BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- EJD H13 HZ H~N IPNFZ J3G J3H J3I JG O9- R7C R7G RCNCU RIG RPMJG RRC RSCEA SLH -JG 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABPDG ABXOH ADBBV AEFDR AESAV AETIL AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANBJS APEMP BCNDV CITATION GROUPED_DOAJ HZ~ M~E OK1 PGMZT RAOCF ROYLF RPM RVUXY SMJ YAE ZCN 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c312t-28646e183caa416139804c498f4a73c742439bc6632a8f935a263356a9e570fb3 |
ISSN | 2046-2069 |
IngestDate | Sat Oct 26 01:22:46 EDT 2024 Fri Aug 23 01:41:16 EDT 2024 Sun Jun 02 15:25:36 EDT 2019 Thu Mar 24 04:23:58 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-28646e183caa416139804c498f4a73c742439bc6632a8f935a263356a9e570fb3 |
Notes | 10.1039/c4ra10239h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1660052598 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_C4RA10239H rsc_primary_c4ra10239h proquest_miscellaneous_1660052598 |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | RSC advances |
PublicationYear | 2014 |
References | Gregorio Jauregui (C4RA10239H-(cit4)/*[position()=1]) 2009; 14 Sharma (C4RA10239H-(cit26)/*[position()=1]) 2011; 6 Kuptsov (C4RA10239H-(cit28)/*[position()=1]) 1998 Solis (C4RA10239H-(cit12)/*[position()=1]) 2006; 37 Kottegoda (C4RA10239H-(cit27)/*[position()=1]) 2011; 101 Sai (C4RA10239H-(cit22)/*[position()=1]) 2001; 276 Kim (C4RA10239H-(cit7)/*[position()=1]) 2006; 61 Jayakumar (C4RA10239H-(cit8)/*[position()=1]) 2011; 29 Hayashi (C4RA10239H-(cit14)/*[position()=1]) 1990; 35 Ding (C4RA10239H-(cit18)/*[position()=1]) 2002; 3 Gobi (C4RA10239H-(cit25)/*[position()=1]) 2011; 37 Meng (C4RA10239H-(cit30)/*[position()=1]) 2011; 84 Silverstein (C4RA10239H-(cit5)/*[position()=1]) 1973; 73 Wang (C4RA10239H-(cit6)/*[position()=1]) 2009; 56 Eckstein (C4RA10239H-(cit16)/*[position()=1]) 1991; 50 Li (C4RA10239H-(cit13)/*[position()=1]) 2000; 18 Bhardwaj (C4RA10239H-(cit10)/*[position()=1]) 2010; 28 Wang (C4RA10239H-(cit11)/*[position()=1]) 2008; 309 Sangeetha (C4RA10239H-(cit1)/*[position()=1]) 2006; 38 Barnes (C4RA10239H-(cit9)/*[position()=1]) 2007; 59 Mao (C4RA10239H-(cit29)/*[position()=1]) 2006; 81 Mosmann (C4RA10239H-(cit21)/*[position()=1]) 1983; 65 Imai (C4RA10239H-(cit23)/*[position()=1]) 1972; 6 Jegan Roy (C4RA10239H-(cit2)/*[position()=1]) 2005; 80 Wu (C4RA10239H-(cit24)/*[position()=1]) 2005; 250 Chiou (C4RA10239H-(cit15)/*[position()=1]) 1987; 11 Liang (C4RA10239H-(cit17)/*[position()=1]) 2007; 8 Dreuth (C4RA10239H-(cit3)/*[position()=1]) 1968; 218 Zhao (C4RA10239H-(cit33)/*[position()=1]) 2012; 127 Dey (C4RA10239H-(cit32)/*[position()=1]) 2003; 24 Sahoo (C4RA10239H-(cit20)/*[position()=1]) 2013; 101 Glinos (C4RA10239H-(cit31)/*[position()=1]) 1983; 75 Liu (C4RA10239H-(cit19)/*[position()=1]) 1996; 46 |
References_xml | – issn: 1998 publication-title: Handbook of Fourier Transform Raman and Infrared Spectra of Polymers doi: Kuptsov Zhizhin – volume: 50 start-page: S114 year: 1991 ident: C4RA10239H-(cit16)/*[position()=1] publication-title: Biomed. Biochim. Acta contributor: fullname: Eckstein – volume: 75 start-page: 1211 year: 1983 ident: C4RA10239H-(cit31)/*[position()=1] publication-title: J. Natl. Cancer Inst. contributor: fullname: Glinos – volume: 84 start-page: 97 year: 2011 ident: C4RA10239H-(cit30)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2010.12.022 contributor: fullname: Meng – volume: 24 start-page: 2985 year: 2003 ident: C4RA10239H-(cit32)/*[position()=1] publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00122-4 contributor: fullname: Dey – volume: 38 start-page: 171 year: 2006 ident: C4RA10239H-(cit1)/*[position()=1] publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2006.01.003 contributor: fullname: Sangeetha – volume: 3 start-page: 73 year: 2002 ident: C4RA10239H-(cit18)/*[position()=1] publication-title: Fibers Polym. doi: 10.1007/BF02875403 contributor: fullname: Ding – volume: 6 start-page: 165 year: 1972 ident: C4RA10239H-(cit23)/*[position()=1] publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820060305 contributor: fullname: Imai – volume: 18 start-page: 25 year: 2000 ident: C4RA10239H-(cit13)/*[position()=1] publication-title: Chin. J. Polym. Sci. contributor: fullname: Li – volume: 276 start-page: 2701 year: 2001 ident: C4RA10239H-(cit22)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006615200 contributor: fullname: Sai – volume: 14 start-page: 450 year: 2009 ident: C4RA10239H-(cit4)/*[position()=1] publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-008-0268-0 contributor: fullname: Gregorio Jauregui – volume: 309 start-page: 73 year: 2008 ident: C4RA10239H-(cit11)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.10.008 contributor: fullname: Wang – volume: 46 start-page: 131 year: 1996 ident: C4RA10239H-(cit19)/*[position()=1] publication-title: J. Biotechnol. doi: 10.1016/0168-1656(95)00182-4 contributor: fullname: Liu – volume: 37 start-page: 125 year: 2006 ident: C4RA10239H-(cit12)/*[position()=1] publication-title: J. Sol–Gel Sci. Technol. doi: 10.1007/s10971-006-6431-1 contributor: fullname: Solis – volume: 81 start-page: 189 year: 2006 ident: C4RA10239H-(cit29)/*[position()=1] publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1378 contributor: fullname: Mao – volume: 73 start-page: 15 year: 1973 ident: C4RA10239H-(cit5)/*[position()=1] publication-title: Surgery contributor: fullname: Silverstein – volume: 101 start-page: 280 year: 2013 ident: C4RA10239H-(cit20)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2012.07.003 contributor: fullname: Sahoo – volume: 35 start-page: 518 year: 1990 ident: C4RA10239H-(cit14)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260350510 contributor: fullname: Hayashi – volume: 250 start-page: 167 year: 2005 ident: C4RA10239H-(cit24)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.10.024 contributor: fullname: Wu – volume: 61 start-page: 1017 year: 2006 ident: C4RA10239H-(cit7)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.05.067 contributor: fullname: Kim – volume: 6 start-page: 2097 year: 2011 ident: C4RA10239H-(cit26)/*[position()=1] publication-title: Int. J. Nanomed. contributor: fullname: Sharma – volume: 218 start-page: 929 year: 1968 ident: C4RA10239H-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/218929a0 contributor: fullname: Dreuth – volume: 37 start-page: 127 year: 2011 ident: C4RA10239H-(cit25)/*[position()=1] publication-title: Indian J. Fibre Text. Res. contributor: fullname: Gobi – volume: 56 start-page: 189 year: 2009 ident: C4RA10239H-(cit6)/*[position()=1] publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2008.05.005 contributor: fullname: Wang – volume: 28 start-page: 325 year: 2010 ident: C4RA10239H-(cit10)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.01.004 contributor: fullname: Bhardwaj – volume: 101 start-page: 73 year: 2011 ident: C4RA10239H-(cit27)/*[position()=1] publication-title: Curr. Sci. contributor: fullname: Kottegoda – volume: 11 start-page: 163 year: 1987 ident: C4RA10239H-(cit15)/*[position()=1] publication-title: J. Food Biochem. doi: 10.1111/j.1745-4514.1987.tb00120.x contributor: fullname: Chiou – volume-title: Handbook of Fourier Transform Raman and Infrared Spectra of Polymers year: 1998 ident: C4RA10239H-(cit28)/*[position()=1] contributor: fullname: Kuptsov – volume: 80 start-page: 184 year: 2005 ident: C4RA10239H-(cit2)/*[position()=1] publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1177 contributor: fullname: Jegan Roy – volume: 127 start-page: 4825 year: 2012 ident: C4RA10239H-(cit33)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38054 contributor: fullname: Zhao – volume: 29 start-page: 322 year: 2011 ident: C4RA10239H-(cit8)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.01.005 contributor: fullname: Jayakumar – volume: 59 start-page: 1413 year: 2007 ident: C4RA10239H-(cit9)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2007.04.022 contributor: fullname: Barnes – volume: 8 start-page: 1480 year: 2007 ident: C4RA10239H-(cit17)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm061091g contributor: fullname: Liang – volume: 65 start-page: 55 year: 1983 ident: C4RA10239H-(cit21)/*[position()=1] publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 contributor: fullname: Mosmann |
SSID | ssj0000651261 |
Score | 2.2789583 |
Snippet | Devitalized tissues present in a wound bed serve as a reservoir for bacterial growth and contain elevated levels of inflammatory mediators that promote chronic... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 629 |
SubjectTerms | Bacteria Electrospinning Encapsulation Enzymes Nanofibers Papain Polyvinyl alcohols Ureas |
Title | Design and development of papain-urea loaded PVA nanofibers for wound debridement |
URI | https://search.proquest.com/docview/1660052598 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9NAEIZXaXuAS8VXRQpFi-AWmSbe9cceowCKoEWFtKg3a9ZZK1EbuzKOqnLgt3dmHXuNKBLlYiV2bCv72OPZ8TszjL01kop-aAq6UwszyISnDCkBZCAMUNaAzUo7_hJOz-Sn8-C81zvqqJbWlX6X_rwzr-R_qOI65EpZsvcg2x4UV-Bn5ItLJIzLf2L83sovbPx_7sQ_VsSMz8Bl7pHkfHBZwBzdypPv40EOOZ5QU9IuyQuvqacS7kpZW04C05Trnk0ahUDrd88WePtb83kBK3pPsWoFPaQOsLxInVm1xv7zsqxDrMeQLy8QI9mTG1jBpftJUVIb9lpXcEJ_ezCDZTccMZKdcISxZsvHGTdSqhuwNDZWdi8l2TGY4SbeYTbf6tzOP-z6UFBZ1FSWQKUm1MI9vVpNodu4xXZ8KvtHQs5fLuKGztYI54tNjVqhDt0uv3slbqqxVTZ9YKy_cfqI7W4mCnxcU3_MeiZ_wh5Mmv58T9nXmj5H-rxDnxcZ79DnNX2O9Lmjz5E-t_R5h_4zdvbxw-lk6m0aZHipGPmV58ehDA0a5RSAJqpCxUOZShVnEiKRRtJHd1On6FT6EGdKBOCHQgQhKBNEw0yLPbadF7l5zniKN2ym52jOQZNZV7HQsdGRbyJJdbn67E0zQMlVXQclsfoFoZKJ_Da2wzjts9fN2CU4GvTuCXJTrH8kozCkNxCBivtsDwe1PYhj0Gf7d29IrubZ_t_2esEeusvwJduuyrU5QD-x0q8s_lugE2qb |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+development+of+papain-urea+loaded+PVA+nanofibers+for+wound+debridement&rft.jtitle=RSC+advances&rft.au=Shoba%2C+Ekambaram&rft.au=Lakra%2C+Rachita&rft.au=Kiran%2C+Manikantan+Syamala&rft.au=Korrapati%2C+Purna+Sai&rft.date=2014-01-01&rft.eissn=2046-2069&rft.volume=4&rft.issue=14&rft.spage=629&rft.epage=6215&rft_id=info:doi/10.1039%2Fc4ra10239h&rft.externalDocID=c4ra10239h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |