Wave motion in a narrow gap coupling with the roll motion of a vessel next to an offshore terminal
Concerning the scenario of a vessel operating alongside an offshore terminal, the vessel being the floating body and the offshore terminal bottom-mounted. The closeness of the two bodies leads to the formation of a long narrow gap, within which the large amplification of the water-surface elevation...
Saved in:
Published in | Ocean engineering Vol. 293; p. 116646 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2023.116646 |
Cover
Loading…
Abstract | Concerning the scenario of a vessel operating alongside an offshore terminal, the vessel being the floating body and the offshore terminal bottom-mounted. The closeness of the two bodies leads to the formation of a long narrow gap, within which the large amplification of the water-surface elevation could occur. The coupling effect between the roll motion of the vessel and the water-surface motion within the gap is primarily concerned. Under the assumption that the quay wall of the terminal is infinitely long and fully reflective, the imaging principle and a modified Green's function have been developed to investigate such an effect. Numerical models are developed based on the two proposed approaches, respectively, in conjunction with a higher-order boundary element method. For a small gap width, the p = 1 resonant mode of water-surface motion in the gap can apparently enhance the roll motion of the vessel. The radiation wave owing to the enhanced roll motion can in turn disturb the water-surface motion, increasing the frequency of the dominant peak while decreasing its amplitude. As the gap width increases, the water-surface elevation around the resonant frequency of roll motion gets more and more noticeable, gradually becoming the dominant peak. The effect of the mooring stiffness is also discussed, revealing the existence of a ꞌnon-resonance regionꞌ where no resonance occurs in this specific frequency region. It is also noted that the resonant water-surface motion of p = 1 mode can cause a remarkable amplification of the negative horizontal mean wave drift force, pushing the vessel away from the terminal.
•This work focused on the interaction between the roll motion and the water-surface motion with a vessel alongside an offshore terminal.•Three-dimensional numerical models were developed based on the imaging principle and the use of a modified Green's function, respectively, in conjunction with a higher-order boundary element method.•The roll motion of the vessel exhibits two peak responses in the presence of the adjacent vertical wall.•Subject to the effect of roll motion, the p = 1 resonant mode of water-surface motion experiences an increase in frequency and a decrease in amplitude.•A region known as the ꞌnon-resonance regionꞌ was found, where no resonance occurs in this specific frequency region regardless of the mooring stiffness. |
---|---|
AbstractList | Concerning the scenario of a vessel operating alongside an offshore terminal, the vessel being the floating body and the offshore terminal bottom-mounted. The closeness of the two bodies leads to the formation of a long narrow gap, within which the large amplification of the water-surface elevation could occur. The coupling effect between the roll motion of the vessel and the water-surface motion within the gap is primarily concerned. Under the assumption that the quay wall of the terminal is infinitely long and fully reflective, the imaging principle and a modified Green's function have been developed to investigate such an effect. Numerical models are developed based on the two proposed approaches, respectively, in conjunction with a higher-order boundary element method. For a small gap width, the p = 1 resonant mode of water-surface motion in the gap can apparently enhance the roll motion of the vessel. The radiation wave owing to the enhanced roll motion can in turn disturb the water-surface motion, increasing the frequency of the dominant peak while decreasing its amplitude. As the gap width increases, the water-surface elevation around the resonant frequency of roll motion gets more and more noticeable, gradually becoming the dominant peak. The effect of the mooring stiffness is also discussed, revealing the existence of a ꞌnon-resonance regionꞌ where no resonance occurs in this specific frequency region. It is also noted that the resonant water-surface motion of p = 1 mode can cause a remarkable amplification of the negative horizontal mean wave drift force, pushing the vessel away from the terminal.
•This work focused on the interaction between the roll motion and the water-surface motion with a vessel alongside an offshore terminal.•Three-dimensional numerical models were developed based on the imaging principle and the use of a modified Green's function, respectively, in conjunction with a higher-order boundary element method.•The roll motion of the vessel exhibits two peak responses in the presence of the adjacent vertical wall.•Subject to the effect of roll motion, the p = 1 resonant mode of water-surface motion experiences an increase in frequency and a decrease in amplitude.•A region known as the ꞌnon-resonance regionꞌ was found, where no resonance occurs in this specific frequency region regardless of the mooring stiffness. |
ArticleNumber | 116646 |
Author | Huang, Chao Jin, Ruijia Cong, Peiwen Teng, Bin |
Author_xml | – sequence: 1 givenname: Chao surname: Huang fullname: Huang, Chao organization: State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China – sequence: 2 givenname: Peiwen surname: Cong fullname: Cong, Peiwen email: pwcong@dlut.edu.cn, congpw@163.com organization: State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China – sequence: 3 givenname: Ruijia surname: Jin fullname: Jin, Ruijia organization: Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin, China – sequence: 4 givenname: Bin surname: Teng fullname: Teng, Bin organization: State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China |
BookMark | eNqFkM1KAzEUhYNUsK2-guQFZszPTCYDLpTiHxTcKC5DJnOnTZkmJYmtvr0zVDduurpwuN-B883QxHkHCF1TklNCxc0m9wa0A7fKGWE8p1SIQpyhKZUVz0pWygmaEsLqTBIqL9Asxg0hRAjCp6j50HvAW5-sd9g6rLHTIfgDXukdNv5z11u3wgeb1jitAQff93_fvhu-9xAj9NjBV8LJYz3GXVz7ADhB2Fqn-0t03uk-wtXvnaP3x4e3xXO2fH16WdwvM8MpSxmrCkO7roVSU8FMY4qKFtIMmYSGGlGUpCmkrFjV1Jy3XdXVohWiJVpwzmvJ50gce03wMQbo1C7YrQ7fihI1mlIb9WdKjabU0dQA3v4DjU163JiCtv1p_O6IwzBubyGoaCw4A60NYJJqvT1V8QOA94wc |
CitedBy_id | crossref_primary_10_1063_5_0257137 |
Cites_doi | 10.1016/j.apor.2015.01.010 10.1016/j.oceaneng.2021.110045 10.1016/j.oceaneng.2022.111726 10.1016/j.oceaneng.2023.115627 10.1016/j.oceaneng.2019.03.040 10.1063/1.5092657 10.1007/s13344-022-0087-7 10.1016/j.apor.2021.102581 10.1016/j.oceaneng.2020.107628 10.1016/S0029-8018(03)00117-3 10.1016/j.oceaneng.2021.109774 10.1061/9780784479919.060 10.1016/j.oceaneng.2021.108753 10.1017/jfm.2019.302 10.1016/j.jfluidstructs.2010.06.001 10.1016/0141-1187(95)00007-N 10.1063/5.0171638 10.1016/j.oceaneng.2019.106877 10.1016/j.apor.2009.10.003 10.1115/1.2979802 10.1080/19373260.2011.577933 10.1007/s13344-022-0036-5 10.1063/5.0161495 10.1142/S0578563401000268 10.1016/j.marstruc.2020.102879 10.1016/j.apor.2018.05.010 10.1016/j.oceaneng.2022.112192 10.1063/5.0017947 10.1016/j.apor.2021.102628 10.1016/j.oceaneng.2020.107323 10.1007/s13344-021-0070-8 10.1016/j.oceaneng.2006.06.005 10.1016/j.apor.2009.10.001 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2023.116646 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2023_116646 S0029801823030305 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SSH WUQ |
ID | FETCH-LOGICAL-c312t-274c1ffde5a162cbc47148cc1f8eb1c6450b488727b933df7f96d66d0a6333983 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 02:15:20 EDT 2025 Sat Aug 10 15:31:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Roll motion Water-surface motion Coupling hydrodynamics Imaging principle Wave force Modified Green's function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-274c1ffde5a162cbc47148cc1f8eb1c6450b488727b933df7f96d66d0a6333983 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2023_116646 crossref_citationtrail_10_1016_j_oceaneng_2023_116646 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_116646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jing, He, Ghassemi, Luan (bib18) 2023; 35 Pachakis, Beamish, Menegazzo (bib29) 2016 Sun, Eatock Taylor, Taylor (bib31) 2010; 26 Cong, Chen, Gou (bib1) 2020; 197 Tan, Lu, Tang, Cheng, Chen (bib34) 2019; 871 Tan, Lu, Liu, Sabodas, Teng (bib33) 2014 Jiang, Gu, Cong (bib16) 2021; 238 Gao, He, Zang, Chen, Ding, Wang (bib7) 2020; 206 Liang, Chua, Wang, Choo (bib22) 2021; 111 Gao, Chen, Zang, Chen, Wang, Zhu (bib8) 2020; 212 Gao, Lyu, Wang, Zhang, Liu, Zang, Zou (bib10) 2022; 36 Jiang, Bai, Tang (bib15) 2019; 31 He, Jing, Zhao, Zhang, Luan (bib12) 2023; 286 Cong, Teng, Bai (bib2) 2021; 76 Ekerhovd, Ong, Zhao (bib5) 2022; vol. 1 Miao, Saitoh, Ishida (bib26) 2001; 43 Lu, Cheng, Teng, Zhao (bib24) 2010; 32 Yin, Jiang, Geng (bib38) 2022; 258 Perić, Swan (bib30) 2015; 51 Gao, He, Zang, Chen, Ding, Wang (bib6) 2019; 180 Liu, Li (bib23) 2014; 228 Kristiansen, Faltinsen (bib19) 2009; 131 Kristiansen, Faltinsen (bib20) 2010; 32 Teng, Ning, Zhang (bib35) 2004; 31 Sun, Taylor, Choo (bib32) 2011; 4 Ekerhovd, Ong, Taylor, Zhao (bib4) 2021; 241 Li, Teng (bib21) 2021; 35 Milne, Kimmoun, Molin, Graham (bib27) 2019 Jean-Robert, Naciri, Xiao-Bo (bib14) 2006 Wang, Zou (bib37) 2007; 34 Teng, Taylor (bib36) 1995; 17 Cong, Teng, Gou, Tan, Liu (bib3) 2022; 260 He, Gao, Shi, Chen, Liu (bib13) 2022; 36 Gao, He, Huang, Liu, Zang, Wang (bib9) 2021; 224 Jing, He, Chen, Zhang, Ng (bib17) 2023; 35 He, Jing, Jin, Zhang, Zhang, Liu (bib11) 2021; 110 Lu, Tan, Zhou, Zhao, Ikoma (bib25) 2020; 32 Ning, Zhu, Zhang, Zhao (bib28) 2018; 77 Cong (10.1016/j.oceaneng.2023.116646_bib2) 2021; 76 He (10.1016/j.oceaneng.2023.116646_bib13) 2022; 36 Lu (10.1016/j.oceaneng.2023.116646_bib24) 2010; 32 Gao (10.1016/j.oceaneng.2023.116646_bib10) 2022; 36 Sun (10.1016/j.oceaneng.2023.116646_bib32) 2011; 4 Lu (10.1016/j.oceaneng.2023.116646_bib25) 2020; 32 He (10.1016/j.oceaneng.2023.116646_bib12) 2023; 286 Kristiansen (10.1016/j.oceaneng.2023.116646_bib20) 2010; 32 He (10.1016/j.oceaneng.2023.116646_bib11) 2021; 110 Jean-Robert (10.1016/j.oceaneng.2023.116646_bib14) 2006 Gao (10.1016/j.oceaneng.2023.116646_bib7) 2020; 206 Jing (10.1016/j.oceaneng.2023.116646_bib17) 2023; 35 Cong (10.1016/j.oceaneng.2023.116646_bib1) 2020; 197 Teng (10.1016/j.oceaneng.2023.116646_bib36) 1995; 17 Miao (10.1016/j.oceaneng.2023.116646_bib26) 2001; 43 Perić (10.1016/j.oceaneng.2023.116646_bib30) 2015; 51 Sun (10.1016/j.oceaneng.2023.116646_bib31) 2010; 26 Yin (10.1016/j.oceaneng.2023.116646_bib38) 2022; 258 Milne (10.1016/j.oceaneng.2023.116646_bib27) 2019 Ning (10.1016/j.oceaneng.2023.116646_bib28) 2018; 77 Ekerhovd (10.1016/j.oceaneng.2023.116646_bib4) 2021; 241 Jiang (10.1016/j.oceaneng.2023.116646_bib15) 2019; 31 Liu (10.1016/j.oceaneng.2023.116646_bib23) 2014; 228 Ekerhovd (10.1016/j.oceaneng.2023.116646_bib5) 2022; vol. 1 Kristiansen (10.1016/j.oceaneng.2023.116646_bib19) 2009; 131 Gao (10.1016/j.oceaneng.2023.116646_bib9) 2021; 224 Li (10.1016/j.oceaneng.2023.116646_bib21) 2021; 35 Teng (10.1016/j.oceaneng.2023.116646_bib35) 2004; 31 Liang (10.1016/j.oceaneng.2023.116646_bib22) 2021; 111 Pachakis (10.1016/j.oceaneng.2023.116646_bib29) 2016 Gao (10.1016/j.oceaneng.2023.116646_bib6) 2019; 180 Gao (10.1016/j.oceaneng.2023.116646_bib8) 2020; 212 Tan (10.1016/j.oceaneng.2023.116646_bib33) 2014 Jing (10.1016/j.oceaneng.2023.116646_bib18) 2023; 35 Tan (10.1016/j.oceaneng.2023.116646_bib34) 2019; 871 Jiang (10.1016/j.oceaneng.2023.116646_bib16) 2021; 238 Cong (10.1016/j.oceaneng.2023.116646_bib3) 2022; 260 Wang (10.1016/j.oceaneng.2023.116646_bib37) 2007; 34 |
References_xml | – volume: 206 year: 2020 ident: bib7 article-title: Numerical investigations of wave loads on fixed box in front of vertical wall with a narrow gap under wave actions publication-title: Ocean Eng. – volume: 77 start-page: 14 year: 2018 end-page: 25 ident: bib28 article-title: Experimental and numerical study on wave response at the gap between two barges of different draughts publication-title: Appl. Ocean Res. – volume: 286 year: 2023 ident: bib12 article-title: Nonlinearities of the gap resonance for a free-heaving moonpool: higher-order harmonics and natural frequency component publication-title: Ocean Eng. – volume: 43 start-page: 39 year: 2001 end-page: 58 ident: bib26 article-title: Water wave interaction of twin large scale caissons with a small gap between publication-title: Coast Eng. J. – volume: 180 start-page: 97 year: 2019 end-page: 107 ident: bib6 article-title: Topographic effects on wave resonance in the narrow gap between fixed box and vertical wall publication-title: Ocean Eng. – volume: 31 year: 2019 ident: bib15 article-title: Numerical investigation of piston-modal wave resonance in the narrow gap formed by a box in front of a wall publication-title: Phys. Fluids – volume: 4 start-page: 143 year: 2011 end-page: 156 ident: bib32 article-title: Responses of interconnected floating bodies publication-title: IES J. Part A Civ. Struct. Eng. – volume: 35 year: 2023 ident: bib17 article-title: Effects of roll motion on linear and nonlinear gap resonances in a moonpool excited by various incident-wave heights publication-title: Phys. Fluids – volume: 32 start-page: 158 year: 2010 end-page: 176 ident: bib20 article-title: A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion publication-title: Appl. Ocean Res. – year: 2006 ident: bib14 article-title: Hydrodynamics of Two Side-By-Side Vessels Experiments and Numerical Simulations – volume: 35 year: 2023 ident: bib18 article-title: Transient responses of the linear and nonlinear gap resonances in the fixed and free-heaving moonpools publication-title: Phys. Fluids – volume: 224 year: 2021 ident: bib9 article-title: Effects of free heave motion on wave resonance inside a narrow gap between two boxes under wave actions publication-title: Ocean Eng. – volume: 131 year: 2009 ident: bib19 article-title: Studies on resonant water motion between a ship and a fixed terminal in Shallow water publication-title: J. Offshore Mech. Arctic Eng. – volume: 17 start-page: 71 year: 1995 end-page: 77 ident: bib36 article-title: New higher-order boundary element methods for wave diffraction/radiation publication-title: Appl. Ocean Res. – volume: 34 start-page: 1245 year: 2007 end-page: 1256 ident: bib37 article-title: Study of non-linear wave motions and wave forces on ship sections against vertical quay in a harbor publication-title: Ocean Eng. – volume: vol. 1 year: 2022 ident: bib5 publication-title: Influence of Gap Width and Artificial Damping on Gap Resonance – volume: 35 start-page: 789 year: 2021 end-page: 801 ident: bib21 article-title: Fluid resonance between twin floating barges with roll motion under wave action publication-title: China Ocean Eng. – start-page: 589 year: 2016 end-page: 598 ident: bib29 article-title: Planning of offshore container terminals publication-title: Ports 2016 – volume: 258 year: 2022 ident: bib38 article-title: Fluid resonance in the narrow gap for a box close to a bottom-mounted wall with permeable bed publication-title: Ocean Eng. – volume: 871 start-page: 510 year: 2019 end-page: 533 ident: bib34 article-title: A viscous damping model for piston mode resonance publication-title: J. Fluid Mech. – volume: 76 year: 2021 ident: bib2 article-title: Second-order wave run-up on a vertical cylinder adjacent to a plane wall based on the application of quadratic transfer function in bi-directional waves publication-title: Mar. Struct. – volume: 111 year: 2021 ident: bib22 article-title: Numerical and experimental investigations into fluid resonance in a gap between two side-by-side vessels publication-title: Appl. Ocean Res. – year: 2014 ident: bib33 article-title: Dissipative effects of resonant waves in confined space formed by floating box in front of vertical wall publication-title: ISOPE Pacific/Asia Offshore Mechanics Symposium (Pp. ISOPE-P) – volume: 31 start-page: 201 year: 2004 end-page: 224 ident: bib35 article-title: Wave radiation by a uniform cylinder in front of a vertical wall publication-title: Ocean Eng. – volume: 241 year: 2021 ident: bib4 article-title: Numerical study on gap resonance coupled to vessel motions relevant to side-by-side offloading publication-title: Ocean Eng. – volume: 32 start-page: 177 year: 2010 end-page: 190 ident: bib24 article-title: Numerical investigation of fluid resonance in two narrow gaps of three identical rectangular structures publication-title: Appl. Ocean Res. – volume: 26 start-page: 954 year: 2010 end-page: 978 ident: bib31 article-title: First- and second-order analysis of resonant waves between adjacent barges publication-title: J. Fluid Struct. – volume: 260 year: 2022 ident: bib3 article-title: Hydrodynamic analysis of resonant waves within the gap between a vessel and a vertical quay wall publication-title: Ocean Eng. – volume: 197 year: 2020 ident: bib1 article-title: Hydrodynamic interaction among multiple columns in front of a vertical wall publication-title: Ocean Eng. – volume: 238 year: 2021 ident: bib16 article-title: Fluid resonance in the narrow gap of a box-wall system under cnoidal wave action publication-title: Ocean Eng. – volume: 212 year: 2020 ident: bib8 article-title: Numerical investigations of gap resonance excited by focused transient wave groups publication-title: Ocean Eng. – volume: 36 start-page: 403 year: 2022 end-page: 412 ident: bib13 article-title: Investigation on effects of vertical degree of freedom on gap resonance between two side-by-side boxes under wave actions publication-title: China Ocean Eng. – year: 2019 ident: bib27 article-title: Experiments on a barge rolling next to a wall publication-title: The 34th International Workshop on Water Waves and Floating Bodies – volume: 36 start-page: 994 year: 2022 end-page: 1006 ident: bib10 article-title: Study on transient gap resonance with consideration of the motion of floating body publication-title: China Ocean Eng. – volume: 51 start-page: 320 year: 2015 end-page: 330 ident: bib30 article-title: An experimental study of the wave excitation in the gap between two closely spaced bodies, with implications for LNG offloading publication-title: Appl. Ocean Res. – volume: 32 year: 2020 ident: bib25 article-title: Two-dimensional numerical study of gap resonance coupling with motions of floating body moored close to a bottom-mounted wall publication-title: Phys. Fluids – volume: 228 start-page: 3 year: 2014 end-page: 16 ident: bib23 article-title: A new semi-analytical solution for gap resonance between twin rectangular boxes publication-title: Proc. IME M J. Eng. Marit. Environ. – volume: 110 year: 2021 ident: bib11 article-title: Two-dimensional numerical study on fluid resonance in the narrow gap between two rigid-connected heave boxes in waves publication-title: Appl. Ocean Res. – volume: vol. 1 year: 2022 ident: 10.1016/j.oceaneng.2023.116646_bib5 – volume: 51 start-page: 320 year: 2015 ident: 10.1016/j.oceaneng.2023.116646_bib30 article-title: An experimental study of the wave excitation in the gap between two closely spaced bodies, with implications for LNG offloading publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.01.010 – volume: 241 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib4 article-title: Numerical study on gap resonance coupled to vessel motions relevant to side-by-side offloading publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110045 – volume: 258 year: 2022 ident: 10.1016/j.oceaneng.2023.116646_bib38 article-title: Fluid resonance in the narrow gap for a box close to a bottom-mounted wall with permeable bed publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111726 – year: 2006 ident: 10.1016/j.oceaneng.2023.116646_bib14 – volume: 286 year: 2023 ident: 10.1016/j.oceaneng.2023.116646_bib12 article-title: Nonlinearities of the gap resonance for a free-heaving moonpool: higher-order harmonics and natural frequency component publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115627 – volume: 180 start-page: 97 year: 2019 ident: 10.1016/j.oceaneng.2023.116646_bib6 article-title: Topographic effects on wave resonance in the narrow gap between fixed box and vertical wall publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.03.040 – volume: 31 issue: 5 year: 2019 ident: 10.1016/j.oceaneng.2023.116646_bib15 article-title: Numerical investigation of piston-modal wave resonance in the narrow gap formed by a box in front of a wall publication-title: Phys. Fluids doi: 10.1063/1.5092657 – volume: 36 start-page: 994 issue: 6 year: 2022 ident: 10.1016/j.oceaneng.2023.116646_bib10 article-title: Study on transient gap resonance with consideration of the motion of floating body publication-title: China Ocean Eng. doi: 10.1007/s13344-022-0087-7 – volume: 111 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib22 article-title: Numerical and experimental investigations into fluid resonance in a gap between two side-by-side vessels publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102581 – volume: 212 year: 2020 ident: 10.1016/j.oceaneng.2023.116646_bib8 article-title: Numerical investigations of gap resonance excited by focused transient wave groups publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107628 – volume: 228 start-page: 3 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2023.116646_bib23 article-title: A new semi-analytical solution for gap resonance between twin rectangular boxes publication-title: Proc. IME M J. Eng. Marit. Environ. – volume: 31 start-page: 201 issue: 2 year: 2004 ident: 10.1016/j.oceaneng.2023.116646_bib35 article-title: Wave radiation by a uniform cylinder in front of a vertical wall publication-title: Ocean Eng. doi: 10.1016/S0029-8018(03)00117-3 – volume: 238 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib16 article-title: Fluid resonance in the narrow gap of a box-wall system under cnoidal wave action publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109774 – start-page: 589 year: 2016 ident: 10.1016/j.oceaneng.2023.116646_bib29 article-title: Planning of offshore container terminals publication-title: Ports 2016 doi: 10.1061/9780784479919.060 – volume: 224 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib9 article-title: Effects of free heave motion on wave resonance inside a narrow gap between two boxes under wave actions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108753 – volume: 871 start-page: 510 year: 2019 ident: 10.1016/j.oceaneng.2023.116646_bib34 article-title: A viscous damping model for piston mode resonance publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.302 – volume: 26 start-page: 954 issue: 6 year: 2010 ident: 10.1016/j.oceaneng.2023.116646_bib31 article-title: First- and second-order analysis of resonant waves between adjacent barges publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2010.06.001 – volume: 17 start-page: 71 issue: 2 year: 1995 ident: 10.1016/j.oceaneng.2023.116646_bib36 article-title: New higher-order boundary element methods for wave diffraction/radiation publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(95)00007-N – volume: 35 issue: 10 year: 2023 ident: 10.1016/j.oceaneng.2023.116646_bib17 article-title: Effects of roll motion on linear and nonlinear gap resonances in a moonpool excited by various incident-wave heights publication-title: Phys. Fluids doi: 10.1063/5.0171638 – volume: 197 year: 2020 ident: 10.1016/j.oceaneng.2023.116646_bib1 article-title: Hydrodynamic interaction among multiple columns in front of a vertical wall publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106877 – volume: 32 start-page: 177 issue: 2 year: 2010 ident: 10.1016/j.oceaneng.2023.116646_bib24 article-title: Numerical investigation of fluid resonance in two narrow gaps of three identical rectangular structures publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2009.10.003 – volume: 131 issue: 2 year: 2009 ident: 10.1016/j.oceaneng.2023.116646_bib19 article-title: Studies on resonant water motion between a ship and a fixed terminal in Shallow water publication-title: J. Offshore Mech. Arctic Eng. doi: 10.1115/1.2979802 – volume: 4 start-page: 143 issue: 3 year: 2011 ident: 10.1016/j.oceaneng.2023.116646_bib32 article-title: Responses of interconnected floating bodies publication-title: IES J. Part A Civ. Struct. Eng. doi: 10.1080/19373260.2011.577933 – volume: 36 start-page: 403 issue: 3 year: 2022 ident: 10.1016/j.oceaneng.2023.116646_bib13 article-title: Investigation on effects of vertical degree of freedom on gap resonance between two side-by-side boxes under wave actions publication-title: China Ocean Eng. doi: 10.1007/s13344-022-0036-5 – volume: 35 issue: 8 year: 2023 ident: 10.1016/j.oceaneng.2023.116646_bib18 article-title: Transient responses of the linear and nonlinear gap resonances in the fixed and free-heaving moonpools publication-title: Phys. Fluids doi: 10.1063/5.0161495 – volume: 43 start-page: 39 issue: 1 year: 2001 ident: 10.1016/j.oceaneng.2023.116646_bib26 article-title: Water wave interaction of twin large scale caissons with a small gap between publication-title: Coast Eng. J. doi: 10.1142/S0578563401000268 – volume: 76 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib2 article-title: Second-order wave run-up on a vertical cylinder adjacent to a plane wall based on the application of quadratic transfer function in bi-directional waves publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2020.102879 – volume: 77 start-page: 14 year: 2018 ident: 10.1016/j.oceaneng.2023.116646_bib28 article-title: Experimental and numerical study on wave response at the gap between two barges of different draughts publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.05.010 – volume: 260 year: 2022 ident: 10.1016/j.oceaneng.2023.116646_bib3 article-title: Hydrodynamic analysis of resonant waves within the gap between a vessel and a vertical quay wall publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112192 – year: 2014 ident: 10.1016/j.oceaneng.2023.116646_bib33 article-title: Dissipative effects of resonant waves in confined space formed by floating box in front of vertical wall – year: 2019 ident: 10.1016/j.oceaneng.2023.116646_bib27 article-title: Experiments on a barge rolling next to a wall – volume: 32 issue: 9 year: 2020 ident: 10.1016/j.oceaneng.2023.116646_bib25 article-title: Two-dimensional numerical study of gap resonance coupling with motions of floating body moored close to a bottom-mounted wall publication-title: Phys. Fluids doi: 10.1063/5.0017947 – volume: 110 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib11 article-title: Two-dimensional numerical study on fluid resonance in the narrow gap between two rigid-connected heave boxes in waves publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102628 – volume: 206 year: 2020 ident: 10.1016/j.oceaneng.2023.116646_bib7 article-title: Numerical investigations of wave loads on fixed box in front of vertical wall with a narrow gap under wave actions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107323 – volume: 35 start-page: 789 year: 2021 ident: 10.1016/j.oceaneng.2023.116646_bib21 article-title: Fluid resonance between twin floating barges with roll motion under wave action publication-title: China Ocean Eng. doi: 10.1007/s13344-021-0070-8 – volume: 34 start-page: 1245 issue: 8–9 year: 2007 ident: 10.1016/j.oceaneng.2023.116646_bib37 article-title: Study of non-linear wave motions and wave forces on ship sections against vertical quay in a harbor publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2006.06.005 – volume: 32 start-page: 158 issue: 2 year: 2010 ident: 10.1016/j.oceaneng.2023.116646_bib20 article-title: A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2009.10.001 |
SSID | ssj0006603 |
Score | 2.3818605 |
Snippet | Concerning the scenario of a vessel operating alongside an offshore terminal, the vessel being the floating body and the offshore terminal bottom-mounted. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116646 |
SubjectTerms | Coupling hydrodynamics Imaging principle Modified Green's function Roll motion Water-surface motion Wave force |
Title | Wave motion in a narrow gap coupling with the roll motion of a vessel next to an offshore terminal |
URI | https://dx.doi.org/10.1016/j.oceaneng.2023.116646 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4IvqiJUdSIP0gffB1sa9dtj4RIUCO-SORtabsWMWQjCDz6t3vHNsXEhAezpzW9Zbnevrt2390RcittFEojAicOtXC49jwH_I50Qt9EboDsJo3nkE9DMRjxh3EwrpFelQuDtMoS-wtM36B1OdIptdmZT6eY4-vHgK_4pwgvTDTnPEQrb3_-0DyEcFlF88DZW1nC721wETIz2aSNTcQBPYTAQPgvB7XldPrH5KiMFmm3eKETUjNZgxxs1RBskMNnfHpZePqUqFe5NrTozUOnGZU025RZpBM5pzpfYQLuhOLpK4XQjy7ADKrZuYXZa6wlPqMZYDZd5lTisP14yxeGlryZ2RkZ9e9eegOn7KPgaOb5Swc2ntqzNjWB9ISvlQaHxCMNYxEgtRY8cBV8xxDJqJix1IY2FqkQqSsFYyyO2DmpZ3lmLgjVroIQicOezQqeRmHse0YqFsCmhClY2yYJKuUluiwyjr0uZknFJntPKqUnqPSkUHqTdL7l5kWZjZ0ScbU2yS-DScAX7JC9_IfsFdmHO14Qt69JfblYmRuIS5aqtTG8Ftnr3j8Ohl_DV-HU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgO_CQEAwQ45kD17K2adL2OCHQxmNcQOxWpWk6Nk3tNAa_H3tN0ZCQOKDe0riqHPezk9qfAS5VHoXKSOHEoZZOoD3PQb-jnNA3kSsou0nTOeTjQPZegruhGK7BdV0LQ2mVFvsrTF-itR3pWG12ZuMx1fj6MeIr_SmiS6xDk9ipRAOa3f59b_ANyFK6vM70IIGVQuHJFXoJVZhidEV9xBFApKRY-DcfteJ3bndhxwaMrFu90x6smaIFWys0gi3YfqKnW-7pfUhf1adhVXseNi6YYsWSaZGN1Izp8oNqcEeMDmAZRn9sjpZQzy5znP1JdOJTViBss0XJFA3n72_l3DCbOjM9gJfbm-frnmNbKTiae_7Cwb2n9vI8M0J50tepRp8URBrHIgRrLQPhpvgpYzCTxpxneZjHMpMyc5XknMcRP4RGURbmCJh2U4ySAty25TLIojD2PaNSLnBfwlNc3jaIWnmJtjzj1O5imtQJZZOkVnpCSk8qpbeh8y03q5g2_pSI67VJfthMgu7gD9njf8hewEbv-fEheegP7k9gE-8EVR73KTQW8w9zhmHKIj23ZvgFiazkhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave+motion+in+a+narrow+gap+coupling+with+the+roll+motion+of+a+vessel+next+to+an+offshore+terminal&rft.jtitle=Ocean+engineering&rft.au=Huang%2C+Chao&rft.au=Cong%2C+Peiwen&rft.au=Jin%2C+Ruijia&rft.au=Teng%2C+Bin&rft.date=2024-02-01&rft.issn=0029-8018&rft.volume=293&rft.spage=116646&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.116646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2023_116646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |