Asymptotic properties of dual averaging algorithm for constrained distributed stochastic optimization

Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gr...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 165; p. 105252
Main Authors Zhao, Shengchao, Chen, Xing-Min, Liu, Yongchao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text
ISSN0167-6911
1872-7956
DOI10.1016/j.sysconle.2022.105252

Cover

Loading…
Abstract Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gradients. Different from most existing works on distributed dual averaging algorithms that are mainly focused on their non-asymptotic properties, we prove not only almost sure convergence and rate of almost sure convergence, but also asymptotic normality and asymptotic efficiency of the algorithm. Firstly, for general constrained convex optimization problem distributed over a random network, we prove that almost sure consensus can be achieved and the estimates of agents converge to the same optimal point. For the case of linear constrained convex optimization, we show that the mirror map of the averaged dual sequence identifies the active constraints of the optimal solution with probability 1, which helps us to prove the almost sure convergence rate and then establish asymptotic normality of the algorithm. Furthermore, we also verify that the algorithm is asymptotically optimal. To the best of our knowledge, it is the first asymptotic normality result for constrained distributed optimization algorithms. Finally, a numerical example is provided to justify the theoretical analysis.
AbstractList Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gradients. Different from most existing works on distributed dual averaging algorithms that are mainly focused on their non-asymptotic properties, we prove not only almost sure convergence and rate of almost sure convergence, but also asymptotic normality and asymptotic efficiency of the algorithm. Firstly, for general constrained convex optimization problem distributed over a random network, we prove that almost sure consensus can be achieved and the estimates of agents converge to the same optimal point. For the case of linear constrained convex optimization, we show that the mirror map of the averaged dual sequence identifies the active constraints of the optimal solution with probability 1, which helps us to prove the almost sure convergence rate and then establish asymptotic normality of the algorithm. Furthermore, we also verify that the algorithm is asymptotically optimal. To the best of our knowledge, it is the first asymptotic normality result for constrained distributed optimization algorithms. Finally, a numerical example is provided to justify the theoretical analysis.
ArticleNumber 105252
Author Zhao, Shengchao
Chen, Xing-Min
Liu, Yongchao
Author_xml – sequence: 1
  givenname: Shengchao
  surname: Zhao
  fullname: Zhao, Shengchao
  email: zhaoshengchao@mail.dlut.edu.cn
– sequence: 2
  givenname: Xing-Min
  surname: Chen
  fullname: Chen, Xing-Min
  email: xmchen@dlut.edu.cn
– sequence: 3
  givenname: Yongchao
  surname: Liu
  fullname: Liu, Yongchao
  email: lyc@dlut.edu.cn
BookMark eNqFkE1OwzAQhS0EEm3hCigXSLGdxGkkFlQVf1IlNrC2HHvcTpXEke1WKqcnobBh09WMRvO9efOm5LJzHRByx-icUSbud_NwDNp1Dcw55XwYFrzgF2TCFiVPy6oQl2QyLJapqBi7JtMQdpRSTrNsQmAZjm0fXUSd9N714CNCSJxNzF41iTqAVxvsNolqNs5j3LaJdT4ZzoXoFXZgEoNDi_U-Dn2ITm9VGNVcH7HFLxXRdTfkyqomwO1vnZHP56eP1Wu6fn95Wy3Xqc4YjykXuoYqNzXLqrKuaA5gCqG1UkbZDOoaTG6MsFzUuigXxpRCmUJza_NMc1plM_Jw0tXeheDBSo3xx8FotpGMyjEyuZN_kckxMnmKbMDFP7z32Cp_PA8-nkAYnjsgeBk0QqfBoAcdpXF4TuIb1BOSOg
CitedBy_id crossref_primary_10_1007_s10589_023_00512_0
crossref_primary_10_1109_TAC_2023_3319155
crossref_primary_10_1080_02331934_2023_2263017
Cites_doi 10.1109/CDC.2009.5399485
10.1214/aoms/1177698258
10.1002/oca.2254
10.1137/16M1086133
10.1109/TIT.2013.2275131
10.1109/TAC.1986.1104412
10.1016/j.sysconle.2012.06.004
10.1109/TNNLS.2014.2336806
10.1214/aoms/1177706619
10.1007/s10957-014-0677-5
10.1137/0331048
10.1016/j.automatica.2018.11.056
10.1007/s10957-010-9737-7
10.1137/0330046
10.1109/TAC.2012.2209984
10.1137/17M1134925
10.1016/j.sysconle.2017.12.002
10.1109/49.490422
10.1007/s10107-007-0149-x
10.1016/j.sysconle.2018.02.009
10.1214/aoms/1177728716
10.1109/TSP.2015.2415759
10.1109/TAC.2011.2161027
10.1109/TAC.2016.2529285
10.1214/19-AOS1831
10.1137/17M1128460
10.1109/JSTSP.2013.2247023
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysconle.2022.105252
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7956
ExternalDocumentID 10_1016_j_sysconle_2022_105252
S0167691122000731
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-26cbe94db1397b904eed56ccaadaf3ebbed4dd6f26bc578dd76ad5c2ff43c2093
IEDL.DBID .~1
ISSN 0167-6911
IngestDate Tue Jul 01 03:29:10 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Fri Feb 23 02:40:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Almost sure convergence
Asymptotic normality
Asymptotic efficiency
Constrained distributed stochastic optimization
Distributed dual averaging method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-26cbe94db1397b904eed56ccaadaf3ebbed4dd6f26bc578dd76ad5c2ff43c2093
ParticipantIDs crossref_citationtrail_10_1016_j_sysconle_2022_105252
crossref_primary_10_1016_j_sysconle_2022_105252
elsevier_sciencedirect_doi_10_1016_j_sysconle_2022_105252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Systems & control letters
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Zhang, Shi (b41) 2012
Tang, Li (b42) 2018; 112
Fitzek, Katz (b8) 2006
Towfic, Sayed (b43) 2015; 63
Lei, Chen, Fang (b26) 2018; 56
Bertsekas, Tsitsiklis (b4) 1989
Bianchi, Fort, Hachem (b25) 2013; 59
Zhou, Mertikopoulos, Bambos, Boyd, Glynn (b35) 2020; 30
Chen, Gao (b13) 2017; 38
Sacks (b20) 1958; 29
Chung (b19) 1954
Xiao (b28) 2010; 11
Duchi, Agarwal, Wainwright (b11) 2012; 57
Nedić, Olshevsky (b14) 2016; 61
Ho, Servi, Suri (b1) 1980; 1
Tsitsiklis, Bertsekas, Athans (b3) 1986; 31
Ren, Beard (b5) 2008
Tsitsiklis (b2) 1984
Lian, Zhang, Zhang, Hsieh, Zhang, Liu (b9) 2018; 8
Bianchi, Jakubowicz (b15) 2013; 58
Lee, Nedić (b17) 2013; 7
Robbins, Siegmund (b37) 1971
Yuan, Ho (b12) 2014; 26
Naghshineh, Schwartz (b7) 1996; 14
S. Sundhar Ram, A. Nedić, V.V. Veeravalli, Asynchronous gossip algorithms for stochastic optimization, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 28th Chinese Control Conference, 2009, pp. 3581–3586.
Liang, Wang, Yin (b33) 2019; 101
Lee, Wright (b29) 2012; 13
Yi, Lei, Hong (b6) 2018; 114
Agarwal, Duchi (b30) 2011
Chen (b39) 2006
Fabian (b21) 1968; 39
Yuan, Xu, Zhao, Rong (b31) 2012; 61
Duchi, Ruan (b24) 2021; 49
Polyak, Juditsky (b23) 1992; 30
Wright (b38) 1993; 31
Zhao, Chen, Liu (b36) 2020
Ruppert (b22) 1985
Hosseini, Chapman, Mesbahi (b32) 2013
Nesterov, Shikhman (b34) 2015; 165
Ram, Nedić, Veeravalli (b10) 2010; 147
Shah, Borkar (b16) 2018; 28
Nesterov (b27) 2009; 120
Ljung, Pflug, Walk (b40) 1992
Lian (10.1016/j.sysconle.2022.105252_b9) 2018; 8
Towfic (10.1016/j.sysconle.2022.105252_b43) 2015; 63
Xiao (10.1016/j.sysconle.2022.105252_b28) 2010; 11
Wright (10.1016/j.sysconle.2022.105252_b38) 1993; 31
Tsitsiklis (10.1016/j.sysconle.2022.105252_b3) 1986; 31
Duchi (10.1016/j.sysconle.2022.105252_b24) 2021; 49
Ho (10.1016/j.sysconle.2022.105252_b1) 1980; 1
Ruppert (10.1016/j.sysconle.2022.105252_b22) 1985
Polyak (10.1016/j.sysconle.2022.105252_b23) 1992; 30
Hosseini (10.1016/j.sysconle.2022.105252_b32) 2013
10.1016/j.sysconle.2022.105252_b18
Bianchi (10.1016/j.sysconle.2022.105252_b15) 2013; 58
Lee (10.1016/j.sysconle.2022.105252_b29) 2012; 13
Lei (10.1016/j.sysconle.2022.105252_b26) 2018; 56
Nesterov (10.1016/j.sysconle.2022.105252_b27) 2009; 120
Tsitsiklis (10.1016/j.sysconle.2022.105252_b2) 1984
Ram (10.1016/j.sysconle.2022.105252_b10) 2010; 147
Chen (10.1016/j.sysconle.2022.105252_b39) 2006
Fitzek (10.1016/j.sysconle.2022.105252_b8) 2006
Lee (10.1016/j.sysconle.2022.105252_b17) 2013; 7
Agarwal (10.1016/j.sysconle.2022.105252_b30) 2011
Xu (10.1016/j.sysconle.2022.105252_b41) 2012
Duchi (10.1016/j.sysconle.2022.105252_b11) 2012; 57
Yuan (10.1016/j.sysconle.2022.105252_b12) 2014; 26
Tang (10.1016/j.sysconle.2022.105252_b42) 2018; 112
Bianchi (10.1016/j.sysconle.2022.105252_b25) 2013; 59
Nesterov (10.1016/j.sysconle.2022.105252_b34) 2015; 165
Chung (10.1016/j.sysconle.2022.105252_b19) 1954
Bertsekas (10.1016/j.sysconle.2022.105252_b4) 1989
Shah (10.1016/j.sysconle.2022.105252_b16) 2018; 28
Liang (10.1016/j.sysconle.2022.105252_b33) 2019; 101
Chen (10.1016/j.sysconle.2022.105252_b13) 2017; 38
Sacks (10.1016/j.sysconle.2022.105252_b20) 1958; 29
Yuan (10.1016/j.sysconle.2022.105252_b31) 2012; 61
Robbins (10.1016/j.sysconle.2022.105252_b37) 1971
Ren (10.1016/j.sysconle.2022.105252_b5) 2008
Nedić (10.1016/j.sysconle.2022.105252_b14) 2016; 61
Zhao (10.1016/j.sysconle.2022.105252_b36) 2020
Ljung (10.1016/j.sysconle.2022.105252_b40) 1992
Naghshineh (10.1016/j.sysconle.2022.105252_b7) 1996; 14
Fabian (10.1016/j.sysconle.2022.105252_b21) 1968; 39
Zhou (10.1016/j.sysconle.2022.105252_b35) 2020; 30
Yi (10.1016/j.sysconle.2022.105252_b6) 2018; 114
References_xml – year: 2006
  ident: b8
  article-title: Cooperation in Wireless Networks: Principles and Applications
– volume: 1
  start-page: 51
  year: 1980
  end-page: 62
  ident: b1
  article-title: A class of center-free resource allocation algorithms
  publication-title: Large Scale Syst.
– volume: 31
  start-page: 803
  year: 1986
  end-page: 812
  ident: b3
  article-title: Distributed asynchronous deterministic and stochastic gradient optimization algorithms
  publication-title: IEEE Trans. Automat. Control
– volume: 56
  start-page: 2159
  year: 2018
  end-page: 2188
  ident: b26
  article-title: Asymptotic properties of primal-dual algorithm for distributed stochastic optimization over random networks with imperfect communications
  publication-title: SIAM J. Control Optim.
– year: 1992
  ident: b40
  article-title: Stochastic Approximation and Optimization of Random Systems
– start-page: 873
  year: 2011
  end-page: 881
  ident: b30
  article-title: Distributed delayed stochastic optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1484
  year: 2013
  end-page: 1489
  ident: b32
  article-title: Online distributed optimization via dual averaging
  publication-title: Proceedings of the 52nd IEEE Conference on Decision and Control
– start-page: 233
  year: 1971
  end-page: 257
  ident: b37
  article-title: A convergence theorem for non negative almost supermartingales and some applications
  publication-title: Optimizing Methods in Statistics
– volume: 31
  start-page: 1063
  year: 1993
  end-page: 1079
  ident: b38
  article-title: Identifiable surfaces in constrained optimization
  publication-title: SIAM J. Control Optim.
– volume: 29
  start-page: 373
  year: 1958
  end-page: 405
  ident: b20
  article-title: Asymptotic distribution of stochastic approximation procedures
  publication-title: Ann. Math. Stat.
– year: 2008
  ident: b5
  article-title: Distributed Consensus in Multi-Vehicle Cooperative Control
– volume: 30
  start-page: 838
  year: 1992
  end-page: 855
  ident: b23
  article-title: Acceleration of stochastic approximation by averaging
  publication-title: SIAM J. Control Optim.
– start-page: 590
  year: 2012
  end-page: 595
  ident: b41
  article-title: Consensus and convergence rate analysis for multi-agent systems with time delay
  publication-title: Proceedings of the 12th International Conference on Control Automation Robotics & Vision
– volume: 63
  start-page: 2888
  year: 2015
  end-page: 2903
  ident: b43
  article-title: Stability and performance limits of adaptive primal-dual networks
  publication-title: IEEE Trans. Signal Process.
– year: 2020
  ident: b36
  article-title: Asymptotic properties of dual averaging algorithm for constrained distributed stochastic optimization
– volume: 165
  start-page: 917
  year: 2015
  end-page: 940
  ident: b34
  article-title: Quasi-monotone subgradient methods for nonsmooth convex minimization
  publication-title: J. Optim. Theory Appl.
– volume: 114
  start-page: 44
  year: 2018
  end-page: 51
  ident: b6
  article-title: Distributed resource allocation over random networks based on stochastic approximation
  publication-title: Systems Control Lett.
– start-page: 236
  year: 1985
  end-page: 245
  ident: b22
  article-title: A Newton-raphson version of the multivariate robbins-monro procedure
  publication-title: Ann. Statist.
– volume: 59
  start-page: 7405
  year: 2013
  end-page: 7418
  ident: b25
  article-title: Performance of a distributed stochastic approximation algorithm
  publication-title: IEEE Trans. Inform. Theory
– volume: 58
  start-page: 391
  year: 2013
  end-page: 405
  ident: b15
  article-title: Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization
  publication-title: IEEE Trans. Automat. Control
– volume: 49
  start-page: 21
  year: 2021
  end-page: 48
  ident: b24
  article-title: Asymptotic optimality in stochastic optimization
  publication-title: Ann. Statist.
– reference: S. Sundhar Ram, A. Nedić, V.V. Veeravalli, Asynchronous gossip algorithms for stochastic optimization, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 28th Chinese Control Conference, 2009, pp. 3581–3586.
– year: 1984
  ident: b2
  article-title: Problems in Decentralized Decision Making and Computation
– volume: 26
  start-page: 1342
  year: 2014
  end-page: 1347
  ident: b12
  article-title: Randomized gradient-free method for multiagent optimization over time-varying networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 61
  start-page: 3936
  year: 2016
  end-page: 3947
  ident: b14
  article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs
  publication-title: IEEE Trans. Automat. Control
– volume: 112
  start-page: 9
  year: 2018
  end-page: 17
  ident: b42
  article-title: Convergence rates of discrete-time stochastic approximation consensus algorithms: Graph-related limit bounds
  publication-title: Systems Control Lett.
– volume: 8
  start-page: 5331
  year: 2018
  end-page: 5341
  ident: b9
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 592
  year: 2012
  end-page: 606
  ident: b11
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Trans. Automat. Control
– volume: 28
  start-page: 3375
  year: 2018
  end-page: 3401
  ident: b16
  article-title: Distributed stochastic approximation with local projections
  publication-title: SIAM J. Optim.
– volume: 11
  start-page: 2543
  year: 2010
  end-page: 2596
  ident: b28
  article-title: Dual averaging methods for regularized stochastic learning and online optimization
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 711
  year: 1996
  end-page: 717
  ident: b7
  article-title: Distributed call admission control in mobile/wireless networks
  publication-title: IEEE J. Sel. Areas Commun.
– start-page: 463
  year: 1954
  end-page: 483
  ident: b19
  article-title: On a stochastic approximation method
  publication-title: Ann. Math. Stat.
– volume: 7
  start-page: 221
  year: 2013
  end-page: 229
  ident: b17
  article-title: Distributed random projection algorithm for convex optimization
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 39
  start-page: 1327
  year: 1968
  end-page: 1332
  ident: b21
  article-title: On asymptotic normality in stochastic approximation
  publication-title: Ann. Math. Stat.
– volume: 30
  start-page: 687
  year: 2020
  end-page: 716
  ident: b35
  article-title: On the convergence of mirror descent beyond stochastic convex programming
  publication-title: SIAM J. Optim.
– volume: 61
  start-page: 1053
  year: 2012
  end-page: 1061
  ident: b31
  article-title: Distributed dual averaging method for multi-agent optimization with quantized communication
  publication-title: Systems Control Lett.
– volume: 38
  start-page: 247
  year: 2017
  end-page: 265
  ident: b13
  article-title: Strong consistency of random gradient-free algorithms for distributed optimization
  publication-title: Optim. Control Appl. Methods
– volume: 147
  start-page: 516
  year: 2010
  end-page: 545
  ident: b10
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optim. Theory Appl.
– volume: 120
  start-page: 221
  year: 2009
  end-page: 259
  ident: b27
  article-title: Primal-dual subgradient methods for convex problems
  publication-title: Math. Program.
– year: 1989
  ident: b4
  article-title: Parallel and Distributed Computation: Numerical Methods
– year: 2006
  ident: b39
  article-title: Stochastic Approximation and Its Applications
– volume: 101
  start-page: 175
  year: 2019
  end-page: 181
  ident: b33
  article-title: Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs
  publication-title: Automatica
– volume: 13
  start-page: 1705
  year: 2012
  end-page: 1744
  ident: b29
  article-title: Manifold identification in dual averaging for regularized stochastic online learning
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.sysconle.2022.105252_b18
  doi: 10.1109/CDC.2009.5399485
– volume: 13
  start-page: 1705
  issue: Jun
  year: 2012
  ident: 10.1016/j.sysconle.2022.105252_b29
  article-title: Manifold identification in dual averaging for regularized stochastic online learning
  publication-title: J. Mach. Learn. Res.
– start-page: 236
  year: 1985
  ident: 10.1016/j.sysconle.2022.105252_b22
  article-title: A Newton-raphson version of the multivariate robbins-monro procedure
  publication-title: Ann. Statist.
– volume: 39
  start-page: 1327
  issue: 4
  year: 1968
  ident: 10.1016/j.sysconle.2022.105252_b21
  article-title: On asymptotic normality in stochastic approximation
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177698258
– volume: 38
  start-page: 247
  issue: 2
  year: 2017
  ident: 10.1016/j.sysconle.2022.105252_b13
  article-title: Strong consistency of random gradient-free algorithms for distributed optimization
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2254
– volume: 56
  start-page: 2159
  issue: 3
  year: 2018
  ident: 10.1016/j.sysconle.2022.105252_b26
  article-title: Asymptotic properties of primal-dual algorithm for distributed stochastic optimization over random networks with imperfect communications
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/16M1086133
– volume: 59
  start-page: 7405
  issue: 11
  year: 2013
  ident: 10.1016/j.sysconle.2022.105252_b25
  article-title: Performance of a distributed stochastic approximation algorithm
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2013.2275131
– year: 2006
  ident: 10.1016/j.sysconle.2022.105252_b39
– volume: 31
  start-page: 803
  issue: 9
  year: 1986
  ident: 10.1016/j.sysconle.2022.105252_b3
  article-title: Distributed asynchronous deterministic and stochastic gradient optimization algorithms
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1986.1104412
– volume: 1
  start-page: 51
  year: 1980
  ident: 10.1016/j.sysconle.2022.105252_b1
  article-title: A class of center-free resource allocation algorithms
  publication-title: Large Scale Syst.
– volume: 61
  start-page: 1053
  issue: 11
  year: 2012
  ident: 10.1016/j.sysconle.2022.105252_b31
  article-title: Distributed dual averaging method for multi-agent optimization with quantized communication
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2012.06.004
– volume: 26
  start-page: 1342
  issue: 6
  year: 2014
  ident: 10.1016/j.sysconle.2022.105252_b12
  article-title: Randomized gradient-free method for multiagent optimization over time-varying networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2336806
– volume: 29
  start-page: 373
  issue: 2
  year: 1958
  ident: 10.1016/j.sysconle.2022.105252_b20
  article-title: Asymptotic distribution of stochastic approximation procedures
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177706619
– volume: 165
  start-page: 917
  issue: 3
  year: 2015
  ident: 10.1016/j.sysconle.2022.105252_b34
  article-title: Quasi-monotone subgradient methods for nonsmooth convex minimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0677-5
– year: 2008
  ident: 10.1016/j.sysconle.2022.105252_b5
– volume: 8
  start-page: 5331
  year: 2018
  ident: 10.1016/j.sysconle.2022.105252_b9
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 590
  year: 2012
  ident: 10.1016/j.sysconle.2022.105252_b41
  article-title: Consensus and convergence rate analysis for multi-agent systems with time delay
– year: 1992
  ident: 10.1016/j.sysconle.2022.105252_b40
– volume: 31
  start-page: 1063
  issue: 4
  year: 1993
  ident: 10.1016/j.sysconle.2022.105252_b38
  article-title: Identifiable surfaces in constrained optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0331048
– volume: 101
  start-page: 175
  year: 2019
  ident: 10.1016/j.sysconle.2022.105252_b33
  article-title: Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.11.056
– volume: 147
  start-page: 516
  issue: 3
  year: 2010
  ident: 10.1016/j.sysconle.2022.105252_b10
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9737-7
– volume: 30
  start-page: 838
  issue: 4
  year: 1992
  ident: 10.1016/j.sysconle.2022.105252_b23
  article-title: Acceleration of stochastic approximation by averaging
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330046
– start-page: 233
  year: 1971
  ident: 10.1016/j.sysconle.2022.105252_b37
  article-title: A convergence theorem for non negative almost supermartingales and some applications
– volume: 11
  start-page: 2543
  year: 2010
  ident: 10.1016/j.sysconle.2022.105252_b28
  article-title: Dual averaging methods for regularized stochastic learning and online optimization
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 391
  issue: 2
  year: 2013
  ident: 10.1016/j.sysconle.2022.105252_b15
  article-title: Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2012.2209984
– volume: 30
  start-page: 687
  issue: 1
  year: 2020
  ident: 10.1016/j.sysconle.2022.105252_b35
  article-title: On the convergence of mirror descent beyond stochastic convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1134925
– volume: 112
  start-page: 9
  year: 2018
  ident: 10.1016/j.sysconle.2022.105252_b42
  article-title: Convergence rates of discrete-time stochastic approximation consensus algorithms: Graph-related limit bounds
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2017.12.002
– volume: 14
  start-page: 711
  issue: 4
  year: 1996
  ident: 10.1016/j.sysconle.2022.105252_b7
  article-title: Distributed call admission control in mobile/wireless networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.490422
– volume: 120
  start-page: 221
  issue: 1
  year: 2009
  ident: 10.1016/j.sysconle.2022.105252_b27
  article-title: Primal-dual subgradient methods for convex problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0149-x
– year: 2020
  ident: 10.1016/j.sysconle.2022.105252_b36
– volume: 114
  start-page: 44
  year: 2018
  ident: 10.1016/j.sysconle.2022.105252_b6
  article-title: Distributed resource allocation over random networks based on stochastic approximation
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2018.02.009
– start-page: 1484
  year: 2013
  ident: 10.1016/j.sysconle.2022.105252_b32
  article-title: Online distributed optimization via dual averaging
– start-page: 463
  year: 1954
  ident: 10.1016/j.sysconle.2022.105252_b19
  article-title: On a stochastic approximation method
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728716
– volume: 63
  start-page: 2888
  issue: 11
  year: 2015
  ident: 10.1016/j.sysconle.2022.105252_b43
  article-title: Stability and performance limits of adaptive primal-dual networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2415759
– volume: 57
  start-page: 592
  issue: 3
  year: 2012
  ident: 10.1016/j.sysconle.2022.105252_b11
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2161027
– volume: 61
  start-page: 3936
  issue: 12
  year: 2016
  ident: 10.1016/j.sysconle.2022.105252_b14
  article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2016.2529285
– year: 1989
  ident: 10.1016/j.sysconle.2022.105252_b4
– year: 1984
  ident: 10.1016/j.sysconle.2022.105252_b2
– volume: 49
  start-page: 21
  issue: 1
  year: 2021
  ident: 10.1016/j.sysconle.2022.105252_b24
  article-title: Asymptotic optimality in stochastic optimization
  publication-title: Ann. Statist.
  doi: 10.1214/19-AOS1831
– start-page: 873
  year: 2011
  ident: 10.1016/j.sysconle.2022.105252_b30
  article-title: Distributed delayed stochastic optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 3375
  issue: 4
  year: 2018
  ident: 10.1016/j.sysconle.2022.105252_b16
  article-title: Distributed stochastic approximation with local projections
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1128460
– volume: 7
  start-page: 221
  issue: 2
  year: 2013
  ident: 10.1016/j.sysconle.2022.105252_b17
  article-title: Distributed random projection algorithm for convex optimization
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2013.2247023
– year: 2006
  ident: 10.1016/j.sysconle.2022.105252_b8
SSID ssj0002033
Score 2.3830974
Snippet Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105252
SubjectTerms Almost sure convergence
Asymptotic efficiency
Asymptotic normality
Constrained distributed stochastic optimization
Distributed dual averaging method
Title Asymptotic properties of dual averaging algorithm for constrained distributed stochastic optimization
URI https://dx.doi.org/10.1016/j.sysconle.2022.105252
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lN9Ig9dQ4hjO2REqIgWlaEtKlvk-FFAQCJIB5b-9vryaKlUiaFTHvJJyfl89zm5-w6hO0Pb2gjNHBWY0KFGa0f4KnRk2_hKyJiyvHzsacj7I_o4ZuMa6la1MJBWWfr-wqfn3rq845badNPp1H2BBHpu1yoh-f-mvIKdBmDlzc-fNA_SKtrJA783jN6qEp4115u13XXOgS6TEGh5Sxj5O0BtBZ3eETos0SLuFA90jGp6eYIOtjgET5HurDeLNEvsCJzCl_UVUKTixGCossLCmmreiAiL-XuymmaTBbY4FUvAhdAeQiusgDwX-l7Zc4sF5UQAeTNOrDdZlGWaZ2jUu3_t9p2yd4IjfY9kDuEy1iFVMSC8OGxRGwsZt9MllDC-jmOtqFLcEB5Lu2iVCrhQTBJjqC9JK_TPUX2ZLPUFwp6xMK2tPd8EHlV2-0RDagKpfc21ZCG7RKxSWCRLYnF4gXlUZZDNokrRESg6KhR9idxvubSg1tgpEVbzEf0yksj6_x2yV_-QvUb7cFVk6d6gerb60LcWi2RxIze2BtrrPAz6QzgOnt8GX9D15ns
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb4JAEN4YPbQ9NH2m9rmHXim67IIcjanB-rhUE29k2UfVqBClB_99d3gYmzTx0BsBJoHZ2ZlvYOYbhF41bSnNFbOkp32LaqUs7kjfEi3tSC4iyrL2seHIDSb0Y8qmFdQpe2GgrLLw_blPz7x1ccYutGkn87n9CQX0rtmrhGT_m0wKVAN2KlZFtXavH4z2Dpk08onyQPENAgeNwou37W5rEs8lMGYSAlNvCSN_x6iDuNO9QOcFYMTt_JkuUUWtr9DZAY3gNVLt7W6VpLG5AyfwcX0DLKk41hgarTA31prNIsJ8-RVv5ulshQ1UxQKgIUyIUBJL4M-F0Vfm2MBBMePA34xj41BWRafmDZp038edwCrGJ1jCaZLUIq6IlE9lBCAv8hvUhEPmmhXjkmtHRZGSVEpXEzcSZt9K6blcMkG0po4gDd-5RdV1vFZ3CDe1QWot1XS016TSZFDUp9oTylGuEsxndcRKhYWi4BaHF1iGZRHZIiwVHYKiw1zRdWTv5ZKcXeOohF-uR_jLTkITAo7I3v9D9gWdBOPhIBz0Rv0HdApX8qLdR1RNN9_qyUCTNHouTO8Hd1vniQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+properties+of+dual+averaging+algorithm+for+constrained+distributed+stochastic+optimization&rft.jtitle=Systems+%26+control+letters&rft.au=Zhao%2C+Shengchao&rft.au=Chen%2C+Xing-Min&rft.au=Liu%2C+Yongchao&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.eissn=1872-7956&rft.volume=165&rft_id=info:doi/10.1016%2Fj.sysconle.2022.105252&rft.externalDocID=S0167691122000731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon