Asymptotic properties of dual averaging algorithm for constrained distributed stochastic optimization
Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gr...
Saved in:
Published in | Systems & control letters Vol. 165; p. 105252 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-6911 1872-7956 |
DOI | 10.1016/j.sysconle.2022.105252 |
Cover
Loading…
Abstract | Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gradients. Different from most existing works on distributed dual averaging algorithms that are mainly focused on their non-asymptotic properties, we prove not only almost sure convergence and rate of almost sure convergence, but also asymptotic normality and asymptotic efficiency of the algorithm. Firstly, for general constrained convex optimization problem distributed over a random network, we prove that almost sure consensus can be achieved and the estimates of agents converge to the same optimal point. For the case of linear constrained convex optimization, we show that the mirror map of the averaged dual sequence identifies the active constraints of the optimal solution with probability 1, which helps us to prove the almost sure convergence rate and then establish asymptotic normality of the algorithm. Furthermore, we also verify that the algorithm is asymptotically optimal. To the best of our knowledge, it is the first asymptotic normality result for constrained distributed optimization algorithms. Finally, a numerical example is provided to justify the theoretical analysis. |
---|---|
AbstractList | Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gradients. Different from most existing works on distributed dual averaging algorithms that are mainly focused on their non-asymptotic properties, we prove not only almost sure convergence and rate of almost sure convergence, but also asymptotic normality and asymptotic efficiency of the algorithm. Firstly, for general constrained convex optimization problem distributed over a random network, we prove that almost sure consensus can be achieved and the estimates of agents converge to the same optimal point. For the case of linear constrained convex optimization, we show that the mirror map of the averaged dual sequence identifies the active constraints of the optimal solution with probability 1, which helps us to prove the almost sure convergence rate and then establish asymptotic normality of the algorithm. Furthermore, we also verify that the algorithm is asymptotically optimal. To the best of our knowledge, it is the first asymptotic normality result for constrained distributed optimization algorithms. Finally, a numerical example is provided to justify the theoretical analysis. |
ArticleNumber | 105252 |
Author | Zhao, Shengchao Chen, Xing-Min Liu, Yongchao |
Author_xml | – sequence: 1 givenname: Shengchao surname: Zhao fullname: Zhao, Shengchao email: zhaoshengchao@mail.dlut.edu.cn – sequence: 2 givenname: Xing-Min surname: Chen fullname: Chen, Xing-Min email: xmchen@dlut.edu.cn – sequence: 3 givenname: Yongchao surname: Liu fullname: Liu, Yongchao email: lyc@dlut.edu.cn |
BookMark | eNqFkE1OwzAQhS0EEm3hCigXSLGdxGkkFlQVf1IlNrC2HHvcTpXEke1WKqcnobBh09WMRvO9efOm5LJzHRByx-icUSbud_NwDNp1Dcw55XwYFrzgF2TCFiVPy6oQl2QyLJapqBi7JtMQdpRSTrNsQmAZjm0fXUSd9N714CNCSJxNzF41iTqAVxvsNolqNs5j3LaJdT4ZzoXoFXZgEoNDi_U-Dn2ITm9VGNVcH7HFLxXRdTfkyqomwO1vnZHP56eP1Wu6fn95Wy3Xqc4YjykXuoYqNzXLqrKuaA5gCqG1UkbZDOoaTG6MsFzUuigXxpRCmUJza_NMc1plM_Jw0tXeheDBSo3xx8FotpGMyjEyuZN_kckxMnmKbMDFP7z32Cp_PA8-nkAYnjsgeBk0QqfBoAcdpXF4TuIb1BOSOg |
CitedBy_id | crossref_primary_10_1007_s10589_023_00512_0 crossref_primary_10_1109_TAC_2023_3319155 crossref_primary_10_1080_02331934_2023_2263017 |
Cites_doi | 10.1109/CDC.2009.5399485 10.1214/aoms/1177698258 10.1002/oca.2254 10.1137/16M1086133 10.1109/TIT.2013.2275131 10.1109/TAC.1986.1104412 10.1016/j.sysconle.2012.06.004 10.1109/TNNLS.2014.2336806 10.1214/aoms/1177706619 10.1007/s10957-014-0677-5 10.1137/0331048 10.1016/j.automatica.2018.11.056 10.1007/s10957-010-9737-7 10.1137/0330046 10.1109/TAC.2012.2209984 10.1137/17M1134925 10.1016/j.sysconle.2017.12.002 10.1109/49.490422 10.1007/s10107-007-0149-x 10.1016/j.sysconle.2018.02.009 10.1214/aoms/1177728716 10.1109/TSP.2015.2415759 10.1109/TAC.2011.2161027 10.1109/TAC.2016.2529285 10.1214/19-AOS1831 10.1137/17M1128460 10.1109/JSTSP.2013.2247023 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sysconle.2022.105252 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7956 |
ExternalDocumentID | 10_1016_j_sysconle_2022_105252 S0167691122000731 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W JJJVA KOM LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K TN5 WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-26cbe94db1397b904eed56ccaadaf3ebbed4dd6f26bc578dd76ad5c2ff43c2093 |
IEDL.DBID | .~1 |
ISSN | 0167-6911 |
IngestDate | Tue Jul 01 03:29:10 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Fri Feb 23 02:40:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Almost sure convergence Asymptotic normality Asymptotic efficiency Constrained distributed stochastic optimization Distributed dual averaging method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-26cbe94db1397b904eed56ccaadaf3ebbed4dd6f26bc578dd76ad5c2ff43c2093 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sysconle_2022_105252 crossref_primary_10_1016_j_sysconle_2022_105252 elsevier_sciencedirect_doi_10_1016_j_sysconle_2022_105252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Systems & control letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Zhang, Shi (b41) 2012 Tang, Li (b42) 2018; 112 Fitzek, Katz (b8) 2006 Towfic, Sayed (b43) 2015; 63 Lei, Chen, Fang (b26) 2018; 56 Bertsekas, Tsitsiklis (b4) 1989 Bianchi, Fort, Hachem (b25) 2013; 59 Zhou, Mertikopoulos, Bambos, Boyd, Glynn (b35) 2020; 30 Chen, Gao (b13) 2017; 38 Sacks (b20) 1958; 29 Chung (b19) 1954 Xiao (b28) 2010; 11 Duchi, Agarwal, Wainwright (b11) 2012; 57 Nedić, Olshevsky (b14) 2016; 61 Ho, Servi, Suri (b1) 1980; 1 Tsitsiklis, Bertsekas, Athans (b3) 1986; 31 Ren, Beard (b5) 2008 Tsitsiklis (b2) 1984 Lian, Zhang, Zhang, Hsieh, Zhang, Liu (b9) 2018; 8 Bianchi, Jakubowicz (b15) 2013; 58 Lee, Nedić (b17) 2013; 7 Robbins, Siegmund (b37) 1971 Yuan, Ho (b12) 2014; 26 Naghshineh, Schwartz (b7) 1996; 14 S. Sundhar Ram, A. Nedić, V.V. Veeravalli, Asynchronous gossip algorithms for stochastic optimization, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 28th Chinese Control Conference, 2009, pp. 3581–3586. Liang, Wang, Yin (b33) 2019; 101 Lee, Wright (b29) 2012; 13 Yi, Lei, Hong (b6) 2018; 114 Agarwal, Duchi (b30) 2011 Chen (b39) 2006 Fabian (b21) 1968; 39 Yuan, Xu, Zhao, Rong (b31) 2012; 61 Duchi, Ruan (b24) 2021; 49 Polyak, Juditsky (b23) 1992; 30 Wright (b38) 1993; 31 Zhao, Chen, Liu (b36) 2020 Ruppert (b22) 1985 Hosseini, Chapman, Mesbahi (b32) 2013 Nesterov, Shikhman (b34) 2015; 165 Ram, Nedić, Veeravalli (b10) 2010; 147 Shah, Borkar (b16) 2018; 28 Nesterov (b27) 2009; 120 Ljung, Pflug, Walk (b40) 1992 Lian (10.1016/j.sysconle.2022.105252_b9) 2018; 8 Towfic (10.1016/j.sysconle.2022.105252_b43) 2015; 63 Xiao (10.1016/j.sysconle.2022.105252_b28) 2010; 11 Wright (10.1016/j.sysconle.2022.105252_b38) 1993; 31 Tsitsiklis (10.1016/j.sysconle.2022.105252_b3) 1986; 31 Duchi (10.1016/j.sysconle.2022.105252_b24) 2021; 49 Ho (10.1016/j.sysconle.2022.105252_b1) 1980; 1 Ruppert (10.1016/j.sysconle.2022.105252_b22) 1985 Polyak (10.1016/j.sysconle.2022.105252_b23) 1992; 30 Hosseini (10.1016/j.sysconle.2022.105252_b32) 2013 10.1016/j.sysconle.2022.105252_b18 Bianchi (10.1016/j.sysconle.2022.105252_b15) 2013; 58 Lee (10.1016/j.sysconle.2022.105252_b29) 2012; 13 Lei (10.1016/j.sysconle.2022.105252_b26) 2018; 56 Nesterov (10.1016/j.sysconle.2022.105252_b27) 2009; 120 Tsitsiklis (10.1016/j.sysconle.2022.105252_b2) 1984 Ram (10.1016/j.sysconle.2022.105252_b10) 2010; 147 Chen (10.1016/j.sysconle.2022.105252_b39) 2006 Fitzek (10.1016/j.sysconle.2022.105252_b8) 2006 Lee (10.1016/j.sysconle.2022.105252_b17) 2013; 7 Agarwal (10.1016/j.sysconle.2022.105252_b30) 2011 Xu (10.1016/j.sysconle.2022.105252_b41) 2012 Duchi (10.1016/j.sysconle.2022.105252_b11) 2012; 57 Yuan (10.1016/j.sysconle.2022.105252_b12) 2014; 26 Tang (10.1016/j.sysconle.2022.105252_b42) 2018; 112 Bianchi (10.1016/j.sysconle.2022.105252_b25) 2013; 59 Nesterov (10.1016/j.sysconle.2022.105252_b34) 2015; 165 Chung (10.1016/j.sysconle.2022.105252_b19) 1954 Bertsekas (10.1016/j.sysconle.2022.105252_b4) 1989 Shah (10.1016/j.sysconle.2022.105252_b16) 2018; 28 Liang (10.1016/j.sysconle.2022.105252_b33) 2019; 101 Chen (10.1016/j.sysconle.2022.105252_b13) 2017; 38 Sacks (10.1016/j.sysconle.2022.105252_b20) 1958; 29 Yuan (10.1016/j.sysconle.2022.105252_b31) 2012; 61 Robbins (10.1016/j.sysconle.2022.105252_b37) 1971 Ren (10.1016/j.sysconle.2022.105252_b5) 2008 Nedić (10.1016/j.sysconle.2022.105252_b14) 2016; 61 Zhao (10.1016/j.sysconle.2022.105252_b36) 2020 Ljung (10.1016/j.sysconle.2022.105252_b40) 1992 Naghshineh (10.1016/j.sysconle.2022.105252_b7) 1996; 14 Fabian (10.1016/j.sysconle.2022.105252_b21) 1968; 39 Zhou (10.1016/j.sysconle.2022.105252_b35) 2020; 30 Yi (10.1016/j.sysconle.2022.105252_b6) 2018; 114 |
References_xml | – year: 2006 ident: b8 article-title: Cooperation in Wireless Networks: Principles and Applications – volume: 1 start-page: 51 year: 1980 end-page: 62 ident: b1 article-title: A class of center-free resource allocation algorithms publication-title: Large Scale Syst. – volume: 31 start-page: 803 year: 1986 end-page: 812 ident: b3 article-title: Distributed asynchronous deterministic and stochastic gradient optimization algorithms publication-title: IEEE Trans. Automat. Control – volume: 56 start-page: 2159 year: 2018 end-page: 2188 ident: b26 article-title: Asymptotic properties of primal-dual algorithm for distributed stochastic optimization over random networks with imperfect communications publication-title: SIAM J. Control Optim. – year: 1992 ident: b40 article-title: Stochastic Approximation and Optimization of Random Systems – start-page: 873 year: 2011 end-page: 881 ident: b30 article-title: Distributed delayed stochastic optimization publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1484 year: 2013 end-page: 1489 ident: b32 article-title: Online distributed optimization via dual averaging publication-title: Proceedings of the 52nd IEEE Conference on Decision and Control – start-page: 233 year: 1971 end-page: 257 ident: b37 article-title: A convergence theorem for non negative almost supermartingales and some applications publication-title: Optimizing Methods in Statistics – volume: 31 start-page: 1063 year: 1993 end-page: 1079 ident: b38 article-title: Identifiable surfaces in constrained optimization publication-title: SIAM J. Control Optim. – volume: 29 start-page: 373 year: 1958 end-page: 405 ident: b20 article-title: Asymptotic distribution of stochastic approximation procedures publication-title: Ann. Math. Stat. – year: 2008 ident: b5 article-title: Distributed Consensus in Multi-Vehicle Cooperative Control – volume: 30 start-page: 838 year: 1992 end-page: 855 ident: b23 article-title: Acceleration of stochastic approximation by averaging publication-title: SIAM J. Control Optim. – start-page: 590 year: 2012 end-page: 595 ident: b41 article-title: Consensus and convergence rate analysis for multi-agent systems with time delay publication-title: Proceedings of the 12th International Conference on Control Automation Robotics & Vision – volume: 63 start-page: 2888 year: 2015 end-page: 2903 ident: b43 article-title: Stability and performance limits of adaptive primal-dual networks publication-title: IEEE Trans. Signal Process. – year: 2020 ident: b36 article-title: Asymptotic properties of dual averaging algorithm for constrained distributed stochastic optimization – volume: 165 start-page: 917 year: 2015 end-page: 940 ident: b34 article-title: Quasi-monotone subgradient methods for nonsmooth convex minimization publication-title: J. Optim. Theory Appl. – volume: 114 start-page: 44 year: 2018 end-page: 51 ident: b6 article-title: Distributed resource allocation over random networks based on stochastic approximation publication-title: Systems Control Lett. – start-page: 236 year: 1985 end-page: 245 ident: b22 article-title: A Newton-raphson version of the multivariate robbins-monro procedure publication-title: Ann. Statist. – volume: 59 start-page: 7405 year: 2013 end-page: 7418 ident: b25 article-title: Performance of a distributed stochastic approximation algorithm publication-title: IEEE Trans. Inform. Theory – volume: 58 start-page: 391 year: 2013 end-page: 405 ident: b15 article-title: Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization publication-title: IEEE Trans. Automat. Control – volume: 49 start-page: 21 year: 2021 end-page: 48 ident: b24 article-title: Asymptotic optimality in stochastic optimization publication-title: Ann. Statist. – reference: S. Sundhar Ram, A. Nedić, V.V. Veeravalli, Asynchronous gossip algorithms for stochastic optimization, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 28th Chinese Control Conference, 2009, pp. 3581–3586. – year: 1984 ident: b2 article-title: Problems in Decentralized Decision Making and Computation – volume: 26 start-page: 1342 year: 2014 end-page: 1347 ident: b12 article-title: Randomized gradient-free method for multiagent optimization over time-varying networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 61 start-page: 3936 year: 2016 end-page: 3947 ident: b14 article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs publication-title: IEEE Trans. Automat. Control – volume: 112 start-page: 9 year: 2018 end-page: 17 ident: b42 article-title: Convergence rates of discrete-time stochastic approximation consensus algorithms: Graph-related limit bounds publication-title: Systems Control Lett. – volume: 8 start-page: 5331 year: 2018 end-page: 5341 ident: b9 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent publication-title: Adv. Neural Inf. Process. Syst. – volume: 57 start-page: 592 year: 2012 end-page: 606 ident: b11 article-title: Dual averaging for distributed optimization: convergence analysis and network scaling publication-title: IEEE Trans. Automat. Control – volume: 28 start-page: 3375 year: 2018 end-page: 3401 ident: b16 article-title: Distributed stochastic approximation with local projections publication-title: SIAM J. Optim. – volume: 11 start-page: 2543 year: 2010 end-page: 2596 ident: b28 article-title: Dual averaging methods for regularized stochastic learning and online optimization publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 711 year: 1996 end-page: 717 ident: b7 article-title: Distributed call admission control in mobile/wireless networks publication-title: IEEE J. Sel. Areas Commun. – start-page: 463 year: 1954 end-page: 483 ident: b19 article-title: On a stochastic approximation method publication-title: Ann. Math. Stat. – volume: 7 start-page: 221 year: 2013 end-page: 229 ident: b17 article-title: Distributed random projection algorithm for convex optimization publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 39 start-page: 1327 year: 1968 end-page: 1332 ident: b21 article-title: On asymptotic normality in stochastic approximation publication-title: Ann. Math. Stat. – volume: 30 start-page: 687 year: 2020 end-page: 716 ident: b35 article-title: On the convergence of mirror descent beyond stochastic convex programming publication-title: SIAM J. Optim. – volume: 61 start-page: 1053 year: 2012 end-page: 1061 ident: b31 article-title: Distributed dual averaging method for multi-agent optimization with quantized communication publication-title: Systems Control Lett. – volume: 38 start-page: 247 year: 2017 end-page: 265 ident: b13 article-title: Strong consistency of random gradient-free algorithms for distributed optimization publication-title: Optim. Control Appl. Methods – volume: 147 start-page: 516 year: 2010 end-page: 545 ident: b10 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J. Optim. Theory Appl. – volume: 120 start-page: 221 year: 2009 end-page: 259 ident: b27 article-title: Primal-dual subgradient methods for convex problems publication-title: Math. Program. – year: 1989 ident: b4 article-title: Parallel and Distributed Computation: Numerical Methods – year: 2006 ident: b39 article-title: Stochastic Approximation and Its Applications – volume: 101 start-page: 175 year: 2019 end-page: 181 ident: b33 article-title: Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs publication-title: Automatica – volume: 13 start-page: 1705 year: 2012 end-page: 1744 ident: b29 article-title: Manifold identification in dual averaging for regularized stochastic online learning publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.sysconle.2022.105252_b18 doi: 10.1109/CDC.2009.5399485 – volume: 13 start-page: 1705 issue: Jun year: 2012 ident: 10.1016/j.sysconle.2022.105252_b29 article-title: Manifold identification in dual averaging for regularized stochastic online learning publication-title: J. Mach. Learn. Res. – start-page: 236 year: 1985 ident: 10.1016/j.sysconle.2022.105252_b22 article-title: A Newton-raphson version of the multivariate robbins-monro procedure publication-title: Ann. Statist. – volume: 39 start-page: 1327 issue: 4 year: 1968 ident: 10.1016/j.sysconle.2022.105252_b21 article-title: On asymptotic normality in stochastic approximation publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177698258 – volume: 38 start-page: 247 issue: 2 year: 2017 ident: 10.1016/j.sysconle.2022.105252_b13 article-title: Strong consistency of random gradient-free algorithms for distributed optimization publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2254 – volume: 56 start-page: 2159 issue: 3 year: 2018 ident: 10.1016/j.sysconle.2022.105252_b26 article-title: Asymptotic properties of primal-dual algorithm for distributed stochastic optimization over random networks with imperfect communications publication-title: SIAM J. Control Optim. doi: 10.1137/16M1086133 – volume: 59 start-page: 7405 issue: 11 year: 2013 ident: 10.1016/j.sysconle.2022.105252_b25 article-title: Performance of a distributed stochastic approximation algorithm publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2013.2275131 – year: 2006 ident: 10.1016/j.sysconle.2022.105252_b39 – volume: 31 start-page: 803 issue: 9 year: 1986 ident: 10.1016/j.sysconle.2022.105252_b3 article-title: Distributed asynchronous deterministic and stochastic gradient optimization algorithms publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1986.1104412 – volume: 1 start-page: 51 year: 1980 ident: 10.1016/j.sysconle.2022.105252_b1 article-title: A class of center-free resource allocation algorithms publication-title: Large Scale Syst. – volume: 61 start-page: 1053 issue: 11 year: 2012 ident: 10.1016/j.sysconle.2022.105252_b31 article-title: Distributed dual averaging method for multi-agent optimization with quantized communication publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2012.06.004 – volume: 26 start-page: 1342 issue: 6 year: 2014 ident: 10.1016/j.sysconle.2022.105252_b12 article-title: Randomized gradient-free method for multiagent optimization over time-varying networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2336806 – volume: 29 start-page: 373 issue: 2 year: 1958 ident: 10.1016/j.sysconle.2022.105252_b20 article-title: Asymptotic distribution of stochastic approximation procedures publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177706619 – volume: 165 start-page: 917 issue: 3 year: 2015 ident: 10.1016/j.sysconle.2022.105252_b34 article-title: Quasi-monotone subgradient methods for nonsmooth convex minimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0677-5 – year: 2008 ident: 10.1016/j.sysconle.2022.105252_b5 – volume: 8 start-page: 5331 year: 2018 ident: 10.1016/j.sysconle.2022.105252_b9 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent publication-title: Adv. Neural Inf. Process. Syst. – start-page: 590 year: 2012 ident: 10.1016/j.sysconle.2022.105252_b41 article-title: Consensus and convergence rate analysis for multi-agent systems with time delay – year: 1992 ident: 10.1016/j.sysconle.2022.105252_b40 – volume: 31 start-page: 1063 issue: 4 year: 1993 ident: 10.1016/j.sysconle.2022.105252_b38 article-title: Identifiable surfaces in constrained optimization publication-title: SIAM J. Control Optim. doi: 10.1137/0331048 – volume: 101 start-page: 175 year: 2019 ident: 10.1016/j.sysconle.2022.105252_b33 article-title: Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs publication-title: Automatica doi: 10.1016/j.automatica.2018.11.056 – volume: 147 start-page: 516 issue: 3 year: 2010 ident: 10.1016/j.sysconle.2022.105252_b10 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9737-7 – volume: 30 start-page: 838 issue: 4 year: 1992 ident: 10.1016/j.sysconle.2022.105252_b23 article-title: Acceleration of stochastic approximation by averaging publication-title: SIAM J. Control Optim. doi: 10.1137/0330046 – start-page: 233 year: 1971 ident: 10.1016/j.sysconle.2022.105252_b37 article-title: A convergence theorem for non negative almost supermartingales and some applications – volume: 11 start-page: 2543 year: 2010 ident: 10.1016/j.sysconle.2022.105252_b28 article-title: Dual averaging methods for regularized stochastic learning and online optimization publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 391 issue: 2 year: 2013 ident: 10.1016/j.sysconle.2022.105252_b15 article-title: Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2012.2209984 – volume: 30 start-page: 687 issue: 1 year: 2020 ident: 10.1016/j.sysconle.2022.105252_b35 article-title: On the convergence of mirror descent beyond stochastic convex programming publication-title: SIAM J. Optim. doi: 10.1137/17M1134925 – volume: 112 start-page: 9 year: 2018 ident: 10.1016/j.sysconle.2022.105252_b42 article-title: Convergence rates of discrete-time stochastic approximation consensus algorithms: Graph-related limit bounds publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2017.12.002 – volume: 14 start-page: 711 issue: 4 year: 1996 ident: 10.1016/j.sysconle.2022.105252_b7 article-title: Distributed call admission control in mobile/wireless networks publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.490422 – volume: 120 start-page: 221 issue: 1 year: 2009 ident: 10.1016/j.sysconle.2022.105252_b27 article-title: Primal-dual subgradient methods for convex problems publication-title: Math. Program. doi: 10.1007/s10107-007-0149-x – year: 2020 ident: 10.1016/j.sysconle.2022.105252_b36 – volume: 114 start-page: 44 year: 2018 ident: 10.1016/j.sysconle.2022.105252_b6 article-title: Distributed resource allocation over random networks based on stochastic approximation publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2018.02.009 – start-page: 1484 year: 2013 ident: 10.1016/j.sysconle.2022.105252_b32 article-title: Online distributed optimization via dual averaging – start-page: 463 year: 1954 ident: 10.1016/j.sysconle.2022.105252_b19 article-title: On a stochastic approximation method publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177728716 – volume: 63 start-page: 2888 issue: 11 year: 2015 ident: 10.1016/j.sysconle.2022.105252_b43 article-title: Stability and performance limits of adaptive primal-dual networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2415759 – volume: 57 start-page: 592 issue: 3 year: 2012 ident: 10.1016/j.sysconle.2022.105252_b11 article-title: Dual averaging for distributed optimization: convergence analysis and network scaling publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2161027 – volume: 61 start-page: 3936 issue: 12 year: 2016 ident: 10.1016/j.sysconle.2022.105252_b14 article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2016.2529285 – year: 1989 ident: 10.1016/j.sysconle.2022.105252_b4 – year: 1984 ident: 10.1016/j.sysconle.2022.105252_b2 – volume: 49 start-page: 21 issue: 1 year: 2021 ident: 10.1016/j.sysconle.2022.105252_b24 article-title: Asymptotic optimality in stochastic optimization publication-title: Ann. Statist. doi: 10.1214/19-AOS1831 – start-page: 873 year: 2011 ident: 10.1016/j.sysconle.2022.105252_b30 article-title: Distributed delayed stochastic optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 3375 issue: 4 year: 2018 ident: 10.1016/j.sysconle.2022.105252_b16 article-title: Distributed stochastic approximation with local projections publication-title: SIAM J. Optim. doi: 10.1137/17M1128460 – volume: 7 start-page: 221 issue: 2 year: 2013 ident: 10.1016/j.sysconle.2022.105252_b17 article-title: Distributed random projection algorithm for convex optimization publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2013.2247023 – year: 2006 ident: 10.1016/j.sysconle.2022.105252_b8 |
SSID | ssj0002033 |
Score | 2.3830974 |
Snippet | Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105252 |
SubjectTerms | Almost sure convergence Asymptotic efficiency Asymptotic normality Constrained distributed stochastic optimization Distributed dual averaging method |
Title | Asymptotic properties of dual averaging algorithm for constrained distributed stochastic optimization |
URI | https://dx.doi.org/10.1016/j.sysconle.2022.105252 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lN9Ig9dQ4hjO2REqIgWlaEtKlvk-FFAQCJIB5b-9vryaKlUiaFTHvJJyfl89zm5-w6hO0Pb2gjNHBWY0KFGa0f4KnRk2_hKyJiyvHzsacj7I_o4ZuMa6la1MJBWWfr-wqfn3rq845badNPp1H2BBHpu1yoh-f-mvIKdBmDlzc-fNA_SKtrJA783jN6qEp4115u13XXOgS6TEGh5Sxj5O0BtBZ3eETos0SLuFA90jGp6eYIOtjgET5HurDeLNEvsCJzCl_UVUKTixGCossLCmmreiAiL-XuymmaTBbY4FUvAhdAeQiusgDwX-l7Zc4sF5UQAeTNOrDdZlGWaZ2jUu3_t9p2yd4IjfY9kDuEy1iFVMSC8OGxRGwsZt9MllDC-jmOtqFLcEB5Lu2iVCrhQTBJjqC9JK_TPUX2ZLPUFwp6xMK2tPd8EHlV2-0RDagKpfc21ZCG7RKxSWCRLYnF4gXlUZZDNokrRESg6KhR9idxvubSg1tgpEVbzEf0yksj6_x2yV_-QvUb7cFVk6d6gerb60LcWi2RxIze2BtrrPAz6QzgOnt8GX9D15ns |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb4JAEN4YPbQ9NH2m9rmHXim67IIcjanB-rhUE29k2UfVqBClB_99d3gYmzTx0BsBJoHZ2ZlvYOYbhF41bSnNFbOkp32LaqUs7kjfEi3tSC4iyrL2seHIDSb0Y8qmFdQpe2GgrLLw_blPz7x1ccYutGkn87n9CQX0rtmrhGT_m0wKVAN2KlZFtXavH4z2Dpk08onyQPENAgeNwou37W5rEs8lMGYSAlNvCSN_x6iDuNO9QOcFYMTt_JkuUUWtr9DZAY3gNVLt7W6VpLG5AyfwcX0DLKk41hgarTA31prNIsJ8-RVv5ulshQ1UxQKgIUyIUBJL4M-F0Vfm2MBBMePA34xj41BWRafmDZp038edwCrGJ1jCaZLUIq6IlE9lBCAv8hvUhEPmmhXjkmtHRZGSVEpXEzcSZt9K6blcMkG0po4gDd-5RdV1vFZ3CDe1QWot1XS016TSZFDUp9oTylGuEsxndcRKhYWi4BaHF1iGZRHZIiwVHYKiw1zRdWTv5ZKcXeOohF-uR_jLTkITAo7I3v9D9gWdBOPhIBz0Rv0HdApX8qLdR1RNN9_qyUCTNHouTO8Hd1vniQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+properties+of+dual+averaging+algorithm+for+constrained+distributed+stochastic+optimization&rft.jtitle=Systems+%26+control+letters&rft.au=Zhao%2C+Shengchao&rft.au=Chen%2C+Xing-Min&rft.au=Liu%2C+Yongchao&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.eissn=1872-7956&rft.volume=165&rft_id=info:doi/10.1016%2Fj.sysconle.2022.105252&rft.externalDocID=S0167691122000731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon |