Trace element, sulfur and lead isotopes in pyrite of Xinjiazui gold deposit in the northwestern margin of Yangtze Block, China: Implications for ore–forming processes
[Display omitted] •Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from metamorphic basement.•Ore-forming is coupled with the Back-Longmenshan tectonic belt in the Mesozoic. The ore-forming processes and sources of m...
Saved in:
Published in | Ore geology reviews Vol. 184; p. 106745 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from metamorphic basement.•Ore-forming is coupled with the Back-Longmenshan tectonic belt in the Mesozoic.
The ore-forming processes and sources of material in hydrothermal gold deposits remain pivotal subjects in economic geology, with recent studies underscoring their critical importance. The Xinjiazui gold deposit, located on the northwestern margin of the Yangtze Block, holds a gold reserve of 3.7 tons. Structurally, the ore bodies are constrained by brittle-ductile shear zones, hosted within the black rock series, and spatially associated with quartz diorite dikes, that the origin of its ore-forming materials and the specific metallogenic processes remain contentious, which substantially restricts the understanding of regional gold mineralization regularities. Utilizing advanced analytical techniques such as EPMA and LA–ICP–MS, in-situ trace element and isotopic analyses on pyrite from the Xinjiazui deposit were conducted to elucidate these debates. Pyrite can be divided into six types, including syn-sedimentary pyrite appearing in framboidal (Py0a) and euhedral granular texture (Py0 and Py0b) within surrounding rocks; and, the pyrite is mainly concentrated in Stage I (Py1a-Py1b) and Stage II (Py2) of the hydrothermal mineralization epoch. Both Py1a and Py1b also exhibit low levels of Au (≤0.25 ppm, Avg) and As(< 500 ppm, Avg), as well as similar Pb isotopic compositions (206Pb/204Pb: 19.57 – 19.98, 207Pb/204Pb: 15.74 – 15.86, 208Pb/204Pb: 38.40 – 38.77) that are considerably overlapped with the hosting Cambrian carbonaceous siliceous slate, yet they have distinct S isotopic compositions (Py1a: 19.18 to 19.43 ‰, Py1b: 11.15 to 12.19 ‰) reflect derivation from different sources, consistent to their respective hosting rocks (Cambrian slate vs. the veins from stage II). In contrast, Py2 shows significantly increased contents of Au and As (3.54 ppm, 10423 ppm, Avg), and its Pb isotopic composition (206Pb/204Pb: 18.12 – 18.82, 207Pb/204Pb: 15.59 – 15.83, 208Pb/204Pb: 38.38 – 39.14) is consistent with the Silurian carbonaceous phyllite and quartz diorite dikes. The δ34S isotope of Py2 (8.79 to 12.47 ‰) overlaps with the Neoproterozoic deep metamorphic basement, Silurian carbonaceous phyllite and quartz diorite dikes. Despite this isotopic similarity, the low contents of W, Sn, Mo, and Bi in Py2 related to magmatic rocks, along with the absence of ore minerals in quartz–diorite dike breccia, suggests a weak genetic link between the Xinjiazui gold deposit and quartz diorite dikes. Moreover, the low background gold content in the Cambrian slate (5.46 ppb) and Silurian phyllite (5.13 ppb), both near the Clark value (4.0 ppb), indicates the black rock series (the above-mentioned slate and phyllite) are unlikely to be the primary sources for gold. Instead, the Neoproterozoic deep metamorphic basement likely contributed the majority of S and Au to the gold mineralization, and variations in trace elements, S and Pb isotopes across the stages I and II of mineralization may result from progressive evolution of basement-derived fluids. Increasing gold content with decreasing fluid temperature from Stage I to Stage II further suggests temperature played a key role in gold precipitation. Overall, ore formation at the Xinjiazui gold deposit resulted from a single-source fluid system evolving through multiple stages linked to regional tectonic transitions in the Mesozoic. |
---|---|
AbstractList | [Display omitted]
•Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from metamorphic basement.•Ore-forming is coupled with the Back-Longmenshan tectonic belt in the Mesozoic.
The ore-forming processes and sources of material in hydrothermal gold deposits remain pivotal subjects in economic geology, with recent studies underscoring their critical importance. The Xinjiazui gold deposit, located on the northwestern margin of the Yangtze Block, holds a gold reserve of 3.7 tons. Structurally, the ore bodies are constrained by brittle-ductile shear zones, hosted within the black rock series, and spatially associated with quartz diorite dikes, that the origin of its ore-forming materials and the specific metallogenic processes remain contentious, which substantially restricts the understanding of regional gold mineralization regularities. Utilizing advanced analytical techniques such as EPMA and LA–ICP–MS, in-situ trace element and isotopic analyses on pyrite from the Xinjiazui deposit were conducted to elucidate these debates. Pyrite can be divided into six types, including syn-sedimentary pyrite appearing in framboidal (Py0a) and euhedral granular texture (Py0 and Py0b) within surrounding rocks; and, the pyrite is mainly concentrated in Stage I (Py1a-Py1b) and Stage II (Py2) of the hydrothermal mineralization epoch. Both Py1a and Py1b also exhibit low levels of Au (≤0.25 ppm, Avg) and As(< 500 ppm, Avg), as well as similar Pb isotopic compositions (206Pb/204Pb: 19.57 – 19.98, 207Pb/204Pb: 15.74 – 15.86, 208Pb/204Pb: 38.40 – 38.77) that are considerably overlapped with the hosting Cambrian carbonaceous siliceous slate, yet they have distinct S isotopic compositions (Py1a: 19.18 to 19.43 ‰, Py1b: 11.15 to 12.19 ‰) reflect derivation from different sources, consistent to their respective hosting rocks (Cambrian slate vs. the veins from stage II). In contrast, Py2 shows significantly increased contents of Au and As (3.54 ppm, 10423 ppm, Avg), and its Pb isotopic composition (206Pb/204Pb: 18.12 – 18.82, 207Pb/204Pb: 15.59 – 15.83, 208Pb/204Pb: 38.38 – 39.14) is consistent with the Silurian carbonaceous phyllite and quartz diorite dikes. The δ34S isotope of Py2 (8.79 to 12.47 ‰) overlaps with the Neoproterozoic deep metamorphic basement, Silurian carbonaceous phyllite and quartz diorite dikes. Despite this isotopic similarity, the low contents of W, Sn, Mo, and Bi in Py2 related to magmatic rocks, along with the absence of ore minerals in quartz–diorite dike breccia, suggests a weak genetic link between the Xinjiazui gold deposit and quartz diorite dikes. Moreover, the low background gold content in the Cambrian slate (5.46 ppb) and Silurian phyllite (5.13 ppb), both near the Clark value (4.0 ppb), indicates the black rock series (the above-mentioned slate and phyllite) are unlikely to be the primary sources for gold. Instead, the Neoproterozoic deep metamorphic basement likely contributed the majority of S and Au to the gold mineralization, and variations in trace elements, S and Pb isotopes across the stages I and II of mineralization may result from progressive evolution of basement-derived fluids. Increasing gold content with decreasing fluid temperature from Stage I to Stage II further suggests temperature played a key role in gold precipitation. Overall, ore formation at the Xinjiazui gold deposit resulted from a single-source fluid system evolving through multiple stages linked to regional tectonic transitions in the Mesozoic. |
ArticleNumber | 106745 |
Author | Liu, Ji Shen, Guan-Wen Bao, Xin-Shang Kou, Shao-Lei Yang, Li-Qiang Wang, Zhan-Bin Yang, Wei Zhang, Yi-Xiang |
Author_xml | – sequence: 1 givenname: Ji surname: Liu fullname: Liu, Ji organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China – sequence: 2 givenname: Li-Qiang surname: Yang fullname: Yang, Li-Qiang email: lqyang@cugb.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China – sequence: 3 givenname: Shao-Lei surname: Kou fullname: Kou, Shao-Lei organization: Technology Innovation Center for Gold Ore Exploration, Xi’an Mineral Resources Survey, China Geological Survey, Xi’an 710100 Shaanxi, PR China – sequence: 4 givenname: Xin-Shang surname: Bao fullname: Bao, Xin-Shang organization: School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, PR China – sequence: 5 givenname: Wei surname: Yang fullname: Yang, Wei organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China – sequence: 6 givenname: Guan-Wen surname: Shen fullname: Shen, Guan-Wen organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China – sequence: 7 givenname: Zhan-Bin surname: Wang fullname: Wang, Zhan-Bin organization: Technology Innovation Center for Gold Ore Exploration, Xi’an Mineral Resources Survey, China Geological Survey, Xi’an 710100 Shaanxi, PR China – sequence: 8 givenname: Yi-Xiang surname: Zhang fullname: Zhang, Yi-Xiang organization: Technology Innovation Center for Gold Ore Exploration, Xi’an Mineral Resources Survey, China Geological Survey, Xi’an 710100 Shaanxi, PR China |
BookMark | eNqFUEtOAzEMzaJItIUz4AO0JZlpMy07qPhJSGyKBKsoTZxpyjQZJSkIVtyBS3AuTkKqIrZsbOvZ7-n59UjHeYeEnDA6YpTx0_XIB6wxl5dRQYtJRnk1nnRIN29nQ1by6SHpxbimlHJKWZd8LYJUCNjgBl0aQNw2ZhtAOg0NSg02-uRbjGAdtG_BJgRv4NG6tZXvWwu1bzRobH20aXeTVgjOh7R6xZgwONjIUGc8k56kq9M7wkXj1fMA5ivr5BncbtrGKpmsdxGMD5DNf3985mljXQ1t8ApjxHhEDoxsIh7_9j55uLpczG-Gd_fXt_Pzu6EqWZGGRVmYccWrmeHScCwlkyVlU61VpRXXU7pkM7McGyolp4ZTqQxDqujEqOXULHXZJ9VeVwUfY0Aj2mDzE2-CUbELWazFX8hiF7LYh5yZ53smZnsvFoOIyqJTqG1AlYT29l-NH5cclHU |
Cites_doi | 10.1007/s00126-013-0477-0 10.1016/j.gca.2012.11.006 10.1016/j.gca.2008.03.014 10.1016/j.gca.2010.03.003 10.1007/s00126-009-0272-0 10.1039/c1ja10172b 10.2138/am.2012.4207 10.2113/econgeo.104.7.897 10.1130/G51871.1 10.1016/j.minpro.2003.09.002 10.1016/j.gca.2019.05.035 10.1016/0016-7037(64)90142-5 10.2113/econgeo.110.6.1389 10.1007/s00126-018-0857-6 10.2113/gsecongeo.94.3.405 10.1016/j.earscirev.2020.103274 10.1130/B31249.1 10.2113/gsecongeo.67.5.551 10.1007/BF00201918 10.2138/am-2019-6890 10.1016/j.oregeorev.2022.105090 10.1016/j.oregeorev.2022.104843 10.2113/gsecongeo.90.5.1167 10.1016/j.gexplo.2019.06.001 10.1016/j.ijms.2017.07.015 10.1016/j.jseaes.2019.02.017 10.1016/j.gr.2013.11.003 10.1016/j.jseaes.2018.06.017 10.2113/econgeo.111.2.331 10.1016/j.oregeorev.2020.103591 10.1016/j.oregeorev.2004.04.003 10.1016/j.epsl.2013.12.020 10.1130/G39504.1 10.2138/am.2009.3116 10.1139/cjes-2018-0247 10.1016/j.lithos.2015.07.011 10.1016/j.oregeorev.2011.03.003 10.2113/gsecongeo.84.1.171 10.1130/G25001A.1 10.2113/gsecongeo.104.5.635 10.2113/econgeo.108.6.1273 10.1016/j.chemgeo.2008.08.004 10.1016/j.gca.2014.05.045 10.1016/j.epsl.2014.05.004 10.5382/econgeo.2018.4548 10.2113/gscanmin.43.3.951 10.1016/j.oregeorev.2017.07.023 10.1016/j.gr.2015.10.003 10.2113/gsecongeo.99.2.257 10.2113/econgeo.109.2.457 10.1007/s00410-018-1501-2 10.1016/S0016-7037(99)00258-6 10.1039/c2ja10383d 10.1016/j.gca.2017.01.044 10.1016/j.gca.2018.11.034 10.2113/econgeo.111.1.105 10.5382/econgeo.5001 10.1007/BF00206365 10.2113/econgeo.106.3.331 10.1016/j.oregeorev.2020.103495 10.1007/BF00193506 10.1007/978-1-4613-0497-5_4 10.2138/am-2022-8118 10.1016/j.gca.2005.01.011 10.1155/2019/3726465 10.1130/B31901.1 10.2113/gsecongeo.104.8.1111 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.oregeorev.2025.106745 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
ExternalDocumentID | 10_1016_j_oregeorev_2025_106745 S0169136825003051 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6I. 6OB 7-5 71M 8P~ 9JN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K WUQ XPP ZMT ~02 ~G- AAYXX AFXIZ AGRNS BNPGV CITATION RIG |
ID | FETCH-LOGICAL-c312t-232f47679f6af6e3a1a3018ddc7dc6d80b19fb4f0aa60f60acf1e0c05fcb8fbd3 |
IEDL.DBID | .~1 |
ISSN | 0169-1368 |
IngestDate | Wed Jul 30 23:58:57 EDT 2025 Sat Aug 23 17:13:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-situ S–Pb isotopes In-situ trace element Pyrite Xinjiazui gold deposit Yangtze Block |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-232f47679f6af6e3a1a3018ddc7dc6d80b19fb4f0aa60f60acf1e0c05fcb8fbd3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0169136825003051 |
ParticipantIDs | crossref_primary_10_1016_j_oregeorev_2025_106745 elsevier_sciencedirect_doi_10_1016_j_oregeorev_2025_106745 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Ore geology reviews |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Simon, Kesler, Chryssoulis (b0370) 1999; 94 Partington, Williams (b0320) 2000; 13 Liu, Yang, Zhang, Kou, Yang, Wang, Tian (b0260) 2022; 36 Jiang, H.J., 2022. Ore genesis and exploration application of the Huangniping Au deposit in northern Longmenshan orogenic belt. Doctor degree, University of Chinese Academy of Sciences (in Chinese with English abstract). Cook, Ciobanu, Meria (b0080) 2013; 108 Chai, Zhang, Hou, Zhang, Dong (b0050) 2020; 57 Chen, Yuan, Chen, Bao, Zhu, Liang (b0060) 2019; 176 Ohmoto (b0305) 1972; 67 Yang, Deng, Dilek, Qiu, Ji, Li, Taylor, Yu (b0460) 2015; 127 Gregory, Large, Halpin, Baturina, Lyons, Wu, Danyushevsky, Sack, Chappaz, Maslennikov, Bull (b0145) 2015; 110 Wei (b0435) 2008 Goldfarb, Groves (b0125) 2015; 233 Zheng, Sun, Li, Jeon, Zhou (b0500) 2020; 126 Chai, Hou, Zhang, Dong (b0045) 2019; 2019 Deng, Yang, Groves, Zhang, Qiu, Wang (b0110) 2020; 208 Yan, Zhou, Li, Wei (b0450) 2011; 30 Wang, Wang, Zhu, Xu (b0425) 2015; 35 Li, Wang, Weng, Dong, Yang, Wang, Deng (b0220) 2022; 149 Voute, Hagemann, Evans, Villanes (b0420) 2019; 54 Chen (b0055) 2010; 17 Zhang, Chen, Cheng, Tian, Zhang, Olin (b0495) 2022; 107 Deng, Liu, Wang, Pan (b0105) 2015; 36 Clark, Grguric, Mumm (b0075) 2004; 25 Mumin, Fleet, Chryssoulis (b0295) 1994; 29 Nesbitt (b0300) 1991 Qiu, Yu, Wu, Geng, Ge, Gou, Taylor (b0345) 2019; 104 Fu, Fang, Liu, Fan, Guo, Jiang (b0115) 2014; 38 Maslennikov, V.V., Maslennikova, S.P., Large, R.R., L.V. Danyushevsky, L.V., 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 104(8), 1111–1141. Tanner, Henley, Mavrogenes, Holden (b0390) 2016; 171 Paul, Paton, Norris, Woodhead, Hellstrom, Hergt, Greig (b0330) 2012; 27 Yang, Deng, Zhang, Zhao, Santosh, Yu, Yang, Li, Shan, Xie, Liu, Gao, Song, He, Li, Wang, Wang (b0470) 2024; 2024 Reich, Kesler, Utsunomiya, Palenik, Chryssoulis, Ewing (b0360) 2005; 69 Yang, Deng, Wang, Guo, Li, Groves, Danyushevsky, Zhang, Zheng, Zhao (b0465) 2016; 111 Zhang, Qiu, Yin, Long, Feng, Yu, Gao, Deng (b0490) 2024 Barker, Hickey, Cline, Dipple, Kilburn, Vaughan, Longo (b0020) 2009; 104 Hou, Peng, Ding, Zhang, Zhu, Wu, Wu, Ouyang (b0160) 2016; 111 Liu, Bao, Gao, Yang, Kou, Yang, Wang, He, Zhang, Chen (b0250) 2022; 12 Reich, Deditius, Chryssoulis, Li, Ma, Parada, Barra, Florian Mittermayr (b0355) 2013; 104 Yan, Zhou, Qiu, Wells, Mu, Xu (b0455) 2018; 164 Li (b0245) 2009 Zhou, Xu, Dong, Chi, Deng, Cai, Ning, Wang (b0510) 2021; 145 Kerrich, R., 1987. Stable isotope geochemistry of Au–Ag vein deposits in metamorphic rocks. In: Kyser, T.K. (Ed.), Stable Isotope Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada Short Course 13, 287–336. Morse, Luther (b0290) 1999; 63 Tosdal, Wooden, Bouse (b0410) 1999; 12 Liu, Xue, Zhao, Zhao, Chu, Liu, Yu, Wang, Wu (b0265) 2020; 34 Tomkins (b0405) 2010; 74 Large, Bull, Maslennikov (b0200) 2011; 106 Golding, Groves, McNaughton, Mikucki, Sang (b0135) 1990 Haroldson, Beard, Satkoski, Brown, Johnson (b0150) 2018; 130 Liu, Bao, Kou, Yang, Gao, Wei, Ma, Yang (b0255) 2023; 161 Li, Wang, Yang, Zhang, Liu, Liu (b0230) 2020; 122 Gregory, Mukherjee, Olson, Large, Danyushevsky, Stepanov, Avila, Cliff, Ireland, Raiswell, Olin, Maslennikov, Lyons (b0140) 2019; 259 Zhang, Guo, Dong, Yao (b0480) 2019; 25 Tardani, D., Reich, M., Deditius, A.P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J., Roberts, M.P., 2017. Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochim. Cosmochim. Acta 204, 179–204. Deditius, Reich, Kesler, Utsunomiya, Chryssoulis, Walshe, Ewing (b0085) 2014; 140 Liu, Hu, Gao, Günther, Xu, Gao, Chen (b0270) 2008; 257 Ohmoto, H., Rye, R.O., Barnes, H.L., 1979. Geochemistry of hydrothermal ore deposits. Geochemistry of Hydrothermal Ore Deposits, HL Barnes, Ed. (Wiley, ed. 3, 1997), 1979. Deditius, Utsunomiya, Renock, Ewing, Ramana, Becker, Kesler (b0100) 2008; 72 Su, Y.P. The tectonic settings and genesis of Neoproterozoic Liujiaping volcanic massive sulfide copper-zinc deposits, northwestern Yangtze Block. Doctor degree, the University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract). Paton, Hellstrom, Paul, Woodhead, Hergt (b0325) 2011; 26 Xue, X.,P., Wang, D.Q., Wang, Y.Z., Wang, J.G., 2018. Characteristics of fluid inclusion and genesis of the Huangniping gold deposit. Journal of Mineralogy and Petrology 38(2), 31–39 (in Chinese with English abstract). Leng (b0215) 2017; 24 Peterson, Mavrogenes (b0335) 2014; 42 Deditius, Utsunomiya, Reich (b0095) 2011; 42 Huston, Sie, Suter, Cooke, Both (b0165) 1995; 90 Velàsquez, Beziat, Salvi (b0415) 2014; 109 Qiu, Li, Yuan (b0350) 2022; 47 Wang, Ma, Yang, Zhang, Liu, Kou, Tian (b0430) 2022; 55 Bao, Chen, Zong, Yuan, Chen, Dai (b0015) 2017; 2017 Deditius, Utsunomiya, Ewing, Kesler (b0090) 2009; 94 Potra, Macfarlane (b0340) 2014; 49 Palin, Xu (b0315) 2000; 95 Chang, Large, Maslennikov (b0035) 2008; 36 Bralia, Sabatini, Troja (b0030) 1979; 14 Li, Li, Selby, Li (b0240) 2018; 46 Large, Halpin, Danyushevsky, Maslennikov, Bull, Long, Gregory, Lounejeva, Lyons, Sack, McGoldrick, Calver (b0210) 2014; 389 Chouinard, A., Paquette, J., Anthony E. Williams-Jones, A.E., 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-argentina. Can. Mineral. 43(3), 951–963. Bakken, Hochella, Marshall, Turner (b0010) 1989; 84 Koglin, Frimmel, Minter, Brätz (b0190) 2010; 45 Keith, Smith, Jenkin, Holwell, Dye (b0175) 2018; 96 Wu, Farquhar, Strauss (b0440) 2014; 399 Zhang, Deng, Chen, Yang, Cooke, Danyushevsky, Gong (b0485) 2014; 26 Loftus-Hills, Solomon (b0275) 1967; 2 Chai, Zhang, Dong, Zhang (b0040) 2019; 204 Taylor (b0400) 1964; 28 Li, Fan, Yang, Hollings, Liu, Hu, Cai (b0235) 2018; 173 Kerrich, R., 1989. Geochemical evidence on the sources of fluids and solutes for shear zone hosted mesothermal Au deposits. In: Bursnall, J.T. (Ed.), Mineralization and Shear Zones. Geological Association of Canada Short Course 6, 129–197. Ciobanu, Cook, Utsunomiya (b0070) 2012; 97 Zhong (b0505) 2012 Román, Reich, Leisen, Morata, Barra, Deditius (b0365) 2019; 246 Goldfarb, Miller, Leach, Snee (b0130) 1997; 9 Abraitis, Pattrick, Vaughan (b0005) 2004; 74 McCready, Stumpfl, Lally, Ahmad, Gee (b0285) 2004; 99 Berthier, Perret, Eglinger, André-Mayer, Feneyrol, Voinot, Teitler, Bosc (b0025) 2023; 118 Large, Danyushevsky, Hollit, Maslennikov, Meffre, Gilbert, Bull, Scott, Emsbo, Thomas, Singh, Foster (b0205) 2009; 104 Tan, Shao, Liu, Zhang, Feng, Zhang, Shah (b0385) 2022; 144 Kou, S.L., Liu, J., Wang, Z.B., Yang, W., Zhang, Y.X., He, J.l., Tian, Y., Pan, Y., Chen, H., Li, L., 2024. Fluid inclusion and H-O isotopic studies of the Xinjiazui Gold Deposit in Back-Longmenshan Tectonic Belt. Geoscience, (in Chinese with English abstract), under review. Hou (b0155) 2000; 2 Sykora, Cooke, Meffre, Stephanov, Gardner, Scot, Selley, Harris (b0380) 2018; 113 Li (10.1016/j.oregeorev.2025.106745_b0235) 2018; 173 Goldfarb (10.1016/j.oregeorev.2025.106745_b0125) 2015; 233 Deng (10.1016/j.oregeorev.2025.106745_b0105) 2015; 36 Li (10.1016/j.oregeorev.2025.106745_b0240) 2018; 46 Berthier (10.1016/j.oregeorev.2025.106745_b0025) 2023; 118 Deng (10.1016/j.oregeorev.2025.106745_b0110) 2020; 208 Chai (10.1016/j.oregeorev.2025.106745_b0045) 2019; 2019 10.1016/j.oregeorev.2025.106745_b0195 Yan (10.1016/j.oregeorev.2025.106745_b0455) 2018; 164 Román (10.1016/j.oregeorev.2025.106745_b0365) 2019; 246 Barker (10.1016/j.oregeorev.2025.106745_b0020) 2009; 104 Liu (10.1016/j.oregeorev.2025.106745_b0250) 2022; 12 Sykora (10.1016/j.oregeorev.2025.106745_b0380) 2018; 113 Potra (10.1016/j.oregeorev.2025.106745_b0340) 2014; 49 Qiu (10.1016/j.oregeorev.2025.106745_b0350) 2022; 47 Zhang (10.1016/j.oregeorev.2025.106745_b0485) 2014; 26 Large (10.1016/j.oregeorev.2025.106745_b0200) 2011; 106 Wei (10.1016/j.oregeorev.2025.106745_b0435) 2008 Hou (10.1016/j.oregeorev.2025.106745_b0155) 2000; 2 Zhang (10.1016/j.oregeorev.2025.106745_b0480) 2019; 25 Huston (10.1016/j.oregeorev.2025.106745_b0165) 1995; 90 Goldfarb (10.1016/j.oregeorev.2025.106745_b0130) 1997; 9 Hou (10.1016/j.oregeorev.2025.106745_b0160) 2016; 111 Liu (10.1016/j.oregeorev.2025.106745_b0260) 2022; 36 10.1016/j.oregeorev.2025.106745_b0185 Abraitis (10.1016/j.oregeorev.2025.106745_b0005) 2004; 74 Simon (10.1016/j.oregeorev.2025.106745_b0370) 1999; 94 10.1016/j.oregeorev.2025.106745_b0065 10.1016/j.oregeorev.2025.106745_b0180 Morse (10.1016/j.oregeorev.2025.106745_b0290) 1999; 63 Peterson (10.1016/j.oregeorev.2025.106745_b0335) 2014; 42 Keith (10.1016/j.oregeorev.2025.106745_b0175) 2018; 96 Velàsquez (10.1016/j.oregeorev.2025.106745_b0415) 2014; 109 Yang (10.1016/j.oregeorev.2025.106745_b0465) 2016; 111 Paul (10.1016/j.oregeorev.2025.106745_b0330) 2012; 27 Liu (10.1016/j.oregeorev.2025.106745_b0265) 2020; 34 Paton (10.1016/j.oregeorev.2025.106745_b0325) 2011; 26 10.1016/j.oregeorev.2025.106745_b0170 Cook (10.1016/j.oregeorev.2025.106745_b0080) 2013; 108 Li (10.1016/j.oregeorev.2025.106745_b0220) 2022; 149 Li (10.1016/j.oregeorev.2025.106745_b0245) 2009 Zhong (10.1016/j.oregeorev.2025.106745_b0505) 2012 Loftus-Hills (10.1016/j.oregeorev.2025.106745_b0275) 1967; 2 Taylor (10.1016/j.oregeorev.2025.106745_b0400) 1964; 28 Deditius (10.1016/j.oregeorev.2025.106745_b0090) 2009; 94 Golding (10.1016/j.oregeorev.2025.106745_b0135) 1990 Haroldson (10.1016/j.oregeorev.2025.106745_b0150) 2018; 130 Li (10.1016/j.oregeorev.2025.106745_b0230) 2020; 122 10.1016/j.oregeorev.2025.106745_b0445 Chai (10.1016/j.oregeorev.2025.106745_b0040) 2019; 204 Tosdal (10.1016/j.oregeorev.2025.106745_b0410) 1999; 12 Voute (10.1016/j.oregeorev.2025.106745_b0420) 2019; 54 10.1016/j.oregeorev.2025.106745_b0280 Zhang (10.1016/j.oregeorev.2025.106745_b0495) 2022; 107 Zhou (10.1016/j.oregeorev.2025.106745_b0510) 2021; 145 Nesbitt (10.1016/j.oregeorev.2025.106745_b0300) 1991 Partington (10.1016/j.oregeorev.2025.106745_b0320) 2000; 13 Tomkins (10.1016/j.oregeorev.2025.106745_b0405) 2010; 74 Chai (10.1016/j.oregeorev.2025.106745_b0050) 2020; 57 Koglin (10.1016/j.oregeorev.2025.106745_b0190) 2010; 45 Wang (10.1016/j.oregeorev.2025.106745_b0425) 2015; 35 Large (10.1016/j.oregeorev.2025.106745_b0205) 2009; 104 Mumin (10.1016/j.oregeorev.2025.106745_b0295) 1994; 29 10.1016/j.oregeorev.2025.106745_b0310 Yang (10.1016/j.oregeorev.2025.106745_b0470) 2024; 2024 Bralia (10.1016/j.oregeorev.2025.106745_b0030) 1979; 14 Liu (10.1016/j.oregeorev.2025.106745_b0270) 2008; 257 10.1016/j.oregeorev.2025.106745_b0395 Bakken (10.1016/j.oregeorev.2025.106745_b0010) 1989; 84 Ohmoto (10.1016/j.oregeorev.2025.106745_b0305) 1972; 67 Bao (10.1016/j.oregeorev.2025.106745_b0015) 2017; 2017 Large (10.1016/j.oregeorev.2025.106745_b0210) 2014; 389 Chen (10.1016/j.oregeorev.2025.106745_b0055) 2010; 17 Deditius (10.1016/j.oregeorev.2025.106745_b0085) 2014; 140 Yang (10.1016/j.oregeorev.2025.106745_b0460) 2015; 127 Ciobanu (10.1016/j.oregeorev.2025.106745_b0070) 2012; 97 Reich (10.1016/j.oregeorev.2025.106745_b0360) 2005; 69 McCready (10.1016/j.oregeorev.2025.106745_b0285) 2004; 99 Clark (10.1016/j.oregeorev.2025.106745_b0075) 2004; 25 Gregory (10.1016/j.oregeorev.2025.106745_b0140) 2019; 259 Yan (10.1016/j.oregeorev.2025.106745_b0450) 2011; 30 Deditius (10.1016/j.oregeorev.2025.106745_b0100) 2008; 72 Tanner (10.1016/j.oregeorev.2025.106745_b0390) 2016; 171 Liu (10.1016/j.oregeorev.2025.106745_b0255) 2023; 161 Reich (10.1016/j.oregeorev.2025.106745_b0355) 2013; 104 Chang (10.1016/j.oregeorev.2025.106745_b0035) 2008; 36 Gregory (10.1016/j.oregeorev.2025.106745_b0145) 2015; 110 Qiu (10.1016/j.oregeorev.2025.106745_b0345) 2019; 104 10.1016/j.oregeorev.2025.106745_b0375 Wang (10.1016/j.oregeorev.2025.106745_b0430) 2022; 55 Leng (10.1016/j.oregeorev.2025.106745_b0215) 2017; 24 Zhang (10.1016/j.oregeorev.2025.106745_b0490) 2024 Zheng (10.1016/j.oregeorev.2025.106745_b0500) 2020; 126 Palin (10.1016/j.oregeorev.2025.106745_b0315) 2000; 95 Tan (10.1016/j.oregeorev.2025.106745_b0385) 2022; 144 Fu (10.1016/j.oregeorev.2025.106745_b0115) 2014; 38 Chen (10.1016/j.oregeorev.2025.106745_b0060) 2019; 176 Wu (10.1016/j.oregeorev.2025.106745_b0440) 2014; 399 Deditius (10.1016/j.oregeorev.2025.106745_b0095) 2011; 42 |
References_xml | – volume: 47 start-page: 290 year: 2022 end-page: 308 ident: b0350 article-title: Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong District: Implications for mechanism of gold enrichment publication-title: Earth Sci. – volume: 54 start-page: 1077 year: 2019 end-page: 1100 ident: b0420 article-title: Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms publication-title: Miner. Depos. – reference: Chouinard, A., Paquette, J., Anthony E. Williams-Jones, A.E., 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-argentina. Can. Mineral. 43(3), 951–963. – year: 2009 ident: b0245 article-title: Composition, structural characteristics and evolution of Back-Longmenshan orogeny (North Section) in the Northwest margin of Yangtze block – volume: 127 start-page: 1831 year: 2015 end-page: 1854 ident: b0460 article-title: Structure, geochronology, and petrogenesis of the late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen publication-title: China. Geol. Soc. Am. Bull. – volume: 149 year: 2022 ident: b0220 article-title: Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits publication-title: Ore Geol. Rev. – reference: Ohmoto, H., Rye, R.O., Barnes, H.L., 1979. Geochemistry of hydrothermal ore deposits. Geochemistry of Hydrothermal Ore Deposits, HL Barnes, Ed. (Wiley, ed. 3, 1997), 1979. – volume: 74 start-page: 41 year: 2004 end-page: 59 ident: b0005 article-title: Variations in the compositional, textural and electrical properties of natural pyrite: a review publication-title: Int. J. Miner. Process. – volume: 111 start-page: 105 year: 2016 end-page: 126 ident: b0465 article-title: Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment publication-title: Econ. Geol. – volume: 57 start-page: 1428 year: 2020 end-page: 1446 ident: b0050 article-title: Ore geology, fluid inclusion, and stable isotope constraints on the origin of the Damoqujia gold deposit, Jiaodong Peninsula publication-title: China. Can. J. Earth Sci. – volume: 399 start-page: 44 year: 2014 end-page: 51 ident: b0440 article-title: δ publication-title: Earth Planet. Sci. Lett. – volume: 233 start-page: 2 year: 2015 end-page: 26 ident: b0125 article-title: Orogenic gold: Common or evolving fluid and metal sources through time (Review) publication-title: Lithos – volume: 13 start-page: 69 year: 2000 end-page: 101 ident: b0320 article-title: Proterozoic lode gold and (iron)–copper–gold deposits—a comparison of Australian and global examples publication-title: Econ. Geol. – volume: 28 start-page: 1989 year: 1964 end-page: 1998 ident: b0400 article-title: Trace element abundances and the chondritic earth model publication-title: Geochim. Cosmochim. Acta – reference: Tardani, D., Reich, M., Deditius, A.P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J., Roberts, M.P., 2017. Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochim. Cosmochim. Acta 204, 179–204. – volume: 42 start-page: 32 year: 2011 end-page: 46 ident: b0095 article-title: Trace metal nanoparticles in pyrite publication-title: Ore Geol. Rev. – volume: 24 start-page: 162 year: 2017 end-page: 175 ident: b0215 article-title: Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: constraints from LA–ICP–MS trace elements of pyrite and pyrrhotite publication-title: Earth Sci. Front. – volume: 176 start-page: 325 year: 2019 end-page: 336 ident: b0060 article-title: In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt publication-title: Central China. J. Asian Earth Sci. – volume: 36 start-page: 378 year: 2022 end-page: 388 ident: b0260 article-title: Geological characteristics and genesis of the Xinjiazui gold deposit in Back–Longmenshan orogenic belt publication-title: Geoscience – volume: 106 start-page: 331 year: 2011 end-page: 358 ident: b0200 article-title: A carbonaceous sedimentary source-rock model for Carlin-type and Orogenic gold deposits publication-title: Econ. Geol. – volume: 104 start-page: 897 year: 2009 end-page: 904 ident: b0020 article-title: Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits publication-title: Econ. Geol. – volume: 63 start-page: 3373 year: 1999 end-page: 3378 ident: b0290 article-title: Chemical influences on trace metal–sulfide interactions in anoxic sediments publication-title: Geochim. Cosmochim. Acta – volume: 25 start-page: 746 year: 2019 end-page: 768 ident: b0480 article-title: Rethinking of the Qinling Orogen publication-title: Journal of Geomechanics – year: 2012 ident: b0505 article-title: Geological characteristics and genesis of Taiyangping gold deposit, Sichuan Province – volume: 94 start-page: 391 year: 2009 end-page: 394 ident: b0090 article-title: Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite publication-title: Am. Miner. – volume: 122 year: 2020 ident: b0230 article-title: The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: the links between nanoscale gold enrichment and crystal distortion publication-title: Ore Geol. Rev. – volume: 36 start-page: 219 year: 2015 end-page: 274 ident: b0105 article-title: Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: constraints from fluid inclusion and C–D–O–S–Sr isotope compositions. Ore Geol. Rev. 65(3), 674–686.Deng, J., and Wang, Q.F., 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework publication-title: Gondw. Res. – reference: Kerrich, R., 1987. Stable isotope geochemistry of Au–Ag vein deposits in metamorphic rocks. In: Kyser, T.K. (Ed.), Stable Isotope Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada Short Course 13, 287–336. – volume: 2 start-page: 88 year: 2000 end-page: 90 ident: b0155 article-title: Geological characteristics if iron cap gold deposit and ore prospect at Liujiaping publication-title: Gold Journal – reference: Maslennikov, V.V., Maslennikova, S.P., Large, R.R., L.V. Danyushevsky, L.V., 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 104(8), 1111–1141. – volume: 12 start-page: 688 year: 2022 ident: b0250 article-title: Composition and geochemical characteristics of pyrite and quartz: Constraints on the origin of the Xinjiazui gold deposit, Northwestern margin of the Yangtze Block publication-title: China. Minerals – start-page: 259 year: 1990 end-page: 262 ident: b0135 article-title: Source of ore fluid and ore components—sulphur isotope studies publication-title: Geology Department and University Extension 20 – volume: 99 start-page: 257 year: 2004 end-page: 277 ident: b0285 article-title: Polymetallic Mineralization at the Browns Deposit, Rum Jungle Mineral Field, Northern Territory publication-title: Australia. Econ. Geol. – volume: 12 start-page: 1 year: 1999 end-page: 28 ident: b0410 article-title: Pb isotopes, ore deposits, and metallogenic terranes publication-title: Econ. Geol. – volume: 113 start-page: 193 year: 2018 end-page: 208 ident: b0380 article-title: Evolution of pyrite trace element compositions from porphyry style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing publication-title: Econ. Geol. – volume: 107 start-page: 1910 year: 2022 end-page: 1925 ident: b0495 article-title: Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: an example from the Jiguanzui deposit publication-title: Eastern China. Am. Mineral. – volume: 104 start-page: 1487 year: 2019 end-page: 1502 ident: b0345 article-title: Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit publication-title: China. Am. Mineral. – reference: Xue, X.,P., Wang, D.Q., Wang, Y.Z., Wang, J.G., 2018. Characteristics of fluid inclusion and genesis of the Huangniping gold deposit. Journal of Mineralogy and Petrology 38(2), 31–39 (in Chinese with English abstract). – volume: 140 start-page: 644 year: 2014 end-page: 670 ident: b0085 article-title: The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits publication-title: Geochim. Cosmochim. Acta – year: 2024 ident: b0490 article-title: Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: evidence from Hg isotopes publication-title: Geology – volume: 26 start-page: 2508 year: 2011 end-page: 2518 ident: b0325 article-title: Iolite: Freeware for the visualisation and processing of mass spectrometric data publication-title: J. Anal. At. Spectrom – volume: 27 start-page: 700 year: 2012 end-page: 706 ident: b0330 article-title: CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment publication-title: J. Anal. At. Spectrom – volume: 145 year: 2021 ident: b0510 article-title: The role of structural reactivation for gold mineralization in northeastern Hunan Province publication-title: South China. J. Struct. Geol. – volume: 90 start-page: 1167 year: 1995 end-page: 1196 ident: b0165 article-title: Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta publication-title: Econ. Geol. – volume: 94 start-page: 405 year: 1999 end-page: 422 ident: b0370 article-title: Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in carlintype deposits publication-title: Econ. Geol. – volume: 171 start-page: 1 year: 2016 end-page: 17 ident: b0390 article-title: Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit publication-title: Chile. Contrib. Mineral. Petrol. Contrib. Mineral. Petrol. – volume: 110 start-page: 1389 year: 2015 end-page: 1410 ident: b0145 article-title: Trace element content of sedimentary pyrite in black shales publication-title: Econ. Geol. – reference: Jiang, H.J., 2022. Ore genesis and exploration application of the Huangniping Au deposit in northern Longmenshan orogenic belt. Doctor degree, University of Chinese Academy of Sciences (in Chinese with English abstract). – reference: Kou, S.L., Liu, J., Wang, Z.B., Yang, W., Zhang, Y.X., He, J.l., Tian, Y., Pan, Y., Chen, H., Li, L., 2024. Fluid inclusion and H-O isotopic studies of the Xinjiazui Gold Deposit in Back-Longmenshan Tectonic Belt. Geoscience, (in Chinese with English abstract), under review. – volume: 72 start-page: 2919 year: 2008 end-page: 2933 ident: b0100 article-title: A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance publication-title: Geochim. Cosmochim. Acta – volume: 161 year: 2023 ident: b0255 article-title: LA–ICP–MS U–Pb geochronology and geological significance of two types of monazite in the Xinjiazui gold deposit, northwestern margin of Yangtze Block publication-title: China. Ore Geol. Rev. – volume: 257 start-page: 34 year: 2008 end-page: 43 ident: b0270 article-title: In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard publication-title: Chem. Geol. – volume: 97 start-page: 1515 year: 2012 end-page: 1518 ident: b0070 article-title: Gold-telluride nanoparticles revealed in arsenic-free pyrite publication-title: Am. Miner. – volume: 104 start-page: 42 year: 2013 end-page: 62 ident: b0355 article-title: Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study publication-title: Geochim. Cosmochim. Acta – volume: 35 start-page: 243 year: 2015 ident: b0425 article-title: Discussion on the metallogenic potential of gold deposits in the Longmenshan structural belt publication-title: Acta. Mineral. Sin. – volume: 17 start-page: 27 year: 2010 end-page: 34 ident: b0055 article-title: On epizonogenism and genetic classification of hydrothermal deposits publication-title: Earth Sci. Front. – volume: 208 year: 2020 ident: b0110 article-title: An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China publication-title: Earth-Sci. Rev. – volume: 2 start-page: 228 year: 1967 end-page: 242 ident: b0275 article-title: Cobalt, nickel and selenium in sulphides as indicators of ore genesis publication-title: Mineral. Depos. – volume: 95 start-page: 1627 year: 2000 end-page: 1634 ident: b0315 article-title: Gilt by association? Origins of pyritic gold ores in the Victory mesothermal gold deposit publication-title: Western Australia: Econ. Geol. – reference: Kerrich, R., 1989. Geochemical evidence on the sources of fluids and solutes for shear zone hosted mesothermal Au deposits. In: Bursnall, J.T. (Ed.), Mineralization and Shear Zones. Geological Association of Canada Short Course 6, 129–197. – volume: 164 start-page: 33 year: 2018 end-page: 57 ident: b0455 article-title: The Longmenshan tectonic complex and adjacent tectonic units in the Eastern margin of the Tibetan Plateau: a review publication-title: J. Asian Earth Sci. – volume: 118 start-page: 1031 year: 2023 end-page: 1053 ident: b0025 article-title: Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District publication-title: Sudan. Econ. Geol. – volume: 111 start-page: 331 year: 2016 end-page: 353 ident: b0160 article-title: Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao trend, Youjiang basin, China: implications for paragenesis and source of sulfur publication-title: Econ. Geol. – volume: 14 start-page: 353 year: 1979 end-page: 374 ident: b0030 article-title: A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems publication-title: Mineral. Depos. – volume: 74 start-page: 3246 year: 2010 end-page: 3259 ident: b0405 article-title: Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis publication-title: Geochim. Cosmochim. Acta – volume: 259 start-page: 53 year: 2019 end-page: 68 ident: b0140 article-title: The formation mechanisms of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis publication-title: Geochim. Cosmochim. Acta – volume: 2019 start-page: 1 year: 2019 end-page: 23 ident: b0045 article-title: Geology, fluid inclusion, and H–O–S–Pb isotope constraints on the mineralization of the Xiejiagou gold deposit in the jiaodong peninsula publication-title: Geofluids – volume: 126 year: 2020 ident: b0500 article-title: Genesis of the Bangbu gold deposit in the southern Tibet: Evidenced from in-situ sulfur isotopes and trace element compositions of pyrite publication-title: Ore Geol. Rev. – volume: 38 start-page: 787 year: 2014 end-page: 801 ident: b0115 article-title: Characteristics of Tectonic Lithofacies in Dingjialin–Taiyangping–Dongjiayuan gold ore belt publication-title: Shaanxi and Sichuan Provinces. Geotecton. Metallogenia – volume: 26 start-page: 557 year: 2014 end-page: 575 ident: b0485 article-title: LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process publication-title: Gondw. Res. – volume: 49 start-page: 101 year: 2014 end-page: 117 ident: b0340 article-title: Lead isotope studies of the Guerrero composite terrane, west-central Mexico: Implications for ore genesis publication-title: Miner. Depos. – volume: 55 start-page: 271 year: 2022 end-page: 283 ident: b0430 article-title: The concept and application of element equivalent-concentrating: a case study for anomaly interpretation of soil survey from Zhongba Mining area, Ningqiang county publication-title: Shaanxi Province. Northwestern Geology – volume: 34 start-page: 1 year: 2020 end-page: 12 ident: b0265 article-title: Research on auriferous pyrite in hydrothermal gold deposit publication-title: China. Geoscience – volume: 30 start-page: 81 year: 2011 end-page: 87 ident: b0450 article-title: Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmenshan thrust belt publication-title: Eastern Tibetan Plateau. Tectonics – volume: 46 start-page: 7 year: 2018 end-page: 10 ident: b0240 article-title: Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit publication-title: Geology – start-page: 104 year: 1991 end-page: 132 ident: b0300 article-title: Phanerozoic gold deposits in tectonically active continental margins publication-title: Gold Metallogeny and Exploration – volume: 84 start-page: 171 year: 1989 end-page: 179 ident: b0010 article-title: High-resolution microscopy of gold in unoxidized ore from the Carlin mine publication-title: Nevada. Econ. Geol. – volume: 109 start-page: 457 year: 2014 end-page: 486 ident: b0415 article-title: Formation and deformation of pyrite and implications for gold mineralization in the El Callao District publication-title: Venezuela. Econ. Geol. – volume: 108 start-page: 1273 year: 2013 end-page: 1283 ident: b0080 article-title: Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements publication-title: Econ. Geol. – volume: 389 start-page: 209 year: 2014 end-page: 220 ident: b0210 article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution publication-title: Earth Planet. Sci. Lett. – volume: 246 start-page: 60 year: 2019 end-page: 85 ident: b0365 article-title: Geochemical and micro-textural fingerprints of boiling in pyrite publication-title: Geochim. Cosmochim. Acta – volume: 144 year: 2022 ident: b0385 article-title: Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis publication-title: Ore Geol. Rev. – volume: 67 start-page: 551 year: 1972 end-page: 578 ident: b0305 article-title: Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits publication-title: Econ. Geol. – volume: 69 start-page: 2781 year: 2005 end-page: 2796 ident: b0360 article-title: Solubility of gold in arsenian pyrite publication-title: Geochim. Cosmochim. Acta – volume: 36 start-page: 971 year: 2008 end-page: 974 ident: b0035 article-title: Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source publication-title: Geology – volume: 204 start-page: 224 year: 2019 end-page: 239 ident: b0040 article-title: Geology and ore-forming fluids of the Dayingezhuang gold deposit, Jiaodong Peninsula, eastern China: Implications for mineral exploration publication-title: J. Geochem. Explor. – volume: 45 start-page: 259 year: 2010 end-page: 280 ident: b0190 article-title: Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits publication-title: Mineral. Depos. – volume: 96 start-page: 269 year: 2018 end-page: 282 ident: b0175 article-title: A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes publication-title: Ore Geol. Rev. – volume: 2024 year: 2024 ident: b0470 article-title: Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Constraints from integrated deep seismic reflection and tectonics publication-title: Earth-Sci. Rev. – volume: 29 start-page: 445 year: 1994 end-page: 460 ident: b0295 article-title: Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold publication-title: Miner. Depos. – volume: 42 start-page: 383 year: 2014 end-page: 386 ident: b0335 article-title: Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit publication-title: Papua New Guinea. Geology – volume: 130 start-page: 1583 year: 2018 end-page: 1595 ident: b0150 article-title: Gold remobilization associated with Mississippi Valley-type fluids: a Pb isotope perspective publication-title: Geol. Soc. Am. Bull. – volume: 2017 start-page: 255 year: 2017 end-page: 262 ident: b0015 article-title: Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS publication-title: Int. J. Mass Spectrom. – year: 2008 ident: b0435 article-title: Geological characteristics and genesis of the Dingjialing–Taiyangping gold metallogenic belt publication-title: Master Degree – volume: 104 start-page: 635 year: 2009 end-page: 668 ident: b0205 article-title: Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted gold deposits publication-title: Econ. Geol. – volume: 173 start-page: 1 year: 2018 ident: b0235 article-title: Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: implication for ore-forming processes publication-title: Contrib. Mineral. Petrol. – reference: Su, Y.P. The tectonic settings and genesis of Neoproterozoic Liujiaping volcanic massive sulfide copper-zinc deposits, northwestern Yangtze Block. Doctor degree, the University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract). – volume: 25 start-page: 237 year: 2004 end-page: 257 ident: b0075 article-title: Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domainin and overlying Neoproterozoic Adelaidean sequences northeastern South Australia publication-title: Ore Geol. Rev. – volume: 9 start-page: 151 year: 1997 end-page: 190 ident: b0130 article-title: Gold deposits in metamorphic rocks of Alaska publication-title: Econ. Geol. – volume: 49 start-page: 101 issue: 1 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0340 article-title: Lead isotope studies of the Guerrero composite terrane, west-central Mexico: Implications for ore genesis publication-title: Miner. Depos. doi: 10.1007/s00126-013-0477-0 – volume: 104 start-page: 42 year: 2013 ident: 10.1016/j.oregeorev.2025.106745_b0355 article-title: Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.11.006 – volume: 72 start-page: 2919 issue: 12 year: 2008 ident: 10.1016/j.oregeorev.2025.106745_b0100 article-title: A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.03.014 – volume: 74 start-page: 3246 issue: 11 year: 2010 ident: 10.1016/j.oregeorev.2025.106745_b0405 article-title: Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.03.003 – volume: 45 start-page: 259 year: 2010 ident: 10.1016/j.oregeorev.2025.106745_b0190 article-title: Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits publication-title: Mineral. Depos. doi: 10.1007/s00126-009-0272-0 – start-page: 259 year: 1990 ident: 10.1016/j.oregeorev.2025.106745_b0135 article-title: Source of ore fluid and ore components—sulphur isotope studies – volume: 26 start-page: 2508 issue: 12 year: 2011 ident: 10.1016/j.oregeorev.2025.106745_b0325 article-title: Iolite: Freeware for the visualisation and processing of mass spectrometric data publication-title: J. Anal. At. Spectrom doi: 10.1039/c1ja10172b – volume: 17 start-page: 27 issue: 2 year: 2010 ident: 10.1016/j.oregeorev.2025.106745_b0055 article-title: On epizonogenism and genetic classification of hydrothermal deposits publication-title: Earth Sci. Front. – volume: 97 start-page: 1515 issue: 8 year: 2012 ident: 10.1016/j.oregeorev.2025.106745_b0070 article-title: Gold-telluride nanoparticles revealed in arsenic-free pyrite publication-title: Am. Miner. doi: 10.2138/am.2012.4207 – volume: 104 start-page: 897 issue: 7 year: 2009 ident: 10.1016/j.oregeorev.2025.106745_b0020 article-title: Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits publication-title: Econ. Geol. doi: 10.2113/econgeo.104.7.897 – year: 2024 ident: 10.1016/j.oregeorev.2025.106745_b0490 article-title: Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: evidence from Hg isotopes publication-title: Geology doi: 10.1130/G51871.1 – volume: 74 start-page: 41 issue: 1 year: 2004 ident: 10.1016/j.oregeorev.2025.106745_b0005 article-title: Variations in the compositional, textural and electrical properties of natural pyrite: a review publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2003.09.002 – volume: 259 start-page: 53 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0140 article-title: The formation mechanisms of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2019.05.035 – ident: 10.1016/j.oregeorev.2025.106745_b0375 – volume: 28 start-page: 1989 year: 1964 ident: 10.1016/j.oregeorev.2025.106745_b0400 article-title: Trace element abundances and the chondritic earth model publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(64)90142-5 – volume: 110 start-page: 1389 issue: 6 year: 2015 ident: 10.1016/j.oregeorev.2025.106745_b0145 article-title: Trace element content of sedimentary pyrite in black shales publication-title: Econ. Geol. doi: 10.2113/econgeo.110.6.1389 – volume: 24 start-page: 162 issue: 6 year: 2017 ident: 10.1016/j.oregeorev.2025.106745_b0215 article-title: Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: constraints from LA–ICP–MS trace elements of pyrite and pyrrhotite publication-title: Earth Sci. Front. – volume: 54 start-page: 1077 issue: 7 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0420 article-title: Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms publication-title: Miner. Depos. doi: 10.1007/s00126-018-0857-6 – volume: 94 start-page: 405 issue: 3 year: 1999 ident: 10.1016/j.oregeorev.2025.106745_b0370 article-title: Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in carlintype deposits publication-title: Econ. Geol. doi: 10.2113/gsecongeo.94.3.405 – volume: 36 start-page: 378 issue: 1 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0260 article-title: Geological characteristics and genesis of the Xinjiazui gold deposit in Back–Longmenshan orogenic belt publication-title: Geoscience – volume: 208 year: 2020 ident: 10.1016/j.oregeorev.2025.106745_b0110 article-title: An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103274 – volume: 127 start-page: 1831 year: 2015 ident: 10.1016/j.oregeorev.2025.106745_b0460 article-title: Structure, geochronology, and petrogenesis of the late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen publication-title: China. Geol. Soc. Am. Bull. doi: 10.1130/B31249.1 – volume: 67 start-page: 551 issue: 5 year: 1972 ident: 10.1016/j.oregeorev.2025.106745_b0305 article-title: Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits publication-title: Econ. Geol. doi: 10.2113/gsecongeo.67.5.551 – ident: 10.1016/j.oregeorev.2025.106745_b0185 – volume: 2 start-page: 228 year: 1967 ident: 10.1016/j.oregeorev.2025.106745_b0275 article-title: Cobalt, nickel and selenium in sulphides as indicators of ore genesis publication-title: Mineral. Depos. doi: 10.1007/BF00201918 – volume: 95 start-page: 1627 issue: 8 year: 2000 ident: 10.1016/j.oregeorev.2025.106745_b0315 article-title: Gilt by association? Origins of pyritic gold ores in the Victory mesothermal gold deposit publication-title: Western Australia: Econ. Geol. – volume: 104 start-page: 1487 issue: 10 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0345 article-title: Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit publication-title: China. Am. Mineral. doi: 10.2138/am-2019-6890 – volume: 2024 issue: 255 year: 2024 ident: 10.1016/j.oregeorev.2025.106745_b0470 article-title: Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Constraints from integrated deep seismic reflection and tectonics publication-title: Earth-Sci. Rev. – volume: 149 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0220 article-title: Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2022.105090 – year: 2008 ident: 10.1016/j.oregeorev.2025.106745_b0435 article-title: Geological characteristics and genesis of the Dingjialing–Taiyangping gold metallogenic belt – volume: 144 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0385 article-title: Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2022.104843 – ident: 10.1016/j.oregeorev.2025.106745_b0180 – volume: 90 start-page: 1167 year: 1995 ident: 10.1016/j.oregeorev.2025.106745_b0165 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.90.5.1167 – volume: 55 start-page: 271 issue: 2 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0430 article-title: The concept and application of element equivalent-concentrating: a case study for anomaly interpretation of soil survey from Zhongba Mining area, Ningqiang county publication-title: Shaanxi Province. Northwestern Geology – volume: 204 start-page: 224 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0040 article-title: Geology and ore-forming fluids of the Dayingezhuang gold deposit, Jiaodong Peninsula, eastern China: Implications for mineral exploration publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.06.001 – volume: 2017 start-page: 255 issue: 421 year: 2017 ident: 10.1016/j.oregeorev.2025.106745_b0015 article-title: Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2017.07.015 – volume: 176 start-page: 325 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0060 article-title: In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt publication-title: Central China. J. Asian Earth Sci. doi: 10.1016/j.jseaes.2019.02.017 – volume: 26 start-page: 557 issue: 2 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0485 article-title: LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process publication-title: Gondw. Res. doi: 10.1016/j.gr.2013.11.003 – volume: 164 start-page: 33 year: 2018 ident: 10.1016/j.oregeorev.2025.106745_b0455 article-title: The Longmenshan tectonic complex and adjacent tectonic units in the Eastern margin of the Tibetan Plateau: a review publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2018.06.017 – volume: 111 start-page: 331 issue: 2 year: 2016 ident: 10.1016/j.oregeorev.2025.106745_b0160 article-title: Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao trend, Youjiang basin, China: implications for paragenesis and source of sulfur publication-title: Econ. Geol. doi: 10.2113/econgeo.111.2.331 – volume: 126 year: 2020 ident: 10.1016/j.oregeorev.2025.106745_b0500 article-title: Genesis of the Bangbu gold deposit in the southern Tibet: Evidenced from in-situ sulfur isotopes and trace element compositions of pyrite publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2020.103591 – volume: 12 start-page: 688 issue: 6 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0250 article-title: Composition and geochemical characteristics of pyrite and quartz: Constraints on the origin of the Xinjiazui gold deposit, Northwestern margin of the Yangtze Block publication-title: China. Minerals – volume: 13 start-page: 69 year: 2000 ident: 10.1016/j.oregeorev.2025.106745_b0320 article-title: Proterozoic lode gold and (iron)–copper–gold deposits—a comparison of Australian and global examples publication-title: Econ. Geol. – volume: 25 start-page: 237 issue: 3 year: 2004 ident: 10.1016/j.oregeorev.2025.106745_b0075 article-title: Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domainin and overlying Neoproterozoic Adelaidean sequences northeastern South Australia publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2004.04.003 – volume: 389 start-page: 209 issue: 1 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0210 article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.12.020 – volume: 34 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.oregeorev.2025.106745_b0265 article-title: Research on auriferous pyrite in hydrothermal gold deposit publication-title: China. Geoscience – volume: 38 start-page: 787 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0115 article-title: Characteristics of Tectonic Lithofacies in Dingjialin–Taiyangping–Dongjiayuan gold ore belt publication-title: Shaanxi and Sichuan Provinces. Geotecton. Metallogenia – volume: 46 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.oregeorev.2025.106745_b0240 article-title: Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit publication-title: Geology doi: 10.1130/G39504.1 – volume: 47 start-page: 290 issue: 1 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0350 article-title: Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong District: Implications for mechanism of gold enrichment publication-title: Earth Sci. – ident: 10.1016/j.oregeorev.2025.106745_b0170 – volume: 94 start-page: 391 issue: 2–3 year: 2009 ident: 10.1016/j.oregeorev.2025.106745_b0090 article-title: Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite publication-title: Am. Miner. doi: 10.2138/am.2009.3116 – volume: 57 start-page: 1428 issue: 12 year: 2020 ident: 10.1016/j.oregeorev.2025.106745_b0050 article-title: Ore geology, fluid inclusion, and stable isotope constraints on the origin of the Damoqujia gold deposit, Jiaodong Peninsula publication-title: China. Can. J. Earth Sci. doi: 10.1139/cjes-2018-0247 – ident: 10.1016/j.oregeorev.2025.106745_b0310 – volume: 233 start-page: 2 year: 2015 ident: 10.1016/j.oregeorev.2025.106745_b0125 article-title: Orogenic gold: Common or evolving fluid and metal sources through time (Review) publication-title: Lithos doi: 10.1016/j.lithos.2015.07.011 – volume: 42 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.oregeorev.2025.106745_b0095 article-title: Trace metal nanoparticles in pyrite publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2011.03.003 – volume: 84 start-page: 171 issue: 1 year: 1989 ident: 10.1016/j.oregeorev.2025.106745_b0010 article-title: High-resolution microscopy of gold in unoxidized ore from the Carlin mine publication-title: Nevada. Econ. Geol. doi: 10.2113/gsecongeo.84.1.171 – volume: 36 start-page: 971 issue: 12 year: 2008 ident: 10.1016/j.oregeorev.2025.106745_b0035 article-title: Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source publication-title: Geology doi: 10.1130/G25001A.1 – volume: 104 start-page: 635 issue: 5 year: 2009 ident: 10.1016/j.oregeorev.2025.106745_b0205 article-title: Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted gold deposits publication-title: Econ. Geol. doi: 10.2113/gsecongeo.104.5.635 – volume: 108 start-page: 1273 issue: 6 year: 2013 ident: 10.1016/j.oregeorev.2025.106745_b0080 article-title: Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements publication-title: Econ. Geol. doi: 10.2113/econgeo.108.6.1273 – volume: 257 start-page: 34 year: 2008 ident: 10.1016/j.oregeorev.2025.106745_b0270 article-title: In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.08.004 – volume: 140 start-page: 644 issue: 1 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0085 article-title: The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.05.045 – volume: 399 start-page: 44 issue: 1 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0440 article-title: δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.05.004 – volume: 113 start-page: 193 issue: 1 year: 2018 ident: 10.1016/j.oregeorev.2025.106745_b0380 article-title: Evolution of pyrite trace element compositions from porphyry style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing publication-title: Econ. Geol. doi: 10.5382/econgeo.2018.4548 – ident: 10.1016/j.oregeorev.2025.106745_b0065 doi: 10.2113/gscanmin.43.3.951 – volume: 96 start-page: 269 year: 2018 ident: 10.1016/j.oregeorev.2025.106745_b0175 article-title: A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2017.07.023 – volume: 36 start-page: 219 year: 2015 ident: 10.1016/j.oregeorev.2025.106745_b0105 publication-title: Gondw. Res. doi: 10.1016/j.gr.2015.10.003 – volume: 161 year: 2023 ident: 10.1016/j.oregeorev.2025.106745_b0255 article-title: LA–ICP–MS U–Pb geochronology and geological significance of two types of monazite in the Xinjiazui gold deposit, northwestern margin of Yangtze Block publication-title: China. Ore Geol. Rev. – volume: 99 start-page: 257 issue: 2 year: 2004 ident: 10.1016/j.oregeorev.2025.106745_b0285 article-title: Polymetallic Mineralization at the Browns Deposit, Rum Jungle Mineral Field, Northern Territory publication-title: Australia. Econ. Geol. doi: 10.2113/gsecongeo.99.2.257 – volume: 145 year: 2021 ident: 10.1016/j.oregeorev.2025.106745_b0510 article-title: The role of structural reactivation for gold mineralization in northeastern Hunan Province publication-title: South China. J. Struct. Geol. – volume: 109 start-page: 457 issue: 2 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0415 article-title: Formation and deformation of pyrite and implications for gold mineralization in the El Callao District publication-title: Venezuela. Econ. Geol. doi: 10.2113/econgeo.109.2.457 – volume: 9 start-page: 151 year: 1997 ident: 10.1016/j.oregeorev.2025.106745_b0130 article-title: Gold deposits in metamorphic rocks of Alaska publication-title: Econ. Geol. – volume: 173 start-page: 1 issue: 9 year: 2018 ident: 10.1016/j.oregeorev.2025.106745_b0235 article-title: Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: implication for ore-forming processes publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s00410-018-1501-2 – volume: 12 start-page: 1 year: 1999 ident: 10.1016/j.oregeorev.2025.106745_b0410 article-title: Pb isotopes, ore deposits, and metallogenic terranes publication-title: Econ. Geol. – volume: 2 start-page: 88 issue: 2 year: 2000 ident: 10.1016/j.oregeorev.2025.106745_b0155 article-title: Geological characteristics if iron cap gold deposit and ore prospect at Liujiaping publication-title: Gold Journal – volume: 63 start-page: 3373 year: 1999 ident: 10.1016/j.oregeorev.2025.106745_b0290 article-title: Chemical influences on trace metal–sulfide interactions in anoxic sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00258-6 – volume: 27 start-page: 700 issue: 4 year: 2012 ident: 10.1016/j.oregeorev.2025.106745_b0330 article-title: CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment publication-title: J. Anal. At. Spectrom doi: 10.1039/c2ja10383d – ident: 10.1016/j.oregeorev.2025.106745_b0395 doi: 10.1016/j.gca.2017.01.044 – year: 2012 ident: 10.1016/j.oregeorev.2025.106745_b0505 – volume: 246 start-page: 60 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0365 article-title: Geochemical and micro-textural fingerprints of boiling in pyrite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2018.11.034 – year: 2009 ident: 10.1016/j.oregeorev.2025.106745_b0245 – ident: 10.1016/j.oregeorev.2025.106745_b0195 – volume: 111 start-page: 105 issue: 1 year: 2016 ident: 10.1016/j.oregeorev.2025.106745_b0465 article-title: Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment publication-title: Econ. Geol. doi: 10.2113/econgeo.111.1.105 – volume: 118 start-page: 1031 issue: 5 year: 2023 ident: 10.1016/j.oregeorev.2025.106745_b0025 article-title: Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District publication-title: Sudan. Econ. Geol. doi: 10.5382/econgeo.5001 – volume: 14 start-page: 353 year: 1979 ident: 10.1016/j.oregeorev.2025.106745_b0030 article-title: A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems publication-title: Mineral. Depos. doi: 10.1007/BF00206365 – volume: 106 start-page: 331 issue: 3 year: 2011 ident: 10.1016/j.oregeorev.2025.106745_b0200 article-title: A carbonaceous sedimentary source-rock model for Carlin-type and Orogenic gold deposits publication-title: Econ. Geol. doi: 10.2113/econgeo.106.3.331 – volume: 122 year: 2020 ident: 10.1016/j.oregeorev.2025.106745_b0230 article-title: The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: the links between nanoscale gold enrichment and crystal distortion publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2020.103495 – volume: 30 start-page: 81 issue: 6 year: 2011 ident: 10.1016/j.oregeorev.2025.106745_b0450 article-title: Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmenshan thrust belt publication-title: Eastern Tibetan Plateau. Tectonics – volume: 29 start-page: 445 issue: 6 year: 1994 ident: 10.1016/j.oregeorev.2025.106745_b0295 article-title: Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold publication-title: Miner. Depos. doi: 10.1007/BF00193506 – start-page: 104 year: 1991 ident: 10.1016/j.oregeorev.2025.106745_b0300 article-title: Phanerozoic gold deposits in tectonically active continental margins publication-title: Gold Metallogeny and Exploration doi: 10.1007/978-1-4613-0497-5_4 – volume: 171 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.oregeorev.2025.106745_b0390 article-title: Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit publication-title: Chile. Contrib. Mineral. Petrol. Contrib. Mineral. Petrol. – volume: 107 start-page: 1910 issue: 10 year: 2022 ident: 10.1016/j.oregeorev.2025.106745_b0495 article-title: Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: an example from the Jiguanzui deposit publication-title: Eastern China. Am. Mineral. doi: 10.2138/am-2022-8118 – volume: 35 start-page: 243 issue: S1 year: 2015 ident: 10.1016/j.oregeorev.2025.106745_b0425 article-title: Discussion on the metallogenic potential of gold deposits in the Longmenshan structural belt publication-title: Acta. Mineral. Sin. – ident: 10.1016/j.oregeorev.2025.106745_b0445 – volume: 69 start-page: 2781 issue: 11 year: 2005 ident: 10.1016/j.oregeorev.2025.106745_b0360 article-title: Solubility of gold in arsenian pyrite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.01.011 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0045 article-title: Geology, fluid inclusion, and H–O–S–Pb isotope constraints on the mineralization of the Xiejiagou gold deposit in the jiaodong peninsula publication-title: Geofluids doi: 10.1155/2019/3726465 – volume: 42 start-page: 383 issue: 5 year: 2014 ident: 10.1016/j.oregeorev.2025.106745_b0335 article-title: Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit publication-title: Papua New Guinea. Geology – volume: 25 start-page: 746 issue: 5 year: 2019 ident: 10.1016/j.oregeorev.2025.106745_b0480 article-title: Rethinking of the Qinling Orogen publication-title: Journal of Geomechanics – volume: 130 start-page: 1583 year: 2018 ident: 10.1016/j.oregeorev.2025.106745_b0150 article-title: Gold remobilization associated with Mississippi Valley-type fluids: a Pb isotope perspective publication-title: Geol. Soc. Am. Bull. doi: 10.1130/B31901.1 – ident: 10.1016/j.oregeorev.2025.106745_b0280 doi: 10.2113/gsecongeo.104.8.1111 |
SSID | ssj0006001 |
Score | 2.4217792 |
Snippet | [Display omitted]
•Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106745 |
SubjectTerms | In-situ S–Pb isotopes In-situ trace element Pyrite Xinjiazui gold deposit Yangtze Block |
Title | Trace element, sulfur and lead isotopes in pyrite of Xinjiazui gold deposit in the northwestern margin of Yangtze Block, China: Implications for ore–forming processes |
URI | https://dx.doi.org/10.1016/j.oregeorev.2025.106745 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIiQ4ICggSmE1B45N19l489NbqShbEL1ApeUUjf-qlCWJstlDe6h4B16C5-JJGNtZ2EpIHDgm8iSOx5rvc_TNDGOv8gwJNo2JFHIbCZuqqOAyi7AQ01xqtML_yv5wls7Oxbv5dL7Fjte5ME5WOcT-ENN9tB7ujIfVHLdVNf7o6ojESUpHHE-EfQa7yNwuP7j5I_NwgB7qexeRG31L49V0dDRvXLOXCWH_gSun5vKa_oZQG6hz8pA9GOgiHIUZPWJbpt5h9zeKCO6wu299c96rx-wHAY8yYIIifB-Wq4VddYC1hgW5Eqpl0zetWUJVQ3vVEdmExsK8qi8rvF5VcNEsNGjjdVxuDHFDqH279VBOAb5iRy92Rp-xvuivDbwmLPyyD74L9yGcbsjTgdgw0Ef__Pbd8WKaKrQhKcEsn7DzkzefjmfR0IkhUkk86SOiXZaWNitsijY1CcZIgSHXWmVapTrnMi6sFJYjptymHJWNDVd8apXMrdTJU7ZdN7V5xoAjF5ihNVJLEQtdJJLbiY6tpCfEMt9lfL36ZRsKbpRrJdpl-dthpXNYGRy2yw7XXipv7Z2SYOFfxs__x3iP3XNXQXP2gm333cq8JJLSy5HfhSN25-j0_exs5I_6vwB2du9j |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1VqVBhgaAFtVDgLrqsyTiejO3uSkVJ-simrRRW1jwrl2BbjrNoV_wDP9Hv4ku443GqVEJi0a3t68fc0T1nrDPnErKXxAJh05hACWoDZrkKUirjQKRsmEgtLGt_ZZ9P-OiKnUyH0zVytNwL42SVXe33Nb2t1t2Rfjea_SrP-xfORySMOC5xWiKMS6B150417JH1w_HpaPJQkB2me4vvNHABj2ReZY2r89L1exkg_H92jmpua9O_QGoFeI5fkZcdY4RD_1KvyZopNsmLFR_BTfLsW9uf93aL3CP2KAPGi8L3Yb6Y2UUNotAww2xCPi-bsjJzyAuobmvkm1BamObFTS7uFjlclzMN2rRSLncN0kMo2o7r3lEBfooaH-yCvoviurkz8AXh8Mc-tI24D2C8olAHJMSAH_3n129HjfFVofL7Esz8Dbk6_np5NAq6ZgyBisJBEyDzsizmcWq5sNxEIhRYGxKtVawV1wmVYWols1QITi2nQtnQUEWHVsnESh29Jb2iLMw2ASooE7GwRmrJQqbTSFI70KGVeIdQJjuELkc_q7znRrYUo91kDwnLXMIyn7AdcrDMUvZo-mSIDP8LfveU4E9kY3R5fpadjSen78lzd8ZL0HZJr6kX5gNylkZ-7ObkX_oj8R8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trace+element%2C+sulfur+and+lead+isotopes+in+pyrite+of+Xinjiazui+gold+deposit+in+the+northwestern+margin+of+Yangtze+Block%2C+China%3A+Implications+for+ore%E2%80%93forming+processes&rft.jtitle=Ore+geology+reviews&rft.au=Liu%2C+Ji&rft.au=Yang%2C+Li-Qiang&rft.au=Kou%2C+Shao-Lei&rft.au=Bao%2C+Xin-Shang&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0169-1368&rft.volume=184&rft_id=info:doi/10.1016%2Fj.oregeorev.2025.106745&rft.externalDocID=S0169136825003051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon |