Trace element, sulfur and lead isotopes in pyrite of Xinjiazui gold deposit in the northwestern margin of Yangtze Block, China: Implications for ore–forming processes

[Display omitted] •Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from metamorphic basement.•Ore-forming is coupled with the Back-Longmenshan tectonic belt in the Mesozoic. The ore-forming processes and sources of m...

Full description

Saved in:
Bibliographic Details
Published inOre geology reviews Vol. 184; p. 106745
Main Authors Liu, Ji, Yang, Li-Qiang, Kou, Shao-Lei, Bao, Xin-Shang, Yang, Wei, Shen, Guan-Wen, Wang, Zhan-Bin, Zhang, Yi-Xiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from metamorphic basement.•Ore-forming is coupled with the Back-Longmenshan tectonic belt in the Mesozoic. The ore-forming processes and sources of material in hydrothermal gold deposits remain pivotal subjects in economic geology, with recent studies underscoring their critical importance. The Xinjiazui gold deposit, located on the northwestern margin of the Yangtze Block, holds a gold reserve of 3.7 tons. Structurally, the ore bodies are constrained by brittle-ductile shear zones, hosted within the black rock series, and spatially associated with quartz diorite dikes, that the origin of its ore-forming materials and the specific metallogenic processes remain contentious, which substantially restricts the understanding of regional gold mineralization regularities. Utilizing advanced analytical techniques such as EPMA and LA–ICP–MS, in-situ trace element and isotopic analyses on pyrite from the Xinjiazui deposit were conducted to elucidate these debates. Pyrite can be divided into six types, including syn-sedimentary pyrite appearing in framboidal (Py0a) and euhedral granular texture (Py0 and Py0b) within surrounding rocks; and, the pyrite is mainly concentrated in Stage I (Py1a-Py1b) and Stage II (Py2) of the hydrothermal mineralization epoch. Both Py1a and Py1b also exhibit low levels of Au (≤0.25 ppm, Avg) and As(< 500 ppm, Avg), as well as similar Pb isotopic compositions (206Pb/204Pb: 19.57 – 19.98, 207Pb/204Pb: 15.74 – 15.86, 208Pb/204Pb: 38.40 – 38.77) that are considerably overlapped with the hosting Cambrian carbonaceous siliceous slate, yet they have distinct S isotopic compositions (Py1a: 19.18 to 19.43 ‰, Py1b: 11.15 to 12.19 ‰) reflect derivation from different sources, consistent to their respective hosting rocks (Cambrian slate vs. the veins from stage II). In contrast, Py2 shows significantly increased contents of Au and As (3.54 ppm, 10423 ppm, Avg), and its Pb isotopic composition (206Pb/204Pb: 18.12 – 18.82, 207Pb/204Pb: 15.59 – 15.83, 208Pb/204Pb: 38.38 – 39.14) is consistent with the Silurian carbonaceous phyllite and quartz diorite dikes. The δ34S isotope of Py2 (8.79 to 12.47 ‰) overlaps with the Neoproterozoic deep metamorphic basement, Silurian carbonaceous phyllite and quartz diorite dikes. Despite this isotopic similarity, the low contents of W, Sn, Mo, and Bi in Py2 related to magmatic rocks, along with the absence of ore minerals in quartz–diorite dike breccia, suggests a weak genetic link between the Xinjiazui gold deposit and quartz diorite dikes. Moreover, the low background gold content in the Cambrian slate (5.46 ppb) and Silurian phyllite (5.13 ppb), both near the Clark value (4.0 ppb), indicates the black rock series (the above-mentioned slate and phyllite) are unlikely to be the primary sources for gold. Instead, the Neoproterozoic deep metamorphic basement likely contributed the majority of S and Au to the gold mineralization, and variations in trace elements, S and Pb isotopes across the stages I and II of mineralization may result from progressive evolution of basement-derived fluids. Increasing gold content with decreasing fluid temperature from Stage I to Stage II further suggests temperature played a key role in gold precipitation. Overall, ore formation at the Xinjiazui gold deposit resulted from a single-source fluid system evolving through multiple stages linked to regional tectonic transitions in the Mesozoic.
AbstractList [Display omitted] •Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from metamorphic basement.•Ore-forming is coupled with the Back-Longmenshan tectonic belt in the Mesozoic. The ore-forming processes and sources of material in hydrothermal gold deposits remain pivotal subjects in economic geology, with recent studies underscoring their critical importance. The Xinjiazui gold deposit, located on the northwestern margin of the Yangtze Block, holds a gold reserve of 3.7 tons. Structurally, the ore bodies are constrained by brittle-ductile shear zones, hosted within the black rock series, and spatially associated with quartz diorite dikes, that the origin of its ore-forming materials and the specific metallogenic processes remain contentious, which substantially restricts the understanding of regional gold mineralization regularities. Utilizing advanced analytical techniques such as EPMA and LA–ICP–MS, in-situ trace element and isotopic analyses on pyrite from the Xinjiazui deposit were conducted to elucidate these debates. Pyrite can be divided into six types, including syn-sedimentary pyrite appearing in framboidal (Py0a) and euhedral granular texture (Py0 and Py0b) within surrounding rocks; and, the pyrite is mainly concentrated in Stage I (Py1a-Py1b) and Stage II (Py2) of the hydrothermal mineralization epoch. Both Py1a and Py1b also exhibit low levels of Au (≤0.25 ppm, Avg) and As(< 500 ppm, Avg), as well as similar Pb isotopic compositions (206Pb/204Pb: 19.57 – 19.98, 207Pb/204Pb: 15.74 – 15.86, 208Pb/204Pb: 38.40 – 38.77) that are considerably overlapped with the hosting Cambrian carbonaceous siliceous slate, yet they have distinct S isotopic compositions (Py1a: 19.18 to 19.43 ‰, Py1b: 11.15 to 12.19 ‰) reflect derivation from different sources, consistent to their respective hosting rocks (Cambrian slate vs. the veins from stage II). In contrast, Py2 shows significantly increased contents of Au and As (3.54 ppm, 10423 ppm, Avg), and its Pb isotopic composition (206Pb/204Pb: 18.12 – 18.82, 207Pb/204Pb: 15.59 – 15.83, 208Pb/204Pb: 38.38 – 39.14) is consistent with the Silurian carbonaceous phyllite and quartz diorite dikes. The δ34S isotope of Py2 (8.79 to 12.47 ‰) overlaps with the Neoproterozoic deep metamorphic basement, Silurian carbonaceous phyllite and quartz diorite dikes. Despite this isotopic similarity, the low contents of W, Sn, Mo, and Bi in Py2 related to magmatic rocks, along with the absence of ore minerals in quartz–diorite dike breccia, suggests a weak genetic link between the Xinjiazui gold deposit and quartz diorite dikes. Moreover, the low background gold content in the Cambrian slate (5.46 ppb) and Silurian phyllite (5.13 ppb), both near the Clark value (4.0 ppb), indicates the black rock series (the above-mentioned slate and phyllite) are unlikely to be the primary sources for gold. Instead, the Neoproterozoic deep metamorphic basement likely contributed the majority of S and Au to the gold mineralization, and variations in trace elements, S and Pb isotopes across the stages I and II of mineralization may result from progressive evolution of basement-derived fluids. Increasing gold content with decreasing fluid temperature from Stage I to Stage II further suggests temperature played a key role in gold precipitation. Overall, ore formation at the Xinjiazui gold deposit resulted from a single-source fluid system evolving through multiple stages linked to regional tectonic transitions in the Mesozoic.
ArticleNumber 106745
Author Liu, Ji
Shen, Guan-Wen
Bao, Xin-Shang
Kou, Shao-Lei
Yang, Li-Qiang
Wang, Zhan-Bin
Yang, Wei
Zhang, Yi-Xiang
Author_xml – sequence: 1
  givenname: Ji
  surname: Liu
  fullname: Liu, Ji
  organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China
– sequence: 2
  givenname: Li-Qiang
  surname: Yang
  fullname: Yang, Li-Qiang
  email: lqyang@cugb.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China
– sequence: 3
  givenname: Shao-Lei
  surname: Kou
  fullname: Kou, Shao-Lei
  organization: Technology Innovation Center for Gold Ore Exploration, Xi’an Mineral Resources Survey, China Geological Survey, Xi’an 710100 Shaanxi, PR China
– sequence: 4
  givenname: Xin-Shang
  surname: Bao
  fullname: Bao, Xin-Shang
  organization: School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, PR China
– sequence: 5
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China
– sequence: 6
  givenname: Guan-Wen
  surname: Shen
  fullname: Shen, Guan-Wen
  organization: State Key Laboratory of Geological Processes and Mineral Resources, Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China
– sequence: 7
  givenname: Zhan-Bin
  surname: Wang
  fullname: Wang, Zhan-Bin
  organization: Technology Innovation Center for Gold Ore Exploration, Xi’an Mineral Resources Survey, China Geological Survey, Xi’an 710100 Shaanxi, PR China
– sequence: 8
  givenname: Yi-Xiang
  surname: Zhang
  fullname: Zhang, Yi-Xiang
  organization: Technology Innovation Center for Gold Ore Exploration, Xi’an Mineral Resources Survey, China Geological Survey, Xi’an 710100 Shaanxi, PR China
BookMark eNqFUEtOAzEMzaJItIUz4AO0JZlpMy07qPhJSGyKBKsoTZxpyjQZJSkIVtyBS3AuTkKqIrZsbOvZ7-n59UjHeYeEnDA6YpTx0_XIB6wxl5dRQYtJRnk1nnRIN29nQ1by6SHpxbimlHJKWZd8LYJUCNjgBl0aQNw2ZhtAOg0NSg02-uRbjGAdtG_BJgRv4NG6tZXvWwu1bzRobH20aXeTVgjOh7R6xZgwONjIUGc8k56kq9M7wkXj1fMA5ivr5BncbtrGKpmsdxGMD5DNf3985mljXQ1t8ApjxHhEDoxsIh7_9j55uLpczG-Gd_fXt_Pzu6EqWZGGRVmYccWrmeHScCwlkyVlU61VpRXXU7pkM7McGyolp4ZTqQxDqujEqOXULHXZJ9VeVwUfY0Aj2mDzE2-CUbELWazFX8hiF7LYh5yZ53smZnsvFoOIyqJTqG1AlYT29l-NH5cclHU
Cites_doi 10.1007/s00126-013-0477-0
10.1016/j.gca.2012.11.006
10.1016/j.gca.2008.03.014
10.1016/j.gca.2010.03.003
10.1007/s00126-009-0272-0
10.1039/c1ja10172b
10.2138/am.2012.4207
10.2113/econgeo.104.7.897
10.1130/G51871.1
10.1016/j.minpro.2003.09.002
10.1016/j.gca.2019.05.035
10.1016/0016-7037(64)90142-5
10.2113/econgeo.110.6.1389
10.1007/s00126-018-0857-6
10.2113/gsecongeo.94.3.405
10.1016/j.earscirev.2020.103274
10.1130/B31249.1
10.2113/gsecongeo.67.5.551
10.1007/BF00201918
10.2138/am-2019-6890
10.1016/j.oregeorev.2022.105090
10.1016/j.oregeorev.2022.104843
10.2113/gsecongeo.90.5.1167
10.1016/j.gexplo.2019.06.001
10.1016/j.ijms.2017.07.015
10.1016/j.jseaes.2019.02.017
10.1016/j.gr.2013.11.003
10.1016/j.jseaes.2018.06.017
10.2113/econgeo.111.2.331
10.1016/j.oregeorev.2020.103591
10.1016/j.oregeorev.2004.04.003
10.1016/j.epsl.2013.12.020
10.1130/G39504.1
10.2138/am.2009.3116
10.1139/cjes-2018-0247
10.1016/j.lithos.2015.07.011
10.1016/j.oregeorev.2011.03.003
10.2113/gsecongeo.84.1.171
10.1130/G25001A.1
10.2113/gsecongeo.104.5.635
10.2113/econgeo.108.6.1273
10.1016/j.chemgeo.2008.08.004
10.1016/j.gca.2014.05.045
10.1016/j.epsl.2014.05.004
10.5382/econgeo.2018.4548
10.2113/gscanmin.43.3.951
10.1016/j.oregeorev.2017.07.023
10.1016/j.gr.2015.10.003
10.2113/gsecongeo.99.2.257
10.2113/econgeo.109.2.457
10.1007/s00410-018-1501-2
10.1016/S0016-7037(99)00258-6
10.1039/c2ja10383d
10.1016/j.gca.2017.01.044
10.1016/j.gca.2018.11.034
10.2113/econgeo.111.1.105
10.5382/econgeo.5001
10.1007/BF00206365
10.2113/econgeo.106.3.331
10.1016/j.oregeorev.2020.103495
10.1007/BF00193506
10.1007/978-1-4613-0497-5_4
10.2138/am-2022-8118
10.1016/j.gca.2005.01.011
10.1155/2019/3726465
10.1130/B31901.1
10.2113/gsecongeo.104.8.1111
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.oregeorev.2025.106745
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
ExternalDocumentID 10_1016_j_oregeorev_2025_106745
S0169136825003051
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
6OB
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
RIG
ID FETCH-LOGICAL-c312t-232f47679f6af6e3a1a3018ddc7dc6d80b19fb4f0aa60f60acf1e0c05fcb8fbd3
IEDL.DBID .~1
ISSN 0169-1368
IngestDate Wed Jul 30 23:58:57 EDT 2025
Sat Aug 23 17:13:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords In-situ S–Pb isotopes
In-situ trace element
Pyrite
Xinjiazui gold deposit
Yangtze Block
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-232f47679f6af6e3a1a3018ddc7dc6d80b19fb4f0aa60f60acf1e0c05fcb8fbd3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0169136825003051
ParticipantIDs crossref_primary_10_1016_j_oregeorev_2025_106745
elsevier_sciencedirect_doi_10_1016_j_oregeorev_2025_106745
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Ore geology reviews
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Simon, Kesler, Chryssoulis (b0370) 1999; 94
Partington, Williams (b0320) 2000; 13
Liu, Yang, Zhang, Kou, Yang, Wang, Tian (b0260) 2022; 36
Jiang, H.J., 2022. Ore genesis and exploration application of the Huangniping Au deposit in northern Longmenshan orogenic belt. Doctor degree, University of Chinese Academy of Sciences (in Chinese with English abstract).
Cook, Ciobanu, Meria (b0080) 2013; 108
Chai, Zhang, Hou, Zhang, Dong (b0050) 2020; 57
Chen, Yuan, Chen, Bao, Zhu, Liang (b0060) 2019; 176
Ohmoto (b0305) 1972; 67
Yang, Deng, Dilek, Qiu, Ji, Li, Taylor, Yu (b0460) 2015; 127
Gregory, Large, Halpin, Baturina, Lyons, Wu, Danyushevsky, Sack, Chappaz, Maslennikov, Bull (b0145) 2015; 110
Wei (b0435) 2008
Goldfarb, Groves (b0125) 2015; 233
Zheng, Sun, Li, Jeon, Zhou (b0500) 2020; 126
Chai, Hou, Zhang, Dong (b0045) 2019; 2019
Deng, Yang, Groves, Zhang, Qiu, Wang (b0110) 2020; 208
Yan, Zhou, Li, Wei (b0450) 2011; 30
Wang, Wang, Zhu, Xu (b0425) 2015; 35
Li, Wang, Weng, Dong, Yang, Wang, Deng (b0220) 2022; 149
Voute, Hagemann, Evans, Villanes (b0420) 2019; 54
Chen (b0055) 2010; 17
Zhang, Chen, Cheng, Tian, Zhang, Olin (b0495) 2022; 107
Deng, Liu, Wang, Pan (b0105) 2015; 36
Clark, Grguric, Mumm (b0075) 2004; 25
Mumin, Fleet, Chryssoulis (b0295) 1994; 29
Nesbitt (b0300) 1991
Qiu, Yu, Wu, Geng, Ge, Gou, Taylor (b0345) 2019; 104
Fu, Fang, Liu, Fan, Guo, Jiang (b0115) 2014; 38
Maslennikov, V.V., Maslennikova, S.P., Large, R.R., L.V. Danyushevsky, L.V., 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 104(8), 1111–1141.
Tanner, Henley, Mavrogenes, Holden (b0390) 2016; 171
Paul, Paton, Norris, Woodhead, Hellstrom, Hergt, Greig (b0330) 2012; 27
Yang, Deng, Zhang, Zhao, Santosh, Yu, Yang, Li, Shan, Xie, Liu, Gao, Song, He, Li, Wang, Wang (b0470) 2024; 2024
Reich, Kesler, Utsunomiya, Palenik, Chryssoulis, Ewing (b0360) 2005; 69
Yang, Deng, Wang, Guo, Li, Groves, Danyushevsky, Zhang, Zheng, Zhao (b0465) 2016; 111
Zhang, Qiu, Yin, Long, Feng, Yu, Gao, Deng (b0490) 2024
Barker, Hickey, Cline, Dipple, Kilburn, Vaughan, Longo (b0020) 2009; 104
Hou, Peng, Ding, Zhang, Zhu, Wu, Wu, Ouyang (b0160) 2016; 111
Liu, Bao, Gao, Yang, Kou, Yang, Wang, He, Zhang, Chen (b0250) 2022; 12
Reich, Deditius, Chryssoulis, Li, Ma, Parada, Barra, Florian Mittermayr (b0355) 2013; 104
Yan, Zhou, Qiu, Wells, Mu, Xu (b0455) 2018; 164
Li (b0245) 2009
Zhou, Xu, Dong, Chi, Deng, Cai, Ning, Wang (b0510) 2021; 145
Kerrich, R., 1987. Stable isotope geochemistry of Au–Ag vein deposits in metamorphic rocks. In: Kyser, T.K. (Ed.), Stable Isotope Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada Short Course 13, 287–336.
Morse, Luther (b0290) 1999; 63
Tosdal, Wooden, Bouse (b0410) 1999; 12
Liu, Xue, Zhao, Zhao, Chu, Liu, Yu, Wang, Wu (b0265) 2020; 34
Tomkins (b0405) 2010; 74
Large, Bull, Maslennikov (b0200) 2011; 106
Golding, Groves, McNaughton, Mikucki, Sang (b0135) 1990
Haroldson, Beard, Satkoski, Brown, Johnson (b0150) 2018; 130
Liu, Bao, Kou, Yang, Gao, Wei, Ma, Yang (b0255) 2023; 161
Li, Wang, Yang, Zhang, Liu, Liu (b0230) 2020; 122
Gregory, Mukherjee, Olson, Large, Danyushevsky, Stepanov, Avila, Cliff, Ireland, Raiswell, Olin, Maslennikov, Lyons (b0140) 2019; 259
Zhang, Guo, Dong, Yao (b0480) 2019; 25
Tardani, D., Reich, M., Deditius, A.P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J., Roberts, M.P., 2017. Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochim. Cosmochim. Acta 204, 179–204.
Deditius, Reich, Kesler, Utsunomiya, Chryssoulis, Walshe, Ewing (b0085) 2014; 140
Liu, Hu, Gao, Günther, Xu, Gao, Chen (b0270) 2008; 257
Ohmoto, H., Rye, R.O., Barnes, H.L., 1979. Geochemistry of hydrothermal ore deposits. Geochemistry of Hydrothermal Ore Deposits, HL Barnes, Ed. (Wiley, ed. 3, 1997), 1979.
Deditius, Utsunomiya, Renock, Ewing, Ramana, Becker, Kesler (b0100) 2008; 72
Su, Y.P. The tectonic settings and genesis of Neoproterozoic Liujiaping volcanic massive sulfide copper-zinc deposits, northwestern Yangtze Block. Doctor degree, the University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
Paton, Hellstrom, Paul, Woodhead, Hergt (b0325) 2011; 26
Xue, X.,P., Wang, D.Q., Wang, Y.Z., Wang, J.G., 2018. Characteristics of fluid inclusion and genesis of the Huangniping gold deposit. Journal of Mineralogy and Petrology 38(2), 31–39 (in Chinese with English abstract).
Leng (b0215) 2017; 24
Peterson, Mavrogenes (b0335) 2014; 42
Deditius, Utsunomiya, Reich (b0095) 2011; 42
Huston, Sie, Suter, Cooke, Both (b0165) 1995; 90
Velàsquez, Beziat, Salvi (b0415) 2014; 109
Qiu, Li, Yuan (b0350) 2022; 47
Wang, Ma, Yang, Zhang, Liu, Kou, Tian (b0430) 2022; 55
Bao, Chen, Zong, Yuan, Chen, Dai (b0015) 2017; 2017
Deditius, Utsunomiya, Ewing, Kesler (b0090) 2009; 94
Potra, Macfarlane (b0340) 2014; 49
Palin, Xu (b0315) 2000; 95
Chang, Large, Maslennikov (b0035) 2008; 36
Bralia, Sabatini, Troja (b0030) 1979; 14
Li, Li, Selby, Li (b0240) 2018; 46
Large, Halpin, Danyushevsky, Maslennikov, Bull, Long, Gregory, Lounejeva, Lyons, Sack, McGoldrick, Calver (b0210) 2014; 389
Chouinard, A., Paquette, J., Anthony E. Williams-Jones, A.E., 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-argentina. Can. Mineral. 43(3), 951–963.
Bakken, Hochella, Marshall, Turner (b0010) 1989; 84
Koglin, Frimmel, Minter, Brätz (b0190) 2010; 45
Keith, Smith, Jenkin, Holwell, Dye (b0175) 2018; 96
Wu, Farquhar, Strauss (b0440) 2014; 399
Zhang, Deng, Chen, Yang, Cooke, Danyushevsky, Gong (b0485) 2014; 26
Loftus-Hills, Solomon (b0275) 1967; 2
Chai, Zhang, Dong, Zhang (b0040) 2019; 204
Taylor (b0400) 1964; 28
Li, Fan, Yang, Hollings, Liu, Hu, Cai (b0235) 2018; 173
Kerrich, R., 1989. Geochemical evidence on the sources of fluids and solutes for shear zone hosted mesothermal Au deposits. In: Bursnall, J.T. (Ed.), Mineralization and Shear Zones. Geological Association of Canada Short Course 6, 129–197.
Ciobanu, Cook, Utsunomiya (b0070) 2012; 97
Zhong (b0505) 2012
Román, Reich, Leisen, Morata, Barra, Deditius (b0365) 2019; 246
Goldfarb, Miller, Leach, Snee (b0130) 1997; 9
Abraitis, Pattrick, Vaughan (b0005) 2004; 74
McCready, Stumpfl, Lally, Ahmad, Gee (b0285) 2004; 99
Berthier, Perret, Eglinger, André-Mayer, Feneyrol, Voinot, Teitler, Bosc (b0025) 2023; 118
Large, Danyushevsky, Hollit, Maslennikov, Meffre, Gilbert, Bull, Scott, Emsbo, Thomas, Singh, Foster (b0205) 2009; 104
Tan, Shao, Liu, Zhang, Feng, Zhang, Shah (b0385) 2022; 144
Kou, S.L., Liu, J., Wang, Z.B., Yang, W., Zhang, Y.X., He, J.l., Tian, Y., Pan, Y., Chen, H., Li, L., 2024. Fluid inclusion and H-O isotopic studies of the Xinjiazui Gold Deposit in Back-Longmenshan Tectonic Belt. Geoscience, (in Chinese with English abstract), under review.
Hou (b0155) 2000; 2
Sykora, Cooke, Meffre, Stephanov, Gardner, Scot, Selley, Harris (b0380) 2018; 113
Li (10.1016/j.oregeorev.2025.106745_b0235) 2018; 173
Goldfarb (10.1016/j.oregeorev.2025.106745_b0125) 2015; 233
Deng (10.1016/j.oregeorev.2025.106745_b0105) 2015; 36
Li (10.1016/j.oregeorev.2025.106745_b0240) 2018; 46
Berthier (10.1016/j.oregeorev.2025.106745_b0025) 2023; 118
Deng (10.1016/j.oregeorev.2025.106745_b0110) 2020; 208
Chai (10.1016/j.oregeorev.2025.106745_b0045) 2019; 2019
10.1016/j.oregeorev.2025.106745_b0195
Yan (10.1016/j.oregeorev.2025.106745_b0455) 2018; 164
Román (10.1016/j.oregeorev.2025.106745_b0365) 2019; 246
Barker (10.1016/j.oregeorev.2025.106745_b0020) 2009; 104
Liu (10.1016/j.oregeorev.2025.106745_b0250) 2022; 12
Sykora (10.1016/j.oregeorev.2025.106745_b0380) 2018; 113
Potra (10.1016/j.oregeorev.2025.106745_b0340) 2014; 49
Qiu (10.1016/j.oregeorev.2025.106745_b0350) 2022; 47
Zhang (10.1016/j.oregeorev.2025.106745_b0485) 2014; 26
Large (10.1016/j.oregeorev.2025.106745_b0200) 2011; 106
Wei (10.1016/j.oregeorev.2025.106745_b0435) 2008
Hou (10.1016/j.oregeorev.2025.106745_b0155) 2000; 2
Zhang (10.1016/j.oregeorev.2025.106745_b0480) 2019; 25
Huston (10.1016/j.oregeorev.2025.106745_b0165) 1995; 90
Goldfarb (10.1016/j.oregeorev.2025.106745_b0130) 1997; 9
Hou (10.1016/j.oregeorev.2025.106745_b0160) 2016; 111
Liu (10.1016/j.oregeorev.2025.106745_b0260) 2022; 36
10.1016/j.oregeorev.2025.106745_b0185
Abraitis (10.1016/j.oregeorev.2025.106745_b0005) 2004; 74
Simon (10.1016/j.oregeorev.2025.106745_b0370) 1999; 94
10.1016/j.oregeorev.2025.106745_b0065
10.1016/j.oregeorev.2025.106745_b0180
Morse (10.1016/j.oregeorev.2025.106745_b0290) 1999; 63
Peterson (10.1016/j.oregeorev.2025.106745_b0335) 2014; 42
Keith (10.1016/j.oregeorev.2025.106745_b0175) 2018; 96
Velàsquez (10.1016/j.oregeorev.2025.106745_b0415) 2014; 109
Yang (10.1016/j.oregeorev.2025.106745_b0465) 2016; 111
Paul (10.1016/j.oregeorev.2025.106745_b0330) 2012; 27
Liu (10.1016/j.oregeorev.2025.106745_b0265) 2020; 34
Paton (10.1016/j.oregeorev.2025.106745_b0325) 2011; 26
10.1016/j.oregeorev.2025.106745_b0170
Cook (10.1016/j.oregeorev.2025.106745_b0080) 2013; 108
Li (10.1016/j.oregeorev.2025.106745_b0220) 2022; 149
Li (10.1016/j.oregeorev.2025.106745_b0245) 2009
Zhong (10.1016/j.oregeorev.2025.106745_b0505) 2012
Loftus-Hills (10.1016/j.oregeorev.2025.106745_b0275) 1967; 2
Taylor (10.1016/j.oregeorev.2025.106745_b0400) 1964; 28
Deditius (10.1016/j.oregeorev.2025.106745_b0090) 2009; 94
Golding (10.1016/j.oregeorev.2025.106745_b0135) 1990
Haroldson (10.1016/j.oregeorev.2025.106745_b0150) 2018; 130
Li (10.1016/j.oregeorev.2025.106745_b0230) 2020; 122
10.1016/j.oregeorev.2025.106745_b0445
Chai (10.1016/j.oregeorev.2025.106745_b0040) 2019; 204
Tosdal (10.1016/j.oregeorev.2025.106745_b0410) 1999; 12
Voute (10.1016/j.oregeorev.2025.106745_b0420) 2019; 54
10.1016/j.oregeorev.2025.106745_b0280
Zhang (10.1016/j.oregeorev.2025.106745_b0495) 2022; 107
Zhou (10.1016/j.oregeorev.2025.106745_b0510) 2021; 145
Nesbitt (10.1016/j.oregeorev.2025.106745_b0300) 1991
Partington (10.1016/j.oregeorev.2025.106745_b0320) 2000; 13
Tomkins (10.1016/j.oregeorev.2025.106745_b0405) 2010; 74
Chai (10.1016/j.oregeorev.2025.106745_b0050) 2020; 57
Koglin (10.1016/j.oregeorev.2025.106745_b0190) 2010; 45
Wang (10.1016/j.oregeorev.2025.106745_b0425) 2015; 35
Large (10.1016/j.oregeorev.2025.106745_b0205) 2009; 104
Mumin (10.1016/j.oregeorev.2025.106745_b0295) 1994; 29
10.1016/j.oregeorev.2025.106745_b0310
Yang (10.1016/j.oregeorev.2025.106745_b0470) 2024; 2024
Bralia (10.1016/j.oregeorev.2025.106745_b0030) 1979; 14
Liu (10.1016/j.oregeorev.2025.106745_b0270) 2008; 257
10.1016/j.oregeorev.2025.106745_b0395
Bakken (10.1016/j.oregeorev.2025.106745_b0010) 1989; 84
Ohmoto (10.1016/j.oregeorev.2025.106745_b0305) 1972; 67
Bao (10.1016/j.oregeorev.2025.106745_b0015) 2017; 2017
Large (10.1016/j.oregeorev.2025.106745_b0210) 2014; 389
Chen (10.1016/j.oregeorev.2025.106745_b0055) 2010; 17
Deditius (10.1016/j.oregeorev.2025.106745_b0085) 2014; 140
Yang (10.1016/j.oregeorev.2025.106745_b0460) 2015; 127
Ciobanu (10.1016/j.oregeorev.2025.106745_b0070) 2012; 97
Reich (10.1016/j.oregeorev.2025.106745_b0360) 2005; 69
McCready (10.1016/j.oregeorev.2025.106745_b0285) 2004; 99
Clark (10.1016/j.oregeorev.2025.106745_b0075) 2004; 25
Gregory (10.1016/j.oregeorev.2025.106745_b0140) 2019; 259
Yan (10.1016/j.oregeorev.2025.106745_b0450) 2011; 30
Deditius (10.1016/j.oregeorev.2025.106745_b0100) 2008; 72
Tanner (10.1016/j.oregeorev.2025.106745_b0390) 2016; 171
Liu (10.1016/j.oregeorev.2025.106745_b0255) 2023; 161
Reich (10.1016/j.oregeorev.2025.106745_b0355) 2013; 104
Chang (10.1016/j.oregeorev.2025.106745_b0035) 2008; 36
Gregory (10.1016/j.oregeorev.2025.106745_b0145) 2015; 110
Qiu (10.1016/j.oregeorev.2025.106745_b0345) 2019; 104
10.1016/j.oregeorev.2025.106745_b0375
Wang (10.1016/j.oregeorev.2025.106745_b0430) 2022; 55
Leng (10.1016/j.oregeorev.2025.106745_b0215) 2017; 24
Zhang (10.1016/j.oregeorev.2025.106745_b0490) 2024
Zheng (10.1016/j.oregeorev.2025.106745_b0500) 2020; 126
Palin (10.1016/j.oregeorev.2025.106745_b0315) 2000; 95
Tan (10.1016/j.oregeorev.2025.106745_b0385) 2022; 144
Fu (10.1016/j.oregeorev.2025.106745_b0115) 2014; 38
Chen (10.1016/j.oregeorev.2025.106745_b0060) 2019; 176
Wu (10.1016/j.oregeorev.2025.106745_b0440) 2014; 399
Deditius (10.1016/j.oregeorev.2025.106745_b0095) 2011; 42
References_xml – volume: 47
  start-page: 290
  year: 2022
  end-page: 308
  ident: b0350
  article-title: Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong District: Implications for mechanism of gold enrichment
  publication-title: Earth Sci.
– volume: 54
  start-page: 1077
  year: 2019
  end-page: 1100
  ident: b0420
  article-title: Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms
  publication-title: Miner. Depos.
– reference: Chouinard, A., Paquette, J., Anthony E. Williams-Jones, A.E., 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-argentina. Can. Mineral. 43(3), 951–963.
– year: 2009
  ident: b0245
  article-title: Composition, structural characteristics and evolution of Back-Longmenshan orogeny (North Section) in the Northwest margin of Yangtze block
– volume: 127
  start-page: 1831
  year: 2015
  end-page: 1854
  ident: b0460
  article-title: Structure, geochronology, and petrogenesis of the late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen
  publication-title: China. Geol. Soc. Am. Bull.
– volume: 149
  year: 2022
  ident: b0220
  article-title: Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits
  publication-title: Ore Geol. Rev.
– reference: Ohmoto, H., Rye, R.O., Barnes, H.L., 1979. Geochemistry of hydrothermal ore deposits. Geochemistry of Hydrothermal Ore Deposits, HL Barnes, Ed. (Wiley, ed. 3, 1997), 1979.
– volume: 74
  start-page: 41
  year: 2004
  end-page: 59
  ident: b0005
  article-title: Variations in the compositional, textural and electrical properties of natural pyrite: a review
  publication-title: Int. J. Miner. Process.
– volume: 111
  start-page: 105
  year: 2016
  end-page: 126
  ident: b0465
  article-title: Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment
  publication-title: Econ. Geol.
– volume: 57
  start-page: 1428
  year: 2020
  end-page: 1446
  ident: b0050
  article-title: Ore geology, fluid inclusion, and stable isotope constraints on the origin of the Damoqujia gold deposit, Jiaodong Peninsula
  publication-title: China. Can. J. Earth Sci.
– volume: 399
  start-page: 44
  year: 2014
  end-page: 51
  ident: b0440
  article-title: δ
  publication-title: Earth Planet. Sci. Lett.
– volume: 233
  start-page: 2
  year: 2015
  end-page: 26
  ident: b0125
  article-title: Orogenic gold: Common or evolving fluid and metal sources through time (Review)
  publication-title: Lithos
– volume: 13
  start-page: 69
  year: 2000
  end-page: 101
  ident: b0320
  article-title: Proterozoic lode gold and (iron)–copper–gold deposits—a comparison of Australian and global examples
  publication-title: Econ. Geol.
– volume: 28
  start-page: 1989
  year: 1964
  end-page: 1998
  ident: b0400
  article-title: Trace element abundances and the chondritic earth model
  publication-title: Geochim. Cosmochim. Acta
– reference: Tardani, D., Reich, M., Deditius, A.P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J., Roberts, M.P., 2017. Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochim. Cosmochim. Acta 204, 179–204.
– volume: 42
  start-page: 32
  year: 2011
  end-page: 46
  ident: b0095
  article-title: Trace metal nanoparticles in pyrite
  publication-title: Ore Geol. Rev.
– volume: 24
  start-page: 162
  year: 2017
  end-page: 175
  ident: b0215
  article-title: Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: constraints from LA–ICP–MS trace elements of pyrite and pyrrhotite
  publication-title: Earth Sci. Front.
– volume: 176
  start-page: 325
  year: 2019
  end-page: 336
  ident: b0060
  article-title: In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt
  publication-title: Central China. J. Asian Earth Sci.
– volume: 36
  start-page: 378
  year: 2022
  end-page: 388
  ident: b0260
  article-title: Geological characteristics and genesis of the Xinjiazui gold deposit in Back–Longmenshan orogenic belt
  publication-title: Geoscience
– volume: 106
  start-page: 331
  year: 2011
  end-page: 358
  ident: b0200
  article-title: A carbonaceous sedimentary source-rock model for Carlin-type and Orogenic gold deposits
  publication-title: Econ. Geol.
– volume: 104
  start-page: 897
  year: 2009
  end-page: 904
  ident: b0020
  article-title: Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits
  publication-title: Econ. Geol.
– volume: 63
  start-page: 3373
  year: 1999
  end-page: 3378
  ident: b0290
  article-title: Chemical influences on trace metal–sulfide interactions in anoxic sediments
  publication-title: Geochim. Cosmochim. Acta
– volume: 25
  start-page: 746
  year: 2019
  end-page: 768
  ident: b0480
  article-title: Rethinking of the Qinling Orogen
  publication-title: Journal of Geomechanics
– year: 2012
  ident: b0505
  article-title: Geological characteristics and genesis of Taiyangping gold deposit, Sichuan Province
– volume: 94
  start-page: 391
  year: 2009
  end-page: 394
  ident: b0090
  article-title: Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite
  publication-title: Am. Miner.
– volume: 122
  year: 2020
  ident: b0230
  article-title: The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: the links between nanoscale gold enrichment and crystal distortion
  publication-title: Ore Geol. Rev.
– volume: 36
  start-page: 219
  year: 2015
  end-page: 274
  ident: b0105
  article-title: Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: constraints from fluid inclusion and C–D–O–S–Sr isotope compositions. Ore Geol. Rev. 65(3), 674–686.Deng, J., and Wang, Q.F., 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework
  publication-title: Gondw. Res.
– reference: Kerrich, R., 1987. Stable isotope geochemistry of Au–Ag vein deposits in metamorphic rocks. In: Kyser, T.K. (Ed.), Stable Isotope Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada Short Course 13, 287–336.
– volume: 2
  start-page: 88
  year: 2000
  end-page: 90
  ident: b0155
  article-title: Geological characteristics if iron cap gold deposit and ore prospect at Liujiaping
  publication-title: Gold Journal
– reference: Maslennikov, V.V., Maslennikova, S.P., Large, R.R., L.V. Danyushevsky, L.V., 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 104(8), 1111–1141.
– volume: 12
  start-page: 688
  year: 2022
  ident: b0250
  article-title: Composition and geochemical characteristics of pyrite and quartz: Constraints on the origin of the Xinjiazui gold deposit, Northwestern margin of the Yangtze Block
  publication-title: China. Minerals
– start-page: 259
  year: 1990
  end-page: 262
  ident: b0135
  article-title: Source of ore fluid and ore components—sulphur isotope studies
  publication-title: Geology Department and University Extension 20
– volume: 99
  start-page: 257
  year: 2004
  end-page: 277
  ident: b0285
  article-title: Polymetallic Mineralization at the Browns Deposit, Rum Jungle Mineral Field, Northern Territory
  publication-title: Australia. Econ. Geol.
– volume: 12
  start-page: 1
  year: 1999
  end-page: 28
  ident: b0410
  article-title: Pb isotopes, ore deposits, and metallogenic terranes
  publication-title: Econ. Geol.
– volume: 113
  start-page: 193
  year: 2018
  end-page: 208
  ident: b0380
  article-title: Evolution of pyrite trace element compositions from porphyry style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing
  publication-title: Econ. Geol.
– volume: 107
  start-page: 1910
  year: 2022
  end-page: 1925
  ident: b0495
  article-title: Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: an example from the Jiguanzui deposit
  publication-title: Eastern China. Am. Mineral.
– volume: 104
  start-page: 1487
  year: 2019
  end-page: 1502
  ident: b0345
  article-title: Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit
  publication-title: China. Am. Mineral.
– reference: Xue, X.,P., Wang, D.Q., Wang, Y.Z., Wang, J.G., 2018. Characteristics of fluid inclusion and genesis of the Huangniping gold deposit. Journal of Mineralogy and Petrology 38(2), 31–39 (in Chinese with English abstract).
– volume: 140
  start-page: 644
  year: 2014
  end-page: 670
  ident: b0085
  article-title: The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits
  publication-title: Geochim. Cosmochim. Acta
– year: 2024
  ident: b0490
  article-title: Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: evidence from Hg isotopes
  publication-title: Geology
– volume: 26
  start-page: 2508
  year: 2011
  end-page: 2518
  ident: b0325
  article-title: Iolite: Freeware for the visualisation and processing of mass spectrometric data
  publication-title: J. Anal. At. Spectrom
– volume: 27
  start-page: 700
  year: 2012
  end-page: 706
  ident: b0330
  article-title: CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment
  publication-title: J. Anal. At. Spectrom
– volume: 145
  year: 2021
  ident: b0510
  article-title: The role of structural reactivation for gold mineralization in northeastern Hunan Province
  publication-title: South China. J. Struct. Geol.
– volume: 90
  start-page: 1167
  year: 1995
  end-page: 1196
  ident: b0165
  article-title: Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta
  publication-title: Econ. Geol.
– volume: 94
  start-page: 405
  year: 1999
  end-page: 422
  ident: b0370
  article-title: Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in carlintype deposits
  publication-title: Econ. Geol.
– volume: 171
  start-page: 1
  year: 2016
  end-page: 17
  ident: b0390
  article-title: Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit
  publication-title: Chile. Contrib. Mineral. Petrol. Contrib. Mineral. Petrol.
– volume: 110
  start-page: 1389
  year: 2015
  end-page: 1410
  ident: b0145
  article-title: Trace element content of sedimentary pyrite in black shales
  publication-title: Econ. Geol.
– reference: Jiang, H.J., 2022. Ore genesis and exploration application of the Huangniping Au deposit in northern Longmenshan orogenic belt. Doctor degree, University of Chinese Academy of Sciences (in Chinese with English abstract).
– reference: Kou, S.L., Liu, J., Wang, Z.B., Yang, W., Zhang, Y.X., He, J.l., Tian, Y., Pan, Y., Chen, H., Li, L., 2024. Fluid inclusion and H-O isotopic studies of the Xinjiazui Gold Deposit in Back-Longmenshan Tectonic Belt. Geoscience, (in Chinese with English abstract), under review.
– volume: 72
  start-page: 2919
  year: 2008
  end-page: 2933
  ident: b0100
  article-title: A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance
  publication-title: Geochim. Cosmochim. Acta
– volume: 161
  year: 2023
  ident: b0255
  article-title: LA–ICP–MS U–Pb geochronology and geological significance of two types of monazite in the Xinjiazui gold deposit, northwestern margin of Yangtze Block
  publication-title: China. Ore Geol. Rev.
– volume: 257
  start-page: 34
  year: 2008
  end-page: 43
  ident: b0270
  article-title: In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard
  publication-title: Chem. Geol.
– volume: 97
  start-page: 1515
  year: 2012
  end-page: 1518
  ident: b0070
  article-title: Gold-telluride nanoparticles revealed in arsenic-free pyrite
  publication-title: Am. Miner.
– volume: 104
  start-page: 42
  year: 2013
  end-page: 62
  ident: b0355
  article-title: Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study
  publication-title: Geochim. Cosmochim. Acta
– volume: 35
  start-page: 243
  year: 2015
  ident: b0425
  article-title: Discussion on the metallogenic potential of gold deposits in the Longmenshan structural belt
  publication-title: Acta. Mineral. Sin.
– volume: 17
  start-page: 27
  year: 2010
  end-page: 34
  ident: b0055
  article-title: On epizonogenism and genetic classification of hydrothermal deposits
  publication-title: Earth Sci. Front.
– volume: 208
  year: 2020
  ident: b0110
  article-title: An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China
  publication-title: Earth-Sci. Rev.
– volume: 2
  start-page: 228
  year: 1967
  end-page: 242
  ident: b0275
  article-title: Cobalt, nickel and selenium in sulphides as indicators of ore genesis
  publication-title: Mineral. Depos.
– volume: 95
  start-page: 1627
  year: 2000
  end-page: 1634
  ident: b0315
  article-title: Gilt by association? Origins of pyritic gold ores in the Victory mesothermal gold deposit
  publication-title: Western Australia: Econ. Geol.
– reference: Kerrich, R., 1989. Geochemical evidence on the sources of fluids and solutes for shear zone hosted mesothermal Au deposits. In: Bursnall, J.T. (Ed.), Mineralization and Shear Zones. Geological Association of Canada Short Course 6, 129–197.
– volume: 164
  start-page: 33
  year: 2018
  end-page: 57
  ident: b0455
  article-title: The Longmenshan tectonic complex and adjacent tectonic units in the Eastern margin of the Tibetan Plateau: a review
  publication-title: J. Asian Earth Sci.
– volume: 118
  start-page: 1031
  year: 2023
  end-page: 1053
  ident: b0025
  article-title: Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District
  publication-title: Sudan. Econ. Geol.
– volume: 111
  start-page: 331
  year: 2016
  end-page: 353
  ident: b0160
  article-title: Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao trend, Youjiang basin, China: implications for paragenesis and source of sulfur
  publication-title: Econ. Geol.
– volume: 14
  start-page: 353
  year: 1979
  end-page: 374
  ident: b0030
  article-title: A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems
  publication-title: Mineral. Depos.
– volume: 74
  start-page: 3246
  year: 2010
  end-page: 3259
  ident: b0405
  article-title: Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis
  publication-title: Geochim. Cosmochim. Acta
– volume: 259
  start-page: 53
  year: 2019
  end-page: 68
  ident: b0140
  article-title: The formation mechanisms of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis
  publication-title: Geochim. Cosmochim. Acta
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 23
  ident: b0045
  article-title: Geology, fluid inclusion, and H–O–S–Pb isotope constraints on the mineralization of the Xiejiagou gold deposit in the jiaodong peninsula
  publication-title: Geofluids
– volume: 126
  year: 2020
  ident: b0500
  article-title: Genesis of the Bangbu gold deposit in the southern Tibet: Evidenced from in-situ sulfur isotopes and trace element compositions of pyrite
  publication-title: Ore Geol. Rev.
– volume: 38
  start-page: 787
  year: 2014
  end-page: 801
  ident: b0115
  article-title: Characteristics of Tectonic Lithofacies in Dingjialin–Taiyangping–Dongjiayuan gold ore belt
  publication-title: Shaanxi and Sichuan Provinces. Geotecton. Metallogenia
– volume: 26
  start-page: 557
  year: 2014
  end-page: 575
  ident: b0485
  article-title: LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process
  publication-title: Gondw. Res.
– volume: 49
  start-page: 101
  year: 2014
  end-page: 117
  ident: b0340
  article-title: Lead isotope studies of the Guerrero composite terrane, west-central Mexico: Implications for ore genesis
  publication-title: Miner. Depos.
– volume: 55
  start-page: 271
  year: 2022
  end-page: 283
  ident: b0430
  article-title: The concept and application of element equivalent-concentrating: a case study for anomaly interpretation of soil survey from Zhongba Mining area, Ningqiang county
  publication-title: Shaanxi Province. Northwestern Geology
– volume: 34
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0265
  article-title: Research on auriferous pyrite in hydrothermal gold deposit
  publication-title: China. Geoscience
– volume: 30
  start-page: 81
  year: 2011
  end-page: 87
  ident: b0450
  article-title: Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmenshan thrust belt
  publication-title: Eastern Tibetan Plateau. Tectonics
– volume: 46
  start-page: 7
  year: 2018
  end-page: 10
  ident: b0240
  article-title: Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit
  publication-title: Geology
– start-page: 104
  year: 1991
  end-page: 132
  ident: b0300
  article-title: Phanerozoic gold deposits in tectonically active continental margins
  publication-title: Gold Metallogeny and Exploration
– volume: 84
  start-page: 171
  year: 1989
  end-page: 179
  ident: b0010
  article-title: High-resolution microscopy of gold in unoxidized ore from the Carlin mine
  publication-title: Nevada. Econ. Geol.
– volume: 109
  start-page: 457
  year: 2014
  end-page: 486
  ident: b0415
  article-title: Formation and deformation of pyrite and implications for gold mineralization in the El Callao District
  publication-title: Venezuela. Econ. Geol.
– volume: 108
  start-page: 1273
  year: 2013
  end-page: 1283
  ident: b0080
  article-title: Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements
  publication-title: Econ. Geol.
– volume: 389
  start-page: 209
  year: 2014
  end-page: 220
  ident: b0210
  article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution
  publication-title: Earth Planet. Sci. Lett.
– volume: 246
  start-page: 60
  year: 2019
  end-page: 85
  ident: b0365
  article-title: Geochemical and micro-textural fingerprints of boiling in pyrite
  publication-title: Geochim. Cosmochim. Acta
– volume: 144
  year: 2022
  ident: b0385
  article-title: Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis
  publication-title: Ore Geol. Rev.
– volume: 67
  start-page: 551
  year: 1972
  end-page: 578
  ident: b0305
  article-title: Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits
  publication-title: Econ. Geol.
– volume: 69
  start-page: 2781
  year: 2005
  end-page: 2796
  ident: b0360
  article-title: Solubility of gold in arsenian pyrite
  publication-title: Geochim. Cosmochim. Acta
– volume: 36
  start-page: 971
  year: 2008
  end-page: 974
  ident: b0035
  article-title: Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source
  publication-title: Geology
– volume: 204
  start-page: 224
  year: 2019
  end-page: 239
  ident: b0040
  article-title: Geology and ore-forming fluids of the Dayingezhuang gold deposit, Jiaodong Peninsula, eastern China: Implications for mineral exploration
  publication-title: J. Geochem. Explor.
– volume: 45
  start-page: 259
  year: 2010
  end-page: 280
  ident: b0190
  article-title: Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits
  publication-title: Mineral. Depos.
– volume: 96
  start-page: 269
  year: 2018
  end-page: 282
  ident: b0175
  article-title: A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes
  publication-title: Ore Geol. Rev.
– volume: 2024
  year: 2024
  ident: b0470
  article-title: Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Constraints from integrated deep seismic reflection and tectonics
  publication-title: Earth-Sci. Rev.
– volume: 29
  start-page: 445
  year: 1994
  end-page: 460
  ident: b0295
  article-title: Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold
  publication-title: Miner. Depos.
– volume: 42
  start-page: 383
  year: 2014
  end-page: 386
  ident: b0335
  article-title: Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit
  publication-title: Papua New Guinea. Geology
– volume: 130
  start-page: 1583
  year: 2018
  end-page: 1595
  ident: b0150
  article-title: Gold remobilization associated with Mississippi Valley-type fluids: a Pb isotope perspective
  publication-title: Geol. Soc. Am. Bull.
– volume: 2017
  start-page: 255
  year: 2017
  end-page: 262
  ident: b0015
  article-title: Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS
  publication-title: Int. J. Mass Spectrom.
– year: 2008
  ident: b0435
  article-title: Geological characteristics and genesis of the Dingjialing–Taiyangping gold metallogenic belt
  publication-title: Master Degree
– volume: 104
  start-page: 635
  year: 2009
  end-page: 668
  ident: b0205
  article-title: Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted gold deposits
  publication-title: Econ. Geol.
– volume: 173
  start-page: 1
  year: 2018
  ident: b0235
  article-title: Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: implication for ore-forming processes
  publication-title: Contrib. Mineral. Petrol.
– reference: Su, Y.P. The tectonic settings and genesis of Neoproterozoic Liujiaping volcanic massive sulfide copper-zinc deposits, northwestern Yangtze Block. Doctor degree, the University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
– volume: 25
  start-page: 237
  year: 2004
  end-page: 257
  ident: b0075
  article-title: Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domainin and overlying Neoproterozoic Adelaidean sequences northeastern South Australia
  publication-title: Ore Geol. Rev.
– volume: 9
  start-page: 151
  year: 1997
  end-page: 190
  ident: b0130
  article-title: Gold deposits in metamorphic rocks of Alaska
  publication-title: Econ. Geol.
– volume: 49
  start-page: 101
  issue: 1
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0340
  article-title: Lead isotope studies of the Guerrero composite terrane, west-central Mexico: Implications for ore genesis
  publication-title: Miner. Depos.
  doi: 10.1007/s00126-013-0477-0
– volume: 104
  start-page: 42
  year: 2013
  ident: 10.1016/j.oregeorev.2025.106745_b0355
  article-title: Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.11.006
– volume: 72
  start-page: 2919
  issue: 12
  year: 2008
  ident: 10.1016/j.oregeorev.2025.106745_b0100
  article-title: A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.03.014
– volume: 74
  start-page: 3246
  issue: 11
  year: 2010
  ident: 10.1016/j.oregeorev.2025.106745_b0405
  article-title: Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.03.003
– volume: 45
  start-page: 259
  year: 2010
  ident: 10.1016/j.oregeorev.2025.106745_b0190
  article-title: Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits
  publication-title: Mineral. Depos.
  doi: 10.1007/s00126-009-0272-0
– start-page: 259
  year: 1990
  ident: 10.1016/j.oregeorev.2025.106745_b0135
  article-title: Source of ore fluid and ore components—sulphur isotope studies
– volume: 26
  start-page: 2508
  issue: 12
  year: 2011
  ident: 10.1016/j.oregeorev.2025.106745_b0325
  article-title: Iolite: Freeware for the visualisation and processing of mass spectrometric data
  publication-title: J. Anal. At. Spectrom
  doi: 10.1039/c1ja10172b
– volume: 17
  start-page: 27
  issue: 2
  year: 2010
  ident: 10.1016/j.oregeorev.2025.106745_b0055
  article-title: On epizonogenism and genetic classification of hydrothermal deposits
  publication-title: Earth Sci. Front.
– volume: 97
  start-page: 1515
  issue: 8
  year: 2012
  ident: 10.1016/j.oregeorev.2025.106745_b0070
  article-title: Gold-telluride nanoparticles revealed in arsenic-free pyrite
  publication-title: Am. Miner.
  doi: 10.2138/am.2012.4207
– volume: 104
  start-page: 897
  issue: 7
  year: 2009
  ident: 10.1016/j.oregeorev.2025.106745_b0020
  article-title: Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.104.7.897
– year: 2024
  ident: 10.1016/j.oregeorev.2025.106745_b0490
  article-title: Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: evidence from Hg isotopes
  publication-title: Geology
  doi: 10.1130/G51871.1
– volume: 74
  start-page: 41
  issue: 1
  year: 2004
  ident: 10.1016/j.oregeorev.2025.106745_b0005
  article-title: Variations in the compositional, textural and electrical properties of natural pyrite: a review
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2003.09.002
– volume: 259
  start-page: 53
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0140
  article-title: The formation mechanisms of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2019.05.035
– ident: 10.1016/j.oregeorev.2025.106745_b0375
– volume: 28
  start-page: 1989
  year: 1964
  ident: 10.1016/j.oregeorev.2025.106745_b0400
  article-title: Trace element abundances and the chondritic earth model
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(64)90142-5
– volume: 110
  start-page: 1389
  issue: 6
  year: 2015
  ident: 10.1016/j.oregeorev.2025.106745_b0145
  article-title: Trace element content of sedimentary pyrite in black shales
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.110.6.1389
– volume: 24
  start-page: 162
  issue: 6
  year: 2017
  ident: 10.1016/j.oregeorev.2025.106745_b0215
  article-title: Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: constraints from LA–ICP–MS trace elements of pyrite and pyrrhotite
  publication-title: Earth Sci. Front.
– volume: 54
  start-page: 1077
  issue: 7
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0420
  article-title: Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms
  publication-title: Miner. Depos.
  doi: 10.1007/s00126-018-0857-6
– volume: 94
  start-page: 405
  issue: 3
  year: 1999
  ident: 10.1016/j.oregeorev.2025.106745_b0370
  article-title: Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in carlintype deposits
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.94.3.405
– volume: 36
  start-page: 378
  issue: 1
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0260
  article-title: Geological characteristics and genesis of the Xinjiazui gold deposit in Back–Longmenshan orogenic belt
  publication-title: Geoscience
– volume: 208
  year: 2020
  ident: 10.1016/j.oregeorev.2025.106745_b0110
  article-title: An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103274
– volume: 127
  start-page: 1831
  year: 2015
  ident: 10.1016/j.oregeorev.2025.106745_b0460
  article-title: Structure, geochronology, and petrogenesis of the late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen
  publication-title: China. Geol. Soc. Am. Bull.
  doi: 10.1130/B31249.1
– volume: 67
  start-page: 551
  issue: 5
  year: 1972
  ident: 10.1016/j.oregeorev.2025.106745_b0305
  article-title: Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.67.5.551
– ident: 10.1016/j.oregeorev.2025.106745_b0185
– volume: 2
  start-page: 228
  year: 1967
  ident: 10.1016/j.oregeorev.2025.106745_b0275
  article-title: Cobalt, nickel and selenium in sulphides as indicators of ore genesis
  publication-title: Mineral. Depos.
  doi: 10.1007/BF00201918
– volume: 95
  start-page: 1627
  issue: 8
  year: 2000
  ident: 10.1016/j.oregeorev.2025.106745_b0315
  article-title: Gilt by association? Origins of pyritic gold ores in the Victory mesothermal gold deposit
  publication-title: Western Australia: Econ. Geol.
– volume: 104
  start-page: 1487
  issue: 10
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0345
  article-title: Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit
  publication-title: China. Am. Mineral.
  doi: 10.2138/am-2019-6890
– volume: 2024
  issue: 255
  year: 2024
  ident: 10.1016/j.oregeorev.2025.106745_b0470
  article-title: Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Constraints from integrated deep seismic reflection and tectonics
  publication-title: Earth-Sci. Rev.
– volume: 149
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0220
  article-title: Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2022.105090
– year: 2008
  ident: 10.1016/j.oregeorev.2025.106745_b0435
  article-title: Geological characteristics and genesis of the Dingjialing–Taiyangping gold metallogenic belt
– volume: 144
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0385
  article-title: Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2022.104843
– ident: 10.1016/j.oregeorev.2025.106745_b0180
– volume: 90
  start-page: 1167
  year: 1995
  ident: 10.1016/j.oregeorev.2025.106745_b0165
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.90.5.1167
– volume: 55
  start-page: 271
  issue: 2
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0430
  article-title: The concept and application of element equivalent-concentrating: a case study for anomaly interpretation of soil survey from Zhongba Mining area, Ningqiang county
  publication-title: Shaanxi Province. Northwestern Geology
– volume: 204
  start-page: 224
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0040
  article-title: Geology and ore-forming fluids of the Dayingezhuang gold deposit, Jiaodong Peninsula, eastern China: Implications for mineral exploration
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.06.001
– volume: 2017
  start-page: 255
  issue: 421
  year: 2017
  ident: 10.1016/j.oregeorev.2025.106745_b0015
  article-title: Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2017.07.015
– volume: 176
  start-page: 325
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0060
  article-title: In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt
  publication-title: Central China. J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2019.02.017
– volume: 26
  start-page: 557
  issue: 2
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0485
  article-title: LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process
  publication-title: Gondw. Res.
  doi: 10.1016/j.gr.2013.11.003
– volume: 164
  start-page: 33
  year: 2018
  ident: 10.1016/j.oregeorev.2025.106745_b0455
  article-title: The Longmenshan tectonic complex and adjacent tectonic units in the Eastern margin of the Tibetan Plateau: a review
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2018.06.017
– volume: 111
  start-page: 331
  issue: 2
  year: 2016
  ident: 10.1016/j.oregeorev.2025.106745_b0160
  article-title: Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao trend, Youjiang basin, China: implications for paragenesis and source of sulfur
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.111.2.331
– volume: 126
  year: 2020
  ident: 10.1016/j.oregeorev.2025.106745_b0500
  article-title: Genesis of the Bangbu gold deposit in the southern Tibet: Evidenced from in-situ sulfur isotopes and trace element compositions of pyrite
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2020.103591
– volume: 12
  start-page: 688
  issue: 6
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0250
  article-title: Composition and geochemical characteristics of pyrite and quartz: Constraints on the origin of the Xinjiazui gold deposit, Northwestern margin of the Yangtze Block
  publication-title: China. Minerals
– volume: 13
  start-page: 69
  year: 2000
  ident: 10.1016/j.oregeorev.2025.106745_b0320
  article-title: Proterozoic lode gold and (iron)–copper–gold deposits—a comparison of Australian and global examples
  publication-title: Econ. Geol.
– volume: 25
  start-page: 237
  issue: 3
  year: 2004
  ident: 10.1016/j.oregeorev.2025.106745_b0075
  article-title: Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domainin and overlying Neoproterozoic Adelaidean sequences northeastern South Australia
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2004.04.003
– volume: 389
  start-page: 209
  issue: 1
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0210
  article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.12.020
– volume: 34
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.oregeorev.2025.106745_b0265
  article-title: Research on auriferous pyrite in hydrothermal gold deposit
  publication-title: China. Geoscience
– volume: 38
  start-page: 787
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0115
  article-title: Characteristics of Tectonic Lithofacies in Dingjialin–Taiyangping–Dongjiayuan gold ore belt
  publication-title: Shaanxi and Sichuan Provinces. Geotecton. Metallogenia
– volume: 46
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.oregeorev.2025.106745_b0240
  article-title: Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit
  publication-title: Geology
  doi: 10.1130/G39504.1
– volume: 47
  start-page: 290
  issue: 1
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0350
  article-title: Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong District: Implications for mechanism of gold enrichment
  publication-title: Earth Sci.
– ident: 10.1016/j.oregeorev.2025.106745_b0170
– volume: 94
  start-page: 391
  issue: 2–3
  year: 2009
  ident: 10.1016/j.oregeorev.2025.106745_b0090
  article-title: Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite
  publication-title: Am. Miner.
  doi: 10.2138/am.2009.3116
– volume: 57
  start-page: 1428
  issue: 12
  year: 2020
  ident: 10.1016/j.oregeorev.2025.106745_b0050
  article-title: Ore geology, fluid inclusion, and stable isotope constraints on the origin of the Damoqujia gold deposit, Jiaodong Peninsula
  publication-title: China. Can. J. Earth Sci.
  doi: 10.1139/cjes-2018-0247
– ident: 10.1016/j.oregeorev.2025.106745_b0310
– volume: 233
  start-page: 2
  year: 2015
  ident: 10.1016/j.oregeorev.2025.106745_b0125
  article-title: Orogenic gold: Common or evolving fluid and metal sources through time (Review)
  publication-title: Lithos
  doi: 10.1016/j.lithos.2015.07.011
– volume: 42
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.oregeorev.2025.106745_b0095
  article-title: Trace metal nanoparticles in pyrite
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2011.03.003
– volume: 84
  start-page: 171
  issue: 1
  year: 1989
  ident: 10.1016/j.oregeorev.2025.106745_b0010
  article-title: High-resolution microscopy of gold in unoxidized ore from the Carlin mine
  publication-title: Nevada. Econ. Geol.
  doi: 10.2113/gsecongeo.84.1.171
– volume: 36
  start-page: 971
  issue: 12
  year: 2008
  ident: 10.1016/j.oregeorev.2025.106745_b0035
  article-title: Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source
  publication-title: Geology
  doi: 10.1130/G25001A.1
– volume: 104
  start-page: 635
  issue: 5
  year: 2009
  ident: 10.1016/j.oregeorev.2025.106745_b0205
  article-title: Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted gold deposits
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.104.5.635
– volume: 108
  start-page: 1273
  issue: 6
  year: 2013
  ident: 10.1016/j.oregeorev.2025.106745_b0080
  article-title: Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.108.6.1273
– volume: 257
  start-page: 34
  year: 2008
  ident: 10.1016/j.oregeorev.2025.106745_b0270
  article-title: In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.08.004
– volume: 140
  start-page: 644
  issue: 1
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0085
  article-title: The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.05.045
– volume: 399
  start-page: 44
  issue: 1
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0440
  article-title: δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.05.004
– volume: 113
  start-page: 193
  issue: 1
  year: 2018
  ident: 10.1016/j.oregeorev.2025.106745_b0380
  article-title: Evolution of pyrite trace element compositions from porphyry style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing
  publication-title: Econ. Geol.
  doi: 10.5382/econgeo.2018.4548
– ident: 10.1016/j.oregeorev.2025.106745_b0065
  doi: 10.2113/gscanmin.43.3.951
– volume: 96
  start-page: 269
  year: 2018
  ident: 10.1016/j.oregeorev.2025.106745_b0175
  article-title: A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2017.07.023
– volume: 36
  start-page: 219
  year: 2015
  ident: 10.1016/j.oregeorev.2025.106745_b0105
  publication-title: Gondw. Res.
  doi: 10.1016/j.gr.2015.10.003
– volume: 161
  year: 2023
  ident: 10.1016/j.oregeorev.2025.106745_b0255
  article-title: LA–ICP–MS U–Pb geochronology and geological significance of two types of monazite in the Xinjiazui gold deposit, northwestern margin of Yangtze Block
  publication-title: China. Ore Geol. Rev.
– volume: 99
  start-page: 257
  issue: 2
  year: 2004
  ident: 10.1016/j.oregeorev.2025.106745_b0285
  article-title: Polymetallic Mineralization at the Browns Deposit, Rum Jungle Mineral Field, Northern Territory
  publication-title: Australia. Econ. Geol.
  doi: 10.2113/gsecongeo.99.2.257
– volume: 145
  year: 2021
  ident: 10.1016/j.oregeorev.2025.106745_b0510
  article-title: The role of structural reactivation for gold mineralization in northeastern Hunan Province
  publication-title: South China. J. Struct. Geol.
– volume: 109
  start-page: 457
  issue: 2
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0415
  article-title: Formation and deformation of pyrite and implications for gold mineralization in the El Callao District
  publication-title: Venezuela. Econ. Geol.
  doi: 10.2113/econgeo.109.2.457
– volume: 9
  start-page: 151
  year: 1997
  ident: 10.1016/j.oregeorev.2025.106745_b0130
  article-title: Gold deposits in metamorphic rocks of Alaska
  publication-title: Econ. Geol.
– volume: 173
  start-page: 1
  issue: 9
  year: 2018
  ident: 10.1016/j.oregeorev.2025.106745_b0235
  article-title: Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: implication for ore-forming processes
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s00410-018-1501-2
– volume: 12
  start-page: 1
  year: 1999
  ident: 10.1016/j.oregeorev.2025.106745_b0410
  article-title: Pb isotopes, ore deposits, and metallogenic terranes
  publication-title: Econ. Geol.
– volume: 2
  start-page: 88
  issue: 2
  year: 2000
  ident: 10.1016/j.oregeorev.2025.106745_b0155
  article-title: Geological characteristics if iron cap gold deposit and ore prospect at Liujiaping
  publication-title: Gold Journal
– volume: 63
  start-page: 3373
  year: 1999
  ident: 10.1016/j.oregeorev.2025.106745_b0290
  article-title: Chemical influences on trace metal–sulfide interactions in anoxic sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00258-6
– volume: 27
  start-page: 700
  issue: 4
  year: 2012
  ident: 10.1016/j.oregeorev.2025.106745_b0330
  article-title: CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment
  publication-title: J. Anal. At. Spectrom
  doi: 10.1039/c2ja10383d
– ident: 10.1016/j.oregeorev.2025.106745_b0395
  doi: 10.1016/j.gca.2017.01.044
– year: 2012
  ident: 10.1016/j.oregeorev.2025.106745_b0505
– volume: 246
  start-page: 60
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0365
  article-title: Geochemical and micro-textural fingerprints of boiling in pyrite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2018.11.034
– year: 2009
  ident: 10.1016/j.oregeorev.2025.106745_b0245
– ident: 10.1016/j.oregeorev.2025.106745_b0195
– volume: 111
  start-page: 105
  issue: 1
  year: 2016
  ident: 10.1016/j.oregeorev.2025.106745_b0465
  article-title: Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.111.1.105
– volume: 118
  start-page: 1031
  issue: 5
  year: 2023
  ident: 10.1016/j.oregeorev.2025.106745_b0025
  article-title: Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District
  publication-title: Sudan. Econ. Geol.
  doi: 10.5382/econgeo.5001
– volume: 14
  start-page: 353
  year: 1979
  ident: 10.1016/j.oregeorev.2025.106745_b0030
  article-title: A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems
  publication-title: Mineral. Depos.
  doi: 10.1007/BF00206365
– volume: 106
  start-page: 331
  issue: 3
  year: 2011
  ident: 10.1016/j.oregeorev.2025.106745_b0200
  article-title: A carbonaceous sedimentary source-rock model for Carlin-type and Orogenic gold deposits
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.106.3.331
– volume: 122
  year: 2020
  ident: 10.1016/j.oregeorev.2025.106745_b0230
  article-title: The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: the links between nanoscale gold enrichment and crystal distortion
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2020.103495
– volume: 30
  start-page: 81
  issue: 6
  year: 2011
  ident: 10.1016/j.oregeorev.2025.106745_b0450
  article-title: Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmenshan thrust belt
  publication-title: Eastern Tibetan Plateau. Tectonics
– volume: 29
  start-page: 445
  issue: 6
  year: 1994
  ident: 10.1016/j.oregeorev.2025.106745_b0295
  article-title: Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold
  publication-title: Miner. Depos.
  doi: 10.1007/BF00193506
– start-page: 104
  year: 1991
  ident: 10.1016/j.oregeorev.2025.106745_b0300
  article-title: Phanerozoic gold deposits in tectonically active continental margins
  publication-title: Gold Metallogeny and Exploration
  doi: 10.1007/978-1-4613-0497-5_4
– volume: 171
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.oregeorev.2025.106745_b0390
  article-title: Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit
  publication-title: Chile. Contrib. Mineral. Petrol. Contrib. Mineral. Petrol.
– volume: 107
  start-page: 1910
  issue: 10
  year: 2022
  ident: 10.1016/j.oregeorev.2025.106745_b0495
  article-title: Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: an example from the Jiguanzui deposit
  publication-title: Eastern China. Am. Mineral.
  doi: 10.2138/am-2022-8118
– volume: 35
  start-page: 243
  issue: S1
  year: 2015
  ident: 10.1016/j.oregeorev.2025.106745_b0425
  article-title: Discussion on the metallogenic potential of gold deposits in the Longmenshan structural belt
  publication-title: Acta. Mineral. Sin.
– ident: 10.1016/j.oregeorev.2025.106745_b0445
– volume: 69
  start-page: 2781
  issue: 11
  year: 2005
  ident: 10.1016/j.oregeorev.2025.106745_b0360
  article-title: Solubility of gold in arsenian pyrite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.01.011
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0045
  article-title: Geology, fluid inclusion, and H–O–S–Pb isotope constraints on the mineralization of the Xiejiagou gold deposit in the jiaodong peninsula
  publication-title: Geofluids
  doi: 10.1155/2019/3726465
– volume: 42
  start-page: 383
  issue: 5
  year: 2014
  ident: 10.1016/j.oregeorev.2025.106745_b0335
  article-title: Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit
  publication-title: Papua New Guinea. Geology
– volume: 25
  start-page: 746
  issue: 5
  year: 2019
  ident: 10.1016/j.oregeorev.2025.106745_b0480
  article-title: Rethinking of the Qinling Orogen
  publication-title: Journal of Geomechanics
– volume: 130
  start-page: 1583
  year: 2018
  ident: 10.1016/j.oregeorev.2025.106745_b0150
  article-title: Gold remobilization associated with Mississippi Valley-type fluids: a Pb isotope perspective
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/B31901.1
– ident: 10.1016/j.oregeorev.2025.106745_b0280
  doi: 10.2113/gsecongeo.104.8.1111
SSID ssj0006001
Score 2.4217792
Snippet [Display omitted] •Multistage gold-bearing veins arise from a single hydrothermal fluid system.•Ore-forming materials (S and metals) primarily derived from...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106745
SubjectTerms In-situ S–Pb isotopes
In-situ trace element
Pyrite
Xinjiazui gold deposit
Yangtze Block
Title Trace element, sulfur and lead isotopes in pyrite of Xinjiazui gold deposit in the northwestern margin of Yangtze Block, China: Implications for ore–forming processes
URI https://dx.doi.org/10.1016/j.oregeorev.2025.106745
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIiQ4ICggSmE1B45N19l489NbqShbEL1ApeUUjf-qlCWJstlDe6h4B16C5-JJGNtZ2EpIHDgm8iSOx5rvc_TNDGOv8gwJNo2JFHIbCZuqqOAyi7AQ01xqtML_yv5wls7Oxbv5dL7Fjte5ME5WOcT-ENN9tB7ujIfVHLdVNf7o6ojESUpHHE-EfQa7yNwuP7j5I_NwgB7qexeRG31L49V0dDRvXLOXCWH_gSun5vKa_oZQG6hz8pA9GOgiHIUZPWJbpt5h9zeKCO6wu299c96rx-wHAY8yYIIifB-Wq4VddYC1hgW5Eqpl0zetWUJVQ3vVEdmExsK8qi8rvF5VcNEsNGjjdVxuDHFDqH279VBOAb5iRy92Rp-xvuivDbwmLPyyD74L9yGcbsjTgdgw0Ef__Pbd8WKaKrQhKcEsn7DzkzefjmfR0IkhUkk86SOiXZaWNitsijY1CcZIgSHXWmVapTrnMi6sFJYjptymHJWNDVd8apXMrdTJU7ZdN7V5xoAjF5ihNVJLEQtdJJLbiY6tpCfEMt9lfL36ZRsKbpRrJdpl-dthpXNYGRy2yw7XXipv7Z2SYOFfxs__x3iP3XNXQXP2gm333cq8JJLSy5HfhSN25-j0_exs5I_6vwB2du9j
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1VqVBhgaAFtVDgLrqsyTiejO3uSkVJ-simrRRW1jwrl2BbjrNoV_wDP9Hv4ku443GqVEJi0a3t68fc0T1nrDPnErKXxAJh05hACWoDZrkKUirjQKRsmEgtLGt_ZZ9P-OiKnUyH0zVytNwL42SVXe33Nb2t1t2Rfjea_SrP-xfORySMOC5xWiKMS6B150417JH1w_HpaPJQkB2me4vvNHABj2ReZY2r89L1exkg_H92jmpua9O_QGoFeI5fkZcdY4RD_1KvyZopNsmLFR_BTfLsW9uf93aL3CP2KAPGi8L3Yb6Y2UUNotAww2xCPi-bsjJzyAuobmvkm1BamObFTS7uFjlclzMN2rRSLncN0kMo2o7r3lEBfooaH-yCvoviurkz8AXh8Mc-tI24D2C8olAHJMSAH_3n129HjfFVofL7Esz8Dbk6_np5NAq6ZgyBisJBEyDzsizmcWq5sNxEIhRYGxKtVawV1wmVYWols1QITi2nQtnQUEWHVsnESh29Jb2iLMw2ASooE7GwRmrJQqbTSFI70KGVeIdQJjuELkc_q7znRrYUo91kDwnLXMIyn7AdcrDMUvZo-mSIDP8LfveU4E9kY3R5fpadjSen78lzd8ZL0HZJr6kX5gNylkZ-7ObkX_oj8R8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trace+element%2C+sulfur+and+lead+isotopes+in+pyrite+of+Xinjiazui+gold+deposit+in+the+northwestern+margin+of+Yangtze+Block%2C+China%3A+Implications+for+ore%E2%80%93forming+processes&rft.jtitle=Ore+geology+reviews&rft.au=Liu%2C+Ji&rft.au=Yang%2C+Li-Qiang&rft.au=Kou%2C+Shao-Lei&rft.au=Bao%2C+Xin-Shang&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0169-1368&rft.volume=184&rft_id=info:doi/10.1016%2Fj.oregeorev.2025.106745&rft.externalDocID=S0169136825003051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon