Sintering behaviour of fluorapatite–silicate composites produced from natural fluorapatite and quartz
In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and FAp was studied. The composites were pressureless sintered in air at temperatures from 1000 °C to 1350 °C. The effects of temperatures on the...
Saved in:
Published in | Ceramics international Vol. 47; no. 12; pp. 16483 - 16490 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and FAp was studied. The composites were pressureless sintered in air at temperatures from 1000 °C to 1350 °C. The effects of temperatures on the densification, phase formation, chemical bonding and Vickers hardness of the composites were evaluated. All the samples exhibited mixed phase, comprising FAp and francolite as the major constituents along with some minor phases of cristobalite, wollastonite, dicalcium silicate and/or whitlockite dependent on the quartz content and sintering temperature. The composite containing 2.5 wt% quartz exhibited the best sintering properties. The highest bulk density of 3 g/cm3 and a Vickers hardness of >4.2 GPa were obtained for the 2.5 wt% quartz–FAp composite when sintered at 1100 °C. The addition of quartz was found to alter the microstructure of the composites, where it exhibited a rod-like morphology when sintered at 1000 °C and a regular rounded grain structure when sintered at 1350 °C. A wetted grain surface was observed for composites containing high quartz content and was believed to be associated with a transient liquid phase sintering. |
---|---|
AbstractList | In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and FAp was studied. The composites were pressureless sintered in air at temperatures from 1000 °C to 1350 °C. The effects of temperatures on the densification, phase formation, chemical bonding and Vickers hardness of the composites were evaluated. All the samples exhibited mixed phase, comprising FAp and francolite as the major constituents along with some minor phases of cristobalite, wollastonite, dicalcium silicate and/or whitlockite dependent on the quartz content and sintering temperature. The composite containing 2.5 wt% quartz exhibited the best sintering properties. The highest bulk density of 3 g/cm3 and a Vickers hardness of >4.2 GPa were obtained for the 2.5 wt% quartz–FAp composite when sintered at 1100 °C. The addition of quartz was found to alter the microstructure of the composites, where it exhibited a rod-like morphology when sintered at 1000 °C and a regular rounded grain structure when sintered at 1350 °C. A wetted grain surface was observed for composites containing high quartz content and was believed to be associated with a transient liquid phase sintering. |
Author | Kenzour, A. Kherifi, D. Belhouchet, H. Wong, Y.H. Lee, K.Y. Sara Djoualah, S. Abbas, M.K.G. Ramesh, S. |
Author_xml | – sequence: 1 givenname: D. surname: Kherifi fullname: Kherifi, D. organization: Physics and Chemistry of Materials Lab, Department of Physics, University Mohamed Boudiaf of M'sila, Algeria – sequence: 2 givenname: H. surname: Belhouchet fullname: Belhouchet, H. organization: Physics Department, Faculty of Sciences, University Mohamed Boudiaf of M'sila, 28000, M'sila, Algeria – sequence: 3 givenname: S. surname: Ramesh fullname: Ramesh, S. email: ramesh79@um.edu.my organization: Center of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia – sequence: 4 givenname: K.Y. Sara orcidid: 0000-0003-0771-3751 surname: Lee fullname: Lee, K.Y. Sara organization: Department of Mechanical Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300, Kuala Lumpur, Malaysia – sequence: 5 givenname: A. surname: Kenzour fullname: Kenzour, A. organization: Optics and Precision Mechanics Institute, University of Ferhat, Abbas Setif 1, 19000, Setif, Algeria – sequence: 6 givenname: S. surname: Djoualah fullname: Djoualah, S. organization: Optics and Precision Mechanics Institute, University of Ferhat, Abbas Setif 1, 19000, Setif, Algeria – sequence: 7 givenname: M.K.G. orcidid: 0000-0002-4115-8264 surname: Abbas fullname: Abbas, M.K.G. organization: Center of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia – sequence: 8 givenname: Y.H. orcidid: 0000-0003-3254-9420 surname: Wong fullname: Wong, Y.H. organization: Center of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia – sequence: 9 givenname: S. surname: Ramesh fullname: Ramesh, S. organization: Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia |
BookMark | eNqFkM1KxDAUhYOM4MzoK0heoDVJ27TZKYN_MOBCXYc0vRkztE1N0gFd-Q6-oU9ih9GFK1cXDnyHc78FmvWuB4TOKUkpofxim2rwqrN9TBlhNCUsZZQfoTmtyizJRMFnaE5YyZKqytkJWoSwJRMocjJHm8eJA2_7Da7hRe2sGz12Bpt2dF4NKtoIXx-fwbZWqwhYu25wYQoDHrxrRg0NNt51uFdx9Kr9A2LVN_h1VD6-n6Jjo9oAZz93iZ5vrp9Wd8n64fZ-dbVOdEZZTGgNeUmZqAuRKaNLXeW1FsArURPGq5xTyrjQipWkJoRVCnTBqSBEGGXyQmdLxA-92rsQPBg5eNsp_yYpkXtdcit_dcm9LkmYnHRN4OUBhGndzoKXQVvop_-sBx1l4-x_Fd-MJXzL |
CitedBy_id | crossref_primary_10_1149_2162_8777_ac9640 crossref_primary_10_1016_j_ceramint_2024_05_317 crossref_primary_10_1016_j_mtcomm_2024_108610 crossref_primary_10_1016_j_ceramint_2022_03_325 crossref_primary_10_1080_0371750X_2023_2274557 crossref_primary_10_1016_j_ijleo_2023_171123 crossref_primary_10_14710_jksa_27_4_174_181 crossref_primary_10_1016_j_ceramint_2021_12_249 |
Cites_doi | 10.1016/j.surfcoat.2018.10.063 10.1016/j.ceramint.2008.07.021 10.1007/s40789-019-0252-7 10.1016/j.ceramint.2020.07.153 10.1016/j.ceramint.2018.10.073 10.1016/j.ceramint.2006.04.001 10.1016/j.ceramint.2019.06.299 10.1016/j.ceramint.2015.05.047 10.1016/S0272-8842(01)00067-0 10.1016/j.msec.2013.11.013 10.1016/j.ceramint.2012.12.008 10.1016/j.colsurfb.2003.12.002 10.1016/S0272-8842(99)00046-2 10.1016/j.stam.2006.11.017 10.1007/s10973-011-1877-y 10.1007/s10973-018-7812-8 10.1007/s41779-018-0189-0 10.1016/j.bsecv.2019.08.001 10.1016/j.jeurceramsoc.2013.06.014 10.1016/j.dental.2013.10.009 10.1016/j.ceramint.2020.09.202 10.1016/j.ceramint.2020.05.216 10.1016/j.msec.2020.111211 10.1016/j.ceramint.2012.06.073 10.1016/j.msec.2017.02.065 10.3390/ma10040334 10.1007/s10973-016-5655-8 10.1016/j.jmatprotec.2007.12.027 10.1016/j.msec.2017.11.011 10.1016/j.ceramint.2011.02.025 10.1007/s10973-014-4301-6 10.1016/j.ceramint.2013.02.072 10.1016/j.ceramint.2017.09.208 10.1016/j.msec.2020.111611 10.1016/j.matchemphys.2020.123264 10.1002/jbm.b.33825 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2021 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2021.02.216 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 16490 |
ExternalDocumentID | 10_1016_j_ceramint_2021_02_216 S0272884221005952 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AAXKI AAYXX ABFNM ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RNS SEW WUQ XPP |
ID | FETCH-LOGICAL-c312t-1be47129b593afc7c84bc9e689b02684611269ca270b0028aec5619009faf45c3 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Thu Sep 26 16:25:10 EDT 2024 Fri Feb 23 02:40:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Composites Quartz Sintering behaviour Fluorapatite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-1be47129b593afc7c84bc9e689b02684611269ca270b0028aec5619009faf45c3 |
ORCID | 0000-0002-4115-8264 0000-0003-3254-9420 0000-0003-0771-3751 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_ceramint_2021_02_216 elsevier_sciencedirect_doi_10_1016_j_ceramint_2021_02_216 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mazón, De Aza (bib38) 2018; 44 Sopyan, Mel, Ramesh, Khalid (bib6) 2007; 8 Bogdanov, Pashev, Hristov, Markovska (bib10) 2009; 35 Amina Gharbi (bib31) 2015; 5 Belhouchet, Chouia, Hamidouche, Leriche (bib29) 2016; 126 Taktak, Elghazel, Bouaziz, Charfi, Keskes (bib12) 2018; 86 Tõnsuaadu, Gross, Plūduma, Veiderma (bib3) 2012; 110 Nasiri-Tabrizi, Fahami (bib15) 2013; 39 Golafshan, Alehosseini, Ahmadi, Talebi, Fathi, Kharaziha, Orive, Castilho, Dolatshahi-Pirouzck (bib22) 2021; 120 Azami, Jalilifiroozinezhad, Mozafari, Rabiee (bib26) 2011; 37 Böhme, Hauke, Neuroth, Geisler (bib36) 2019; 6 Ramesh, Tan, Bhaduri, Teng, Sopyan (bib7) 2008; 206 Kenzour, Belhouchet, Kolli, Djouallah, Kherifi, Ramesh (bib13) 2019; 45 Nasiri-Tabrizi, Fahami (bib14) 2012 Montazerian, Schneider, Yekta, Marghussian, Rodrigues, Zanotto (bib28) 2015; 41 Djouallah, Belhouchet, Kenzour, Kherifi (bib23) 2021; 47 Zawrah, Hamzawy (bib39) 2002; 28 Fuh, Huang, Chen, Lin (bib16) 2017; 75 Muralithran, Ramesh (bib5) 2000; 26 Mirjalili, Manafi, Lotfi (bib11) 2020; 46 Denry, Holloway (bib32) 2014; 30 Khan, Saleem, Afzal, Ali, Khan, Khan (bib18) 2014; 35 Pagliari, Dapiaggi, Pavese, Francescon (bib33) 2013; 33 Ooi, Hamdi, Ramesh (bib4) 2007; 33 Mokhtari, Belhouchet, Guermat (bib27) 2019; 136 Denry, Goudouri, Harless, Holloway (bib30) 2018; 106 Nasiri-Tabrizi, Fahami (bib35) 2013; 39 Katti (bib1) 2004; 39 Betancur-Granados, Restrepo, Tobón, Restrepo-Baena (bib37) 2019; 45 Sprio, Tampieri, Landi, Celotti, Dalle Fabbriche (bib20) 2008; 361–363 Safarzadeh, Ramesh, Tan, Chandran, Ching, Mohd Noor, Krishnasamy, Teng (bib9) 2020; 59 Padmanabhan, Gervaso, Carrozzo, Scalera, Sannino, Licciulli (bib19) 2013; 39 Safarzadeh, Chee, Ramesh, Ahmad Fauzi (bib8) 2020; 46 Eliaz, Metoki (bib2) 2017; 10 Youness, Taha, Ibrahim (bib24) 2021; 257 Mezahi, Lucas Girot, Oudadesse, Harabi (bib25) 2018; 54 Borkowski, Przekora, Belcarz, Palka, Jozefaciuk, Lübek, Jojczuk, Nogalski, Ginalska (bib21) 2020; 116 Lin, Zhu, Zeng (bib17) 2019; 365 Olszak-Humienik, Jablonski (bib34) 2015; 119 Katti (10.1016/j.ceramint.2021.02.216_bib1) 2004; 39 Kenzour (10.1016/j.ceramint.2021.02.216_bib13) 2019; 45 Denry (10.1016/j.ceramint.2021.02.216_bib32) 2014; 30 Borkowski (10.1016/j.ceramint.2021.02.216_bib21) 2020; 116 Mazón (10.1016/j.ceramint.2021.02.216_bib38) 2018; 44 Ramesh (10.1016/j.ceramint.2021.02.216_bib7) 2008; 206 Eliaz (10.1016/j.ceramint.2021.02.216_bib2) 2017; 10 Sprio (10.1016/j.ceramint.2021.02.216_bib20) 2008; 361–363 Mokhtari (10.1016/j.ceramint.2021.02.216_bib27) 2019; 136 Mirjalili (10.1016/j.ceramint.2021.02.216_bib11) 2020; 46 Nasiri-Tabrizi (10.1016/j.ceramint.2021.02.216_bib35) 2013; 39 Denry (10.1016/j.ceramint.2021.02.216_bib30) 2018; 106 Bogdanov (10.1016/j.ceramint.2021.02.216_bib10) 2009; 35 Khan (10.1016/j.ceramint.2021.02.216_bib18) 2014; 35 Youness (10.1016/j.ceramint.2021.02.216_bib24) 2021; 257 Muralithran (10.1016/j.ceramint.2021.02.216_bib5) 2000; 26 Golafshan (10.1016/j.ceramint.2021.02.216_bib22) 2021; 120 Lin (10.1016/j.ceramint.2021.02.216_bib17) 2019; 365 Safarzadeh (10.1016/j.ceramint.2021.02.216_bib9) 2020; 59 Zawrah (10.1016/j.ceramint.2021.02.216_bib39) 2002; 28 Azami (10.1016/j.ceramint.2021.02.216_bib26) 2011; 37 Djouallah (10.1016/j.ceramint.2021.02.216_bib23) 2021; 47 Safarzadeh (10.1016/j.ceramint.2021.02.216_bib8) 2020; 46 Belhouchet (10.1016/j.ceramint.2021.02.216_bib29) 2016; 126 Böhme (10.1016/j.ceramint.2021.02.216_bib36) 2019; 6 Betancur-Granados (10.1016/j.ceramint.2021.02.216_bib37) 2019; 45 Nasiri-Tabrizi (10.1016/j.ceramint.2021.02.216_bib15) 2013; 39 Amina Gharbi (10.1016/j.ceramint.2021.02.216_bib31) 2015; 5 Pagliari (10.1016/j.ceramint.2021.02.216_bib33) 2013; 33 Ooi (10.1016/j.ceramint.2021.02.216_bib4) 2007; 33 Tõnsuaadu (10.1016/j.ceramint.2021.02.216_bib3) 2012; 110 Montazerian (10.1016/j.ceramint.2021.02.216_bib28) 2015; 41 Sopyan (10.1016/j.ceramint.2021.02.216_bib6) 2007; 8 Padmanabhan (10.1016/j.ceramint.2021.02.216_bib19) 2013; 39 Taktak (10.1016/j.ceramint.2021.02.216_bib12) 2018; 86 Fuh (10.1016/j.ceramint.2021.02.216_bib16) 2017; 75 Olszak-Humienik (10.1016/j.ceramint.2021.02.216_bib34) 2015; 119 Nasiri-Tabrizi (10.1016/j.ceramint.2021.02.216_bib14) 2012 Mezahi (10.1016/j.ceramint.2021.02.216_bib25) 2018; 54 |
References_xml | – volume: 37 start-page: 2007 year: 2011 end-page: 2014 ident: bib26 article-title: Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications publication-title: Ceram. Int. contributor: fullname: Rabiee – volume: 39 start-page: 619 year: 2013 end-page: 627 ident: bib19 article-title: Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering publication-title: Ceram. Int. contributor: fullname: Licciulli – volume: 5 start-page: 74 year: 2015 end-page: 80 ident: bib31 article-title: A new glance at physico-chemical comportments of silicate bioactive glasses: influence of partial substitution: borosilicate versus fluorosilicate glasses publication-title: Int. J. Eng. Innov. Technol. contributor: fullname: Amina Gharbi – volume: 35 start-page: 245 year: 2014 end-page: 252 ident: bib18 article-title: Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration publication-title: Mater. Sci. Eng. C contributor: fullname: Khan – volume: 10 start-page: 334 year: 2017 ident: bib2 article-title: Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications publication-title: Mater. (Basel, Switzerland) contributor: fullname: Metoki – volume: 75 start-page: 798 year: 2017 end-page: 806 ident: bib16 article-title: Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate publication-title: Mater. Sci. Eng. C contributor: fullname: Lin – volume: 206 start-page: 221 year: 2008 end-page: 230 ident: bib7 article-title: Densification behaviour of nanocrystalline hydroxyapatite bioceramics publication-title: J. Mater. Process. Technol. contributor: fullname: Sopyan – volume: 45 start-page: 9589 year: 2019 end-page: 9595 ident: bib37 article-title: Dicalcium silicate (2CaO·SiO publication-title: Ceram. Int. contributor: fullname: Restrepo-Baena – volume: 365 start-page: 129 year: 2019 end-page: 133 ident: bib17 article-title: Sr- and Si-containing bioceramic stimulate in vitro osteogenesis publication-title: Surf. Coating. Technol. contributor: fullname: Zeng – volume: 6 start-page: 247 year: 2019 end-page: 259 ident: bib36 article-title: In situ Raman imaging of high-temperature solid-state reactions in the CaSO publication-title: Int. J. Coal Sci. Technol. contributor: fullname: Geisler – volume: 126 start-page: 1045 year: 2016 end-page: 1057 ident: bib29 article-title: Preparation and characterization of anorthite and hydroxyapatite from Algerian kaolin and natural phosphate publication-title: J. Therm. Anal. Calorim. contributor: fullname: Leriche – volume: 47 start-page: 3553 year: 2021 end-page: 3564 ident: bib23 article-title: Sintering behavior of fluorapatite-based composites produced from natural phosphate and alumina publication-title: Ceram. Int. contributor: fullname: Kherifi – volume: 136 start-page: 1515 year: 2019 end-page: 1526 ident: bib27 article-title: In situ high-temperature X-ray diffraction, FT-IR and thermal analysis studies of the reaction between natural hydroxyapatite and aluminum powder publication-title: J. Therm. Anal. Calorim. contributor: fullname: Guermat – volume: 41 start-page: 11024 year: 2015 end-page: 11045 ident: bib28 article-title: Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics publication-title: Ceram. Int. contributor: fullname: Zanotto – volume: 39 start-page: 133 year: 2004 end-page: 142 ident: bib1 article-title: Biomaterials in total joint replacement publication-title: Colloids Surf. B Biointerfaces contributor: fullname: Katti – volume: 361–363 start-page: 423 year: 2008 end-page: 426 ident: bib20 article-title: Bioactive hydroxyapatite/calcium silicate composites obtained by fast hot pressing: structure and flexural strength publication-title: Key Eng. Mater. contributor: fullname: Dalle Fabbriche – volume: 110 start-page: 647 year: 2012 end-page: 659 ident: bib3 article-title: A review on the thermal stability of calcium apatites publication-title: J. Therm. Anal. Calorim. contributor: fullname: Veiderma – volume: 33 start-page: 1171 year: 2007 end-page: 1177 ident: bib4 article-title: Properties of hydroxyapatite produced by annealing of bovine bone publication-title: Ceram. Int. contributor: fullname: Ramesh – start-page: 754704 year: 2012 ident: bib14 article-title: Mechanochemical synthesis of fluorapatite-zinc oxide (FAp-ZnO) composite nanopowders publication-title: ISRN Ceram. contributor: fullname: Fahami – volume: 44 start-page: 537 year: 2018 end-page: 545 ident: bib38 article-title: Porous scaffold prepared from α′L-Dicalcium silicate doped with phosphorus for bone grafts publication-title: Ceram. Int. contributor: fullname: De Aza – volume: 30 start-page: 112 year: 2014 end-page: 121 ident: bib32 article-title: Low temperature sintering of fluorapatite glass-ceramics publication-title: Dent. Mater. contributor: fullname: Holloway – volume: 59 start-page: 73 year: 2020 end-page: 80 ident: bib9 article-title: Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios publication-title: Bol. Soc. Espanola Ceram. Vidr. contributor: fullname: Teng – volume: 86 start-page: 121 year: 2018 end-page: 128 ident: bib12 article-title: Tricalcium phosphate-fluorapatite as bone tissue engineering: evaluation of bioactivity and biocompatibility publication-title: Mater. Sci. Eng. C contributor: fullname: Keskes – volume: 106 start-page: 291 year: 2018 end-page: 299 ident: bib30 article-title: Rapid vacuum sintering: a novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering publication-title: J. Biomed. Mater. Res. B Appl. Biomater. contributor: fullname: Holloway – volume: 8 start-page: 116 year: 2007 end-page: 123 ident: bib6 article-title: Porous hydroxyapatite for artifical bone applications publication-title: Sci. Technol. Adv. Mater. contributor: fullname: Khalid – volume: 54 start-page: 609 year: 2018 end-page: 619 ident: bib25 article-title: Reactivity features of original sol-gel-derived 52S4 glass versus heat treatment temperature publication-title: J. Aust. Ceram. Soc. contributor: fullname: Harabi – volume: 46 start-page: 26784 year: 2020 end-page: 26789 ident: bib8 article-title: Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA) publication-title: Ceram. Int. contributor: fullname: Ahmad Fauzi – volume: 39 start-page: 5125 year: 2013 end-page: 5136 ident: bib35 article-title: Reaction mechanisms of synthesis and decomposition of fluorapatite–zirconia composite nanopowders publication-title: Ceram. Int. contributor: fullname: Fahami – volume: 45 start-page: 20258 year: 2019 end-page: 20265 ident: bib13 article-title: Sintering behavior of anorthite-based composite ceramics produced from natural phosphate and kaolin publication-title: Ceram. Int. contributor: fullname: Ramesh – volume: 26 start-page: 221 year: 2000 end-page: 230 ident: bib5 article-title: The effects of sintering temperature on the properties of hydroxyapatite publication-title: Ceram. Int. contributor: fullname: Ramesh – volume: 120 start-page: 111611 year: 2021 ident: bib22 article-title: Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects publication-title: Mater. Sci. Eng. C contributor: fullname: Dolatshahi-Pirouzck – volume: 33 start-page: 3403 year: 2013 end-page: 3410 ident: bib33 article-title: A kinetic study of the quartz–cristobalite phase transition publication-title: J. Eur. Ceram. Soc. contributor: fullname: Francescon – volume: 28 start-page: 123 year: 2002 end-page: 130 ident: bib39 article-title: Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites publication-title: Ceram. Int. contributor: fullname: Hamzawy – volume: 39 start-page: 7331 year: 2013 end-page: 7342 ident: bib15 article-title: Effect of zirconia content on the mechanosynthesis and structural features of fluorapatite-based composite nanopowders publication-title: Ceram. Int. contributor: fullname: Fahami – volume: 257 start-page: 123264 year: 2021 ident: bib24 article-title: Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications publication-title: Mater. Chem. Phys. contributor: fullname: Ibrahim – volume: 35 start-page: 1651 year: 2009 end-page: 1655 ident: bib10 article-title: Bioactive fluorapatite-containing glass ceramics publication-title: Ceram. Int. contributor: fullname: Markovska – volume: 46 start-page: 21256 year: 2020 end-page: 21267 ident: bib11 article-title: Examination of morphology, degradation and biocompatibility of fluorapatite–forsterite nanocomposite publication-title: Ceram. Int. contributor: fullname: Lotfi – volume: 116 start-page: 111211 year: 2020 ident: bib21 article-title: Fluorapatite ceramics for bone tissue regeneration: synthesis, characterization and assessment of biomedical potential publication-title: Mater. Sci. Eng. C contributor: fullname: Ginalska – volume: 119 start-page: 2239 year: 2015 end-page: 2248 ident: bib34 article-title: Thermal behavior of natural dolomite publication-title: J. Therm. Anal. Calorim. contributor: fullname: Jablonski – volume: 365 start-page: 129 year: 2019 ident: 10.1016/j.ceramint.2021.02.216_bib17 article-title: Sr- and Si-containing bioceramic stimulate in vitro osteogenesis publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2018.10.063 contributor: fullname: Lin – volume: 35 start-page: 1651 year: 2009 ident: 10.1016/j.ceramint.2021.02.216_bib10 article-title: Bioactive fluorapatite-containing glass ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2008.07.021 contributor: fullname: Bogdanov – volume: 6 start-page: 247 year: 2019 ident: 10.1016/j.ceramint.2021.02.216_bib36 article-title: In situ Raman imaging of high-temperature solid-state reactions in the CaSO4–SiO2 system publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-019-0252-7 contributor: fullname: Böhme – volume: 46 start-page: 26784 year: 2020 ident: 10.1016/j.ceramint.2021.02.216_bib8 article-title: Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA) publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.153 contributor: fullname: Safarzadeh – volume: 45 start-page: 9589 year: 2019 ident: 10.1016/j.ceramint.2021.02.216_bib37 article-title: Dicalcium silicate (2CaO·SiO2) synthesized through flame spray pyrolysis and solution combustion synthesis methods publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.10.073 contributor: fullname: Betancur-Granados – volume: 33 start-page: 1171 year: 2007 ident: 10.1016/j.ceramint.2021.02.216_bib4 article-title: Properties of hydroxyapatite produced by annealing of bovine bone publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2006.04.001 contributor: fullname: Ooi – volume: 45 start-page: 20258 year: 2019 ident: 10.1016/j.ceramint.2021.02.216_bib13 article-title: Sintering behavior of anorthite-based composite ceramics produced from natural phosphate and kaolin publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.299 contributor: fullname: Kenzour – volume: 41 start-page: 11024 year: 2015 ident: 10.1016/j.ceramint.2021.02.216_bib28 article-title: Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.05.047 contributor: fullname: Montazerian – volume: 28 start-page: 123 year: 2002 ident: 10.1016/j.ceramint.2021.02.216_bib39 article-title: Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites publication-title: Ceram. Int. doi: 10.1016/S0272-8842(01)00067-0 contributor: fullname: Zawrah – volume: 35 start-page: 245 year: 2014 ident: 10.1016/j.ceramint.2021.02.216_bib18 article-title: Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.11.013 contributor: fullname: Khan – volume: 39 start-page: 5125 year: 2013 ident: 10.1016/j.ceramint.2021.02.216_bib35 article-title: Reaction mechanisms of synthesis and decomposition of fluorapatite–zirconia composite nanopowders publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.12.008 contributor: fullname: Nasiri-Tabrizi – volume: 39 start-page: 133 year: 2004 ident: 10.1016/j.ceramint.2021.02.216_bib1 article-title: Biomaterials in total joint replacement publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2003.12.002 contributor: fullname: Katti – volume: 26 start-page: 221 year: 2000 ident: 10.1016/j.ceramint.2021.02.216_bib5 article-title: The effects of sintering temperature on the properties of hydroxyapatite publication-title: Ceram. Int. doi: 10.1016/S0272-8842(99)00046-2 contributor: fullname: Muralithran – volume: 8 start-page: 116 year: 2007 ident: 10.1016/j.ceramint.2021.02.216_bib6 article-title: Porous hydroxyapatite for artifical bone applications publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2006.11.017 contributor: fullname: Sopyan – volume: 110 start-page: 647 year: 2012 ident: 10.1016/j.ceramint.2021.02.216_bib3 article-title: A review on the thermal stability of calcium apatites publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-011-1877-y contributor: fullname: Tõnsuaadu – volume: 136 start-page: 1515 year: 2019 ident: 10.1016/j.ceramint.2021.02.216_bib27 article-title: In situ high-temperature X-ray diffraction, FT-IR and thermal analysis studies of the reaction between natural hydroxyapatite and aluminum powder publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7812-8 contributor: fullname: Mokhtari – volume: 54 start-page: 609 year: 2018 ident: 10.1016/j.ceramint.2021.02.216_bib25 article-title: Reactivity features of original sol-gel-derived 52S4 glass versus heat treatment temperature publication-title: J. Aust. Ceram. Soc. doi: 10.1007/s41779-018-0189-0 contributor: fullname: Mezahi – volume: 59 start-page: 73 year: 2020 ident: 10.1016/j.ceramint.2021.02.216_bib9 article-title: Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios publication-title: Bol. Soc. Espanola Ceram. Vidr. doi: 10.1016/j.bsecv.2019.08.001 contributor: fullname: Safarzadeh – volume: 5 start-page: 74 year: 2015 ident: 10.1016/j.ceramint.2021.02.216_bib31 article-title: A new glance at physico-chemical comportments of silicate bioactive glasses: influence of partial substitution: borosilicate versus fluorosilicate glasses publication-title: Int. J. Eng. Innov. Technol. contributor: fullname: Amina Gharbi – volume: 33 start-page: 3403 year: 2013 ident: 10.1016/j.ceramint.2021.02.216_bib33 article-title: A kinetic study of the quartz–cristobalite phase transition publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.06.014 contributor: fullname: Pagliari – start-page: 754704 year: 2012 ident: 10.1016/j.ceramint.2021.02.216_bib14 article-title: Mechanochemical synthesis of fluorapatite-zinc oxide (FAp-ZnO) composite nanopowders publication-title: ISRN Ceram. contributor: fullname: Nasiri-Tabrizi – volume: 30 start-page: 112 year: 2014 ident: 10.1016/j.ceramint.2021.02.216_bib32 article-title: Low temperature sintering of fluorapatite glass-ceramics publication-title: Dent. Mater. doi: 10.1016/j.dental.2013.10.009 contributor: fullname: Denry – volume: 47 start-page: 3553 year: 2021 ident: 10.1016/j.ceramint.2021.02.216_bib23 article-title: Sintering behavior of fluorapatite-based composites produced from natural phosphate and alumina publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.202 contributor: fullname: Djouallah – volume: 46 start-page: 21256 year: 2020 ident: 10.1016/j.ceramint.2021.02.216_bib11 article-title: Examination of morphology, degradation and biocompatibility of fluorapatite–forsterite nanocomposite publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.216 contributor: fullname: Mirjalili – volume: 116 start-page: 111211 year: 2020 ident: 10.1016/j.ceramint.2021.02.216_bib21 article-title: Fluorapatite ceramics for bone tissue regeneration: synthesis, characterization and assessment of biomedical potential publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111211 contributor: fullname: Borkowski – volume: 39 start-page: 619 year: 2013 ident: 10.1016/j.ceramint.2021.02.216_bib19 article-title: Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.06.073 contributor: fullname: Padmanabhan – volume: 75 start-page: 798 year: 2017 ident: 10.1016/j.ceramint.2021.02.216_bib16 article-title: Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.02.065 contributor: fullname: Fuh – volume: 10 start-page: 334 year: 2017 ident: 10.1016/j.ceramint.2021.02.216_bib2 article-title: Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications publication-title: Mater. (Basel, Switzerland) doi: 10.3390/ma10040334 contributor: fullname: Eliaz – volume: 126 start-page: 1045 year: 2016 ident: 10.1016/j.ceramint.2021.02.216_bib29 article-title: Preparation and characterization of anorthite and hydroxyapatite from Algerian kaolin and natural phosphate publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5655-8 contributor: fullname: Belhouchet – volume: 206 start-page: 221 year: 2008 ident: 10.1016/j.ceramint.2021.02.216_bib7 article-title: Densification behaviour of nanocrystalline hydroxyapatite bioceramics publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.12.027 contributor: fullname: Ramesh – volume: 86 start-page: 121 year: 2018 ident: 10.1016/j.ceramint.2021.02.216_bib12 article-title: Tricalcium phosphate-fluorapatite as bone tissue engineering: evaluation of bioactivity and biocompatibility publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.11.011 contributor: fullname: Taktak – volume: 37 start-page: 2007 year: 2011 ident: 10.1016/j.ceramint.2021.02.216_bib26 article-title: Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.02.025 contributor: fullname: Azami – volume: 119 start-page: 2239 year: 2015 ident: 10.1016/j.ceramint.2021.02.216_bib34 article-title: Thermal behavior of natural dolomite publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-014-4301-6 contributor: fullname: Olszak-Humienik – volume: 39 start-page: 7331 year: 2013 ident: 10.1016/j.ceramint.2021.02.216_bib15 article-title: Effect of zirconia content on the mechanosynthesis and structural features of fluorapatite-based composite nanopowders publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.02.072 contributor: fullname: Nasiri-Tabrizi – volume: 361–363 start-page: 423 year: 2008 ident: 10.1016/j.ceramint.2021.02.216_bib20 article-title: Bioactive hydroxyapatite/calcium silicate composites obtained by fast hot pressing: structure and flexural strength publication-title: Key Eng. Mater. contributor: fullname: Sprio – volume: 44 start-page: 537 year: 2018 ident: 10.1016/j.ceramint.2021.02.216_bib38 article-title: Porous scaffold prepared from α′L-Dicalcium silicate doped with phosphorus for bone grafts publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.09.208 contributor: fullname: Mazón – volume: 120 start-page: 111611 year: 2021 ident: 10.1016/j.ceramint.2021.02.216_bib22 article-title: Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111611 contributor: fullname: Golafshan – volume: 257 start-page: 123264 year: 2021 ident: 10.1016/j.ceramint.2021.02.216_bib24 article-title: Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123264 contributor: fullname: Youness – volume: 106 start-page: 291 year: 2018 ident: 10.1016/j.ceramint.2021.02.216_bib30 article-title: Rapid vacuum sintering: a novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.33825 contributor: fullname: Denry |
SSID | ssj0016940 |
Score | 2.3983648 |
Snippet | In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 16483 |
SubjectTerms | Composites Fluorapatite Quartz Sintering behaviour |
Title | Sintering behaviour of fluorapatite–silicate composites produced from natural fluorapatite and quartz |
URI | https://dx.doi.org/10.1016/j.ceramint.2021.02.216 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUquMABsYqyVD5wTZM4zuJjVVEVEL2USr1FtuOgVJCWLhcOiH_gD_kSZrKgICFx4JZEsRJNnJk31nvPhFyFPHDCREhLJJACuVSOJaHKW8wARuLKY2GAAuf7UTCc8NupP22Rfq2FQVpllfvLnF5k6-qKXUXTXmSZPYaGikURZ9C0AEbwMQ9zKH8wp7tv3zQPNxC8XGcJ4c-Huxsq4VlXm6V8znLkVLLCu5Phvue_FahG0Rnsk70KLdJe-UIHpGXyQ7Lb8BA8Io9jdHzAY1pJ7jdLOk9p-rSZ4-7m6Jv8-f6xykq1G0UOORK1zIouCrdXk1DUmNDC4hMe1hxIZZ7QF-R9vh6TyeD6oT-0qt0TLO25bG25ykDhYUL5wpOpDnXElRYmiIRy0OIlQPGQ0JKFTtF5SaMBSwnAXKlMua-9E7KVz3NzSqiRgkcmdTWULmhwAumGjjBceioBwOakbWLXIYsXpUlGXLPHZnEd5BiDHDsshiC3iagjG__43DFk8j_Gnv1j7DnZwTPkern-BdlaLzfmElDFWnWKadMh272bu-HoC2fgz9g |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHxCrK6gPXtInjLD6iiqpA20tbqTfLcRzUCtLS5cIB8Q_8IV_CTBYUJCQO3KIkVqKJM_PGeu-ZkOuA-3YQC2WJGFIgV5FtKajyFjOAkXjkssBHgXOv73dG_H7sjTdIq9TCIK2yyP15Ts-ydXGmWUSzOZ9MmgNoqFgYcgZNC2AED_LwJkd8DJO68fbN83B8wfOFlgB-fbi9IhOeNrRZqOdJiqRKlpl3Mtz4_LcKVak67T2yW8BFepO_0T7ZMOkB2amYCB6SxwFaPuAxLTT36wWdJTR5Ws9we3M0Tv58_1hOcrkbRRI5MrXMks4zu1cTUxSZ0MzjEx5WHUhVGtMXJH6-HpFR-3bY6ljF9gmWdh22spzIQOVhIvKEqxId6JBHWhg_FJGNHi8-qoeEViyws9ZLGQ1gSgDoSlTCPe0ek1o6S80JoUYJHprE0VC7oMPxlRPYwnDlRjEgNjupk2YZMjnPXTJkSR-byjLIEoMsbSYhyHUiysjKH99bQir_Y-zpP8Zeka3OsNeV3bv-wxnZxitI_HK8c1JbLdbmAiDGKrrMptAXbBHRcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering+behaviour+of+fluorapatite%E2%80%93silicate+composites+produced+from+natural+fluorapatite+and+quartz&rft.jtitle=Ceramics+international&rft.au=Kherifi%2C+D.&rft.au=Belhouchet%2C+H.&rft.au=Ramesh%2C+S.&rft.au=Lee%2C+K.Y.+Sara&rft.date=2021-06-15&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=47&rft.issue=12&rft.spage=16483&rft.epage=16490&rft_id=info:doi/10.1016%2Fj.ceramint.2021.02.216&rft.externalDocID=S0272884221005952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |