Molybdate-intercalated NiMn layered double hydroxide nanoarrays supercapacitor electrode with enhanced stability via a differentiated deposition strategy

Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered structure, adjustable interlayer spacing, tailorable chemical valences, and ion exchange ability. However, NiMn-LDH still suffers from poor conduct...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 594; p. 233990
Main Authors Zeng, Lei, Tang, Tingfu, Liang, Yifan, Jiang, Shiwen, Xu, Xuetang, Wang, Fan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered structure, adjustable interlayer spacing, tailorable chemical valences, and ion exchange ability. However, NiMn-LDH still suffers from poor conductivity and low cyclic stability during the charge/discharge process. In this work, NiMn-LDH nanoarrays are grown on a carbon cloth substrate using a novel differentiated solvo/hydrothermal deposition strategy, in which molybdate anions act as precipitators during the second-step deposition and also as intercalated anions in the gallery of NiMn-LDH. The molybdate-intercalated NiMn-LDH nanoarray consists of open channels that allow electrolyte access and interconnected nanosheets decorated with tiny nanoflakes, and exhibits a high capacitance of 1712 F g−1 at 1 A g−1 with good cyclic performance, retaining 94.4 % of its capacitance after 8,000 charge/discharge cycles. The as-assembled NiMn-LDH//activated carbon hybrid supercapacitor delivers a high specific capacitance of 148.4 F g−1 at 1 A g−1, and achieves a high energy density of 66.8 Wh kg−1 at a power density of 900 W kg−1 with an excellent cycle stability (96.6 % capacitance maintained after 12,000 cycles). [Display omitted] •Molybdate as precipitator and intercalated anions for differentiated deposition.•NiMn-LDH nanoarray comprises open channels for effective electrolyte access.•Nanosheets decorated with tiny nanoflakes for enhanced accessible surface area.•Molybdate-intercalated NiMn-LDH shows the capacitance of 1712 F g−1 at 1 A g−1.•All-solid-state asymmetric supercapacitor delivers 66.8 Wh kg−1 at 900 W kg−1.
AbstractList Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered structure, adjustable interlayer spacing, tailorable chemical valences, and ion exchange ability. However, NiMn-LDH still suffers from poor conductivity and low cyclic stability during the charge/discharge process. In this work, NiMn-LDH nanoarrays are grown on a carbon cloth substrate using a novel differentiated solvo/hydrothermal deposition strategy, in which molybdate anions act as precipitators during the second-step deposition and also as intercalated anions in the gallery of NiMn-LDH. The molybdate-intercalated NiMn-LDH nanoarray consists of open channels that allow electrolyte access and interconnected nanosheets decorated with tiny nanoflakes, and exhibits a high capacitance of 1712 F g−1 at 1 A g−1 with good cyclic performance, retaining 94.4 % of its capacitance after 8,000 charge/discharge cycles. The as-assembled NiMn-LDH//activated carbon hybrid supercapacitor delivers a high specific capacitance of 148.4 F g−1 at 1 A g−1, and achieves a high energy density of 66.8 Wh kg−1 at a power density of 900 W kg−1 with an excellent cycle stability (96.6 % capacitance maintained after 12,000 cycles). [Display omitted] •Molybdate as precipitator and intercalated anions for differentiated deposition.•NiMn-LDH nanoarray comprises open channels for effective electrolyte access.•Nanosheets decorated with tiny nanoflakes for enhanced accessible surface area.•Molybdate-intercalated NiMn-LDH shows the capacitance of 1712 F g−1 at 1 A g−1.•All-solid-state asymmetric supercapacitor delivers 66.8 Wh kg−1 at 900 W kg−1.
ArticleNumber 233990
Author Tang, Tingfu
Liang, Yifan
Zeng, Lei
Xu, Xuetang
Wang, Fan
Jiang, Shiwen
Author_xml – sequence: 1
  givenname: Lei
  surname: Zeng
  fullname: Zeng, Lei
– sequence: 2
  givenname: Tingfu
  surname: Tang
  fullname: Tang, Tingfu
– sequence: 3
  givenname: Yifan
  surname: Liang
  fullname: Liang, Yifan
– sequence: 4
  givenname: Shiwen
  surname: Jiang
  fullname: Jiang, Shiwen
– sequence: 5
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  email: xxtang@gxu.edu.cn
– sequence: 6
  givenname: Fan
  orcidid: 0000-0002-6106-4724
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
BookMark eNqFkElOxDAQRb0AifEKyBdI4yHEHYkFCDFJDBtYW-64TFcr2JHtBnIUbotDw4YNKw-q96vq7ZEtHzwQcsTZjDPeHK9mqyG8p7COM8GEnAkp25ZtkV0m1bxS6kTukL2UVowxzhXbJZ_3oR8X1mSo0GeInenL3dIHvPe0NyPE8rBhveiBLkcbwwdaoN74YGI0Y6JpPUzUYDrMIVLoocsxlJp3zEsKfml8VyJSNgvsMY_0DQ011KJzJdtn_G5nYQgJMwZfKmP5ehkPyLYzfYLDn3OfPF9dPl3cVHeP17cX53dVJ7nIFVe8sXUNTArb8lqdtIw1rlVOgVACnJsrI-a1cNLVnXQtbxorxGIupHC8Ldg-Od3kdjGkFMHpsomZRimDYK8505NavdK_avWkVm_UFrz5gw8RX00c_wfPNiCU5d4Qok4dwiQLY3GobcD_Ir4AVxahmw
CitedBy_id crossref_primary_10_1007_s12274_024_6915_8
crossref_primary_10_20517_energymater_2024_43
crossref_primary_10_1002_smll_202401315
crossref_primary_10_1016_j_cej_2024_150981
crossref_primary_10_1016_j_indcrop_2024_120035
Cites_doi 10.1016/j.ensm.2022.08.039
10.1016/j.rser.2019.01.023
10.1039/C7TA03932H
10.1016/j.nanoen.2021.106079
10.1016/j.jallcom.2023.169865
10.3390/nano8100747
10.1016/j.jcis.2023.06.123
10.1016/j.electacta.2020.137081
10.1021/acsanm.0c01419
10.1016/j.jpowsour.2023.232712
10.1021/ja5096733
10.1039/C5TA03394B
10.1016/S1872-2067(20)63724-X
10.1016/j.ijhydene.2019.04.045
10.1016/j.electacta.2021.139692
10.1002/celc.201901122
10.1021/acsaem.0c00393
10.1126/science.1212741
10.1016/j.jpowsour.2019.227590
10.1016/j.electacta.2016.02.080
10.1016/j.jcis.2021.12.082
10.1016/j.est.2022.104899
10.1021/acsaem.0c00224
10.1016/j.jallcom.2022.163926
10.1016/j.cej.2021.134100
10.1016/j.jallcom.2022.165976
10.1016/j.cej.2021.128617
10.1002/aenm.202003311
10.1002/smll.201702616
10.1002/adfm.201908223
10.1021/acsami.1c04525
10.1016/j.jcis.2019.02.076
10.1039/D0TA11260G
10.1016/j.electacta.2018.10.021
10.1016/j.jpowsour.2020.227912
10.1039/D0NR06225A
10.1039/C6TA02746F
10.1016/j.est.2022.104300
10.1039/D0TA03463K
10.1016/j.est.2023.107327
10.1016/j.cej.2017.12.055
10.1016/j.est.2022.104223
10.1002/cssc.202000104
10.1016/j.jcis.2023.05.128
10.1016/j.mser.2022.100713
10.1002/cjoc.202100891
10.1016/j.est.2023.109132
10.1021/acs.inorgchem.2c03739
10.1016/j.est.2021.102858
10.1002/eem2.12116
10.1021/acssuschemeng.7b00758
10.1016/j.est.2022.104834
10.1021/acs.energyfuels.3c00315
10.1016/j.cej.2020.124598
10.1016/j.jallcom.2023.169325
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2023.233990
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jpowsour_2023_233990
S0378775323013666
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABMAC
ABXRA
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c312t-1716d44e032d914759006f97f7e272eff87a2842f3f4c3f9166d22b8232f19e03
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 03:55:10 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Sat Sep 07 15:51:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitor
Differentiated deposition
NiMn-LDH
Molybdate intercalation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-1716d44e032d914759006f97f7e272eff87a2842f3f4c3f9166d22b8232f19e03
ORCID 0000-0002-6106-4724
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2023_233990
crossref_primary_10_1016_j_jpowsour_2023_233990
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2023_233990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-28
PublicationDateYYYYMMDD 2024-02-28
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-28
  day: 28
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Ye, Liang, Wu, Long, Xu, Wang (bib14) 2020; 449
Zhang, Huo, Wang, Lou, Xiang, Xie, Wang, Du, Wang, Yin (bib47) 2021; 412
Liu, Xu, Zheng, Li, Zeng, Lu (bib7) 2020; 8
Huang, Xie, You, Yuan, Xu, Xie, Chen (bib5) 2023; 33
Xie, Jiang, Chen, Mao, Ji, Fu, Sun, Wong (bib20) 2020; 393
Wang, Zhang, Yang, Yan, Hong, Dong, Liu, Zhang, Wen (bib18) 2019; 295
Yao, Yu, Wan, Du, Zhang, Chen, Xie (bib23) 2023; 649
Xin, Dai, Lv, Wei, Li, Li, Xue, Shi, Zou, Chen, Liu (bib30) 2021; 13
Zhu, Wu, Zeng, Liang, Xu, Wang (bib53) 2023; 37
Xu, Sun, Han, Wei, Cheng, Yin, Cui (bib50) 2020; 3
Acharya, Ko, Seong, Seo, Khil, Kim, Kim (bib13) 2020; 3
Guo, Liu, Hao, Zhu, Dong, Wen, Zha (bib32) 2016; 194
Guo, Song, Li, Tan, Ma, Pang, Wang, Zhang (bib41) 2019; 544
Zhang, Hu, Nie, Zhao, Wang, Li, Liu, Tang, Zhang, Li, Sun, Duan (bib55) 2021; 31
Wang, Zeng, Zhang, Long, Xu, Yan (bib58) 2022; 921
Wang, Cheng, Qiao, Zhang, Xia, Fan, Huang, Yang (bib26) 2022; 52
Xu, Zhao, Zhan, He, Wang, Chen, Wang, Ren, Chen (bib15) 2022; 53
Xiao, Ma, Xu, Liu, Li, Wang, Wang, Liu, Yuan (bib27) 2022; 611
Lin, Li, Yang, Li, Yao, Zhang, Yan, Xu, Komarneni (bib9) 2023; 560
Yan, Zhang, Zeng, Zhang, Wan, Yang (bib60) 2022; 52
Luo, Yin, Zhang, Zhang, Zheng, Han (bib34) 2020; 3
Hou, Yu, Zhou, Chen, Xu, Zhao, Gen, Zhang (bib57) 2023; 646
Li, Yan, Huo, Wang (bib48) 2023; 62
Gu, Zhang (bib51) 2016; 4
Asl, Hadi, Salehghadimi, Tabrizi, Farhoudian, Babapoor, Pahlevani (bib6) 2022; 50
Jing, Dong, Zhang (bib17) 2020; 3
Yang, Wu, Cai, Zhu, Zhang, Lu, Zhang (bib24) 2017; 5
Nejati, Davari, Akbari, Asadpour-Zeynali, Rezvani (bib28) 2019; 44
Mishra, Shetti, Basu, Reddy, Aminabhavi (bib10) 2019; 6
Tang, Zeng, Liang, Jiang, Dong, Xu, Wang (bib46) 2023; 73
Yang, Ye, Chen, Liao, Chen, Yang, Xu, Wang (bib38) 2020; 362
Li, Yang, Liao, Yang, Xu, Wang (bib12) 2022; 50
Yan, Wang, Cheng (bib16) 2018; 8
Wang, Wei, Du, Zhao, Liu, Wang, Zhou, An, Zhang (bib49) 2017; 5
Gao, Shang, Ding, Wen (bib8) 2021; 9
Han, Li, Lu, Luo, Wan, Li, Hu, Cheng (bib11) 2021; 86
Chen, He, Zhou, He, Meng, Cheng, Li (bib39) 2021; 21
Yu, Liu, Liu, Li, Ma (bib22) 2017; 13
Chen, Xue, Gao, Yu, Chen, Zhou, Sun, Huang (bib45) 2020; 12
Hsu, Chiang, Huang, Chao, Wu, Lu, Huang, Chang-Jian, Weng, Chen (bib21) 2022; 403
Dunn, Kamath, Tarascon (bib2) 2011; 334
Han, Zhao, Li (bib29) 2015; 3
Li, Sun, Cui, Li, Kou, Xu, Zhang (bib52) 2023; 949
Tsai, Ni, Chen, Huang (bib40) 2020; 454
Hu, Wang, Xiang, Zheng, Ma, Huo, Xie, Xu, Lin, Hu (bib31) 2021; 42
Li, Zang, Li, Li, Zou, Zhou, Su, Wang (bib43) 2020; 13
Dehghani-Sanij, Tharumalingam, Dusseault, Fraser (bib1) 2019; 104
Dong, Xie, Zhao, Qin, Huang (bib4) 2023; 152
Song, Hu (bib33) 2014; 136
Liu, Xu, Yang, Qian, Hua, Liu, Zheng, Lu (bib42) 2020; 16
Li, Zhou, Han, Gu, Ye, Xu, Wang, Li (bib44) 2022; 39
Chen, Lee (bib3) 2021; 11
Liang, Jiang, Zhang, Long, Yan, Dong, Luo, Xu, Wang (bib54) 2021; 41
Wang, Liu, Liu, Zhao, Wu (bib36) 2022; 903
Jiang, Qiao, Fu, Peng, Yu, Yang, Xia, Gao (bib25) 2021; 13
Wang, Zhao, Wang, Tian, Sun, Wang, Sun, Liu (bib59) 2023; 67
Tang, Shen, Cheng, Liang, Qu, Tabassum, Zou (bib19) 2020; 30
Ding, An, Ding, Zou, Zhao (bib37) 2022; 431
Lin, Jia, Liang, Chen, Cai, Qi, Qu, Cao, Fei, Feng (bib56) 2018; 336
Li, Long, Ye, Xu, Wang (bib35) 2023; 946
Gao (10.1016/j.jpowsour.2023.233990_bib8) 2021; 9
Li (10.1016/j.jpowsour.2023.233990_bib12) 2022; 50
Luo (10.1016/j.jpowsour.2023.233990_bib34) 2020; 3
Zhang (10.1016/j.jpowsour.2023.233990_bib55) 2021; 31
Xu (10.1016/j.jpowsour.2023.233990_bib50) 2020; 3
Huang (10.1016/j.jpowsour.2023.233990_bib5) 2023; 33
Wang (10.1016/j.jpowsour.2023.233990_bib36) 2022; 903
Zhang (10.1016/j.jpowsour.2023.233990_bib47) 2021; 412
Song (10.1016/j.jpowsour.2023.233990_bib33) 2014; 136
Wang (10.1016/j.jpowsour.2023.233990_bib58) 2022; 921
Liu (10.1016/j.jpowsour.2023.233990_bib42) 2020; 16
Liu (10.1016/j.jpowsour.2023.233990_bib7) 2020; 8
Yao (10.1016/j.jpowsour.2023.233990_bib23) 2023; 649
Han (10.1016/j.jpowsour.2023.233990_bib29) 2015; 3
Hou (10.1016/j.jpowsour.2023.233990_bib57) 2023; 646
Xie (10.1016/j.jpowsour.2023.233990_bib20) 2020; 393
Li (10.1016/j.jpowsour.2023.233990_bib52) 2023; 949
Wang (10.1016/j.jpowsour.2023.233990_bib26) 2022; 52
Chen (10.1016/j.jpowsour.2023.233990_bib3) 2021; 11
Dehghani-Sanij (10.1016/j.jpowsour.2023.233990_bib1) 2019; 104
Yang (10.1016/j.jpowsour.2023.233990_bib14) 2020; 449
Jiang (10.1016/j.jpowsour.2023.233990_bib25) 2021; 13
Xiao (10.1016/j.jpowsour.2023.233990_bib27) 2022; 611
Zhu (10.1016/j.jpowsour.2023.233990_bib53) 2023; 37
Lin (10.1016/j.jpowsour.2023.233990_bib56) 2018; 336
Lin (10.1016/j.jpowsour.2023.233990_bib9) 2023; 560
Li (10.1016/j.jpowsour.2023.233990_bib35) 2023; 946
Nejati (10.1016/j.jpowsour.2023.233990_bib28) 2019; 44
Chen (10.1016/j.jpowsour.2023.233990_bib39) 2021; 21
Yan (10.1016/j.jpowsour.2023.233990_bib16) 2018; 8
Yang (10.1016/j.jpowsour.2023.233990_bib38) 2020; 362
Yang (10.1016/j.jpowsour.2023.233990_bib24) 2017; 5
Asl (10.1016/j.jpowsour.2023.233990_bib6) 2022; 50
Guo (10.1016/j.jpowsour.2023.233990_bib32) 2016; 194
Jing (10.1016/j.jpowsour.2023.233990_bib17) 2020; 3
Acharya (10.1016/j.jpowsour.2023.233990_bib13) 2020; 3
Hsu (10.1016/j.jpowsour.2023.233990_bib21) 2022; 403
Dong (10.1016/j.jpowsour.2023.233990_bib4) 2023; 152
Wang (10.1016/j.jpowsour.2023.233990_bib49) 2017; 5
Xu (10.1016/j.jpowsour.2023.233990_bib15) 2022; 53
Gu (10.1016/j.jpowsour.2023.233990_bib51) 2016; 4
Hu (10.1016/j.jpowsour.2023.233990_bib31) 2021; 42
Tsai (10.1016/j.jpowsour.2023.233990_bib40) 2020; 454
Guo (10.1016/j.jpowsour.2023.233990_bib41) 2019; 544
Xin (10.1016/j.jpowsour.2023.233990_bib30) 2021; 13
Ding (10.1016/j.jpowsour.2023.233990_bib37) 2022; 431
Mishra (10.1016/j.jpowsour.2023.233990_bib10) 2019; 6
Yan (10.1016/j.jpowsour.2023.233990_bib60) 2022; 52
Chen (10.1016/j.jpowsour.2023.233990_bib45) 2020; 12
Liang (10.1016/j.jpowsour.2023.233990_bib54) 2021; 41
Tang (10.1016/j.jpowsour.2023.233990_bib19) 2020; 30
Han (10.1016/j.jpowsour.2023.233990_bib11) 2021; 86
Dunn (10.1016/j.jpowsour.2023.233990_bib2) 2011; 334
Wang (10.1016/j.jpowsour.2023.233990_bib59) 2023; 67
Wang (10.1016/j.jpowsour.2023.233990_bib18) 2019; 295
Yu (10.1016/j.jpowsour.2023.233990_bib22) 2017; 13
Tang (10.1016/j.jpowsour.2023.233990_bib46) 2023; 73
Li (10.1016/j.jpowsour.2023.233990_bib43) 2020; 13
Li (10.1016/j.jpowsour.2023.233990_bib44) 2022; 39
Li (10.1016/j.jpowsour.2023.233990_bib48) 2023; 62
References_xml – volume: 3
  start-page: 8679
  year: 2020
  end-page: 8690
  ident: bib13
  article-title: Hybrid electrodes based on Zn−Ni−Co ternary oxide nanowires and nanosheets for ultra-high-rate asymmetric supercapacitors
  publication-title: ACS Appl. Nano Mater.
– volume: 53
  start-page: 79
  year: 2022
  end-page: 135
  ident: bib15
  article-title: Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: progress and perspectives
  publication-title: Energy Storage Mater.
– volume: 403
  year: 2022
  ident: bib21
  article-title: Morphology evolution and electrochemical behavior of Ni
  publication-title: Electrochim. Acta
– volume: 946
  year: 2023
  ident: bib35
  article-title: Ni-Co layered double-hydroxide arrays on stainless steel substrate: interfacial hydroxide layer enhanced electrocatalyst with high stability for oxygen evolution reaction in alkaline media
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 16776
  year: 2017
  end-page: 16785
  ident: bib24
  article-title: Seed-assisted smart construction of high mass loading Ni–Co–Mn hydroxide nanoflakes for supercapacitor applications
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2021
  ident: bib25
  article-title: Integrated battery–capacitor electrodes: pyridinic N-doped porous carbon-coated abundant oxygen vacancy Mn–Ni–layered double oxide for hybrid supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 5393
  year: 2020
  end-page: 5404
  ident: bib50
  article-title: High-energy-density asymmetric supercapacitor based on a durable and stable manganese molybdate nanostructure electrode for energy storage systems
  publication-title: ACS Appl. Energy Mater.
– volume: 44
  start-page: 14842
  year: 2019
  end-page: 14852
  ident: bib28
  article-title: A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions
  publication-title: Int. J. Hydrogen Energy
– volume: 412
  year: 2021
  ident: bib47
  article-title: Stacking fault disorder induced by Mn doping in Ni(OH)
  publication-title: Chem. Eng. J.
– volume: 921
  year: 2022
  ident: bib58
  article-title: Enhanced supercapacitor performance of ultrathin NiCoMn(OH) nanosheets over NiCo
  publication-title: J. Alloys Compd.
– volume: 431
  year: 2022
  ident: bib37
  article-title: Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life
  publication-title: Chem. Eng. J.
– volume: 611
  start-page: 149
  year: 2022
  end-page: 160
  ident: bib27
  article-title: Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors
  publication-title: J. Colloid Interface Sci.
– volume: 67
  year: 2023
  ident: bib59
  article-title: Hierarchical and core-shell structured CuCo
  publication-title: J. Energy Storage
– volume: 6
  start-page: 5771
  year: 2019
  end-page: 5786
  ident: bib10
  article-title: Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors
  publication-title: Chemelectrochem
– volume: 903
  year: 2022
  ident: bib36
  article-title: NiCo layered double hydroxide nanosheets with enhanced electrochemical performance
  publication-title: J. Alloys Compd.
– volume: 86
  year: 2021
  ident: bib11
  article-title: High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage
  publication-title: Nano Energy
– volume: 393
  year: 2020
  ident: bib20
  article-title: NiMn hydroxides supported on porous Ni/graphene films as electrically and thermally conductive electrodes for supercapacitors
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2023
  ident: bib5
  article-title: Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 6224
  year: 2023
  end-page: 6232
  ident: bib48
  article-title: High-activity 2D/2D Core−Shell structure to NiMoO
  publication-title: Inorg. Chem.
– volume: 52
  year: 2022
  ident: bib60
  article-title: A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide
  publication-title: J. Energy Storage
– volume: 104
  start-page: 192
  year: 2019
  end-page: 208
  ident: bib1
  article-title: Study of energy storage systems and environmental challenges of batteries
  publication-title: Sustain. Energy Rev.
– volume: 52
  year: 2022
  ident: bib26
  article-title: High-loading and high-performance NiMn layered double hydroxide nanosheets supported on nickel foam for supercapacitor via sodium dodecyl sulfonate intercalation
  publication-title: J. Energy Storage
– volume: 336
  start-page: 562
  year: 2018
  end-page: 569
  ident: bib56
  article-title: Hierarchical CuCo
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 346
  year: 2020
  end-page: 379
  ident: bib17
  article-title: Chemical modifications of layered double hydroxides in the supercapacitor
  publication-title: Energy Environ. Mater.
– volume: 13
  start-page: 28118
  year: 2021
  end-page: 28128
  ident: bib30
  article-title: Stability-enhanced α-Ni(OH)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 980
  year: 2021
  end-page: 993
  ident: bib31
  article-title: Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids
  publication-title: Chin. J. Catal.
– volume: 50
  year: 2022
  ident: bib6
  article-title: Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: recent progress and future perspectives
  publication-title: J. Energy Storage
– volume: 30
  year: 2020
  ident: bib19
  article-title: Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 8950
  year: 2021
  end-page: 8965
  ident: bib8
  article-title: Material and configuration design strategies towards flexible and wearable power supply devices: a review
  publication-title: J. Mater. Chem. A
– volume: 646
  start-page: 753
  year: 2023
  end-page: 762
  ident: bib57
  article-title: Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH)
  publication-title: J. Colloid Interface Sci.
– volume: 194
  start-page: 179
  year: 2016
  end-page: 186
  ident: bib32
  article-title: Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials
  publication-title: Electrochim. Acta
– volume: 560
  year: 2023
  ident: bib9
  article-title: Design and construction of 1D/2D/3D fabric-based wearable micro-supercapacitors
  publication-title: J. Power Sources
– volume: 8
  start-page: 17938
  year: 2020
  end-page: 17950
  ident: bib7
  article-title: Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  ident: bib3
  article-title: Electrochemical supercapacitors: from mechanism understanding to multifunctional applications
  publication-title: Adv. Energy Mater.
– volume: 454
  year: 2020
  ident: bib40
  article-title: Single-walled carbon nanotubes/Ni-Co-Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices
  publication-title: J. Power Sources
– volume: 449
  year: 2020
  ident: bib14
  article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors
  publication-title: J. Power Sources
– volume: 31
  year: 2021
  ident: bib55
  article-title: Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 1275
  year: 2022
  end-page: 1286
  ident: bib44
  article-title: Hydrogen evolution performance of CoFeO
  publication-title: Chin. J. Inorg. Chem.
– volume: 37
  start-page: 6208
  year: 2023
  end-page: 6219
  ident: bib53
  article-title: NiCo layered double hydroxide nanoarrays grown on an etched Ni foam substrate for high-performance supercapacitor electrode
  publication-title: Energy Fuels
– volume: 152
  year: 2023
  ident: bib4
  article-title: Materials design and preparation for high energy density and high power density electrochemical supercapacitors
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 73
  year: 2023
  ident: bib46
  article-title: NiMn layered double hydroxide nanoarrays with high mass-loading prepared via a differentiated deposition strategy for high-performance supercapacitor electrode
  publication-title: J. Energy Storage
– volume: 949
  year: 2023
  ident: bib52
  article-title: Fabrication of Co-Fe-Mn composites with a mixed-dimensional structure for applications in high-performance supercapacitors
  publication-title: J. Alloys Compd.
– volume: 21
  year: 2021
  ident: bib39
  article-title: Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors
  publication-title: Mater. Today Chem.
– volume: 12
  start-page: 22075
  year: 2020
  end-page: 22081
  ident: bib45
  article-title: Jahn–Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices
  publication-title: Nanoscale
– volume: 50
  year: 2022
  ident: bib12
  article-title: Insight into the composition effect of nickel cobalt layered double hydroxide nanoarrays with the enhanced synergistic effect for supercapacitor electrode
  publication-title: J. Energy Storage
– volume: 16
  year: 2020
  ident: bib42
  article-title: Atomic modulation triggering improved performance of MoO
  publication-title: Small
– volume: 13
  start-page: 3718
  year: 2020
  end-page: 3725
  ident: bib43
  article-title: Three-dimensional transition metal phosphide heteronanorods for efficient overall water splitting
  publication-title: ChemSusChem
– volume: 362
  year: 2020
  ident: bib38
  article-title: Construction of nanowall-supported-nanorod NiCo LDH array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors
  publication-title: Electrochim. Acta
– volume: 41
  year: 2021
  ident: bib54
  article-title: Mechanistic insight into hierarchical nickel cobalt layered double hydroxide nanosheet-supported-nanowires arrays for high-performance hybrid supercapacitors
  publication-title: J. Energy Storage
– volume: 5
  start-page: 5964
  year: 2017
  end-page: 5971
  ident: bib49
  article-title: Ni foam-supported carbon-sheathed NiMoO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 8249
  year: 2016
  end-page: 8254
  ident: bib51
  article-title: NiCo
  publication-title: J. Mater. Chem. A
– volume: 649
  start-page: 519
  year: 2023
  end-page: 527
  ident: bib23
  article-title: Structurally-stable Mg-Co-Ni LDH grown on reduced graphene by ball-milling and ion-exchange for highly-stable asymmetric supercapacitor
  publication-title: J. Colloid Interface Sci.
– volume: 295
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib18
  article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time
  publication-title: Electrochim. Acta
– volume: 544
  start-page: 46
  year: 2019
  end-page: 52
  ident: bib41
  article-title: Freestanding hierarchical nickel molybdate@reduced graphene oxide@nickel aluminum layered double hydroxides nanoarrays assembled from well-aligned uniform nanosheets as binder-free electrode materials for high performance supercapacitors
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 747
  year: 2018
  ident: bib16
  article-title: Research progress of NiMn layered double hydroxides for supercapacitors: a review
  publication-title: Nanomaterials
– volume: 13
  year: 2017
  ident: bib22
  article-title: Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors
  publication-title: Small
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: bib2
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
– volume: 136
  start-page: 16481
  year: 2014
  end-page: 16484
  ident: bib33
  article-title: Ultrathin Cobalt−Manganese layered double hydroxide is an efficient oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 16348
  year: 2015
  end-page: 16353
  ident: bib29
  article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 4559
  year: 2020
  end-page: 4568
  ident: bib34
  article-title: NiMn-Cl layered double hydroxide/carbon nanotube networks for high-performance chloride ion batteries
  publication-title: ACS Appl. Energy Mater.
– volume: 53
  start-page: 79
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib15
  article-title: Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: progress and perspectives
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.039
– volume: 104
  start-page: 192
  year: 2019
  ident: 10.1016/j.jpowsour.2023.233990_bib1
  article-title: Study of energy storage systems and environmental challenges of batteries
  publication-title: Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.023
– volume: 5
  start-page: 16776
  year: 2017
  ident: 10.1016/j.jpowsour.2023.233990_bib24
  article-title: Seed-assisted smart construction of high mass loading Ni–Co–Mn hydroxide nanoflakes for supercapacitor applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03932H
– volume: 86
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib11
  article-title: High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106079
– volume: 949
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib52
  article-title: Fabrication of Co-Fe-Mn composites with a mixed-dimensional structure for applications in high-performance supercapacitors
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.169865
– volume: 8
  start-page: 747
  year: 2018
  ident: 10.1016/j.jpowsour.2023.233990_bib16
  article-title: Research progress of NiMn layered double hydroxides for supercapacitors: a review
  publication-title: Nanomaterials
  doi: 10.3390/nano8100747
– volume: 649
  start-page: 519
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib23
  article-title: Structurally-stable Mg-Co-Ni LDH grown on reduced graphene by ball-milling and ion-exchange for highly-stable asymmetric supercapacitor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.06.123
– volume: 362
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib38
  article-title: Construction of nanowall-supported-nanorod NiCo LDH array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137081
– volume: 3
  start-page: 8679
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib13
  article-title: Hybrid electrodes based on Zn−Ni−Co ternary oxide nanowires and nanosheets for ultra-high-rate asymmetric supercapacitors
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01419
– volume: 560
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib9
  article-title: Design and construction of 1D/2D/3D fabric-based wearable micro-supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232712
– volume: 136
  start-page: 16481
  year: 2014
  ident: 10.1016/j.jpowsour.2023.233990_bib33
  article-title: Ultrathin Cobalt−Manganese layered double hydroxide is an efficient oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 3
  start-page: 16348
  year: 2015
  ident: 10.1016/j.jpowsour.2023.233990_bib29
  article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03394B
– volume: 31
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib55
  article-title: Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 980
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib31
  article-title: Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63724-X
– volume: 21
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib39
  article-title: Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors
  publication-title: Mater. Today Chem.
– volume: 16
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib42
  article-title: Atomic modulation triggering improved performance of MoO3 nanobelts for fiber-shaped supercapacitors
  publication-title: Small
– volume: 44
  start-page: 14842
  year: 2019
  ident: 10.1016/j.jpowsour.2023.233990_bib28
  article-title: A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.045
– volume: 403
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib21
  article-title: Morphology evolution and electrochemical behavior of NixMn1-x(OH)2 mixed hydroxides as high-performance electrode for supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139692
– volume: 6
  start-page: 5771
  year: 2019
  ident: 10.1016/j.jpowsour.2023.233990_bib10
  article-title: Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors
  publication-title: Chemelectrochem
  doi: 10.1002/celc.201901122
– volume: 3
  start-page: 5393
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib50
  article-title: High-energy-density asymmetric supercapacitor based on a durable and stable manganese molybdate nanostructure electrode for energy storage systems
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00393
– volume: 334
  start-page: 928
  year: 2011
  ident: 10.1016/j.jpowsour.2023.233990_bib2
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 449
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib14
  article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227590
– volume: 194
  start-page: 179
  year: 2016
  ident: 10.1016/j.jpowsour.2023.233990_bib32
  article-title: Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.080
– volume: 611
  start-page: 149
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib27
  article-title: Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.082
– volume: 52
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib60
  article-title: A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104899
– volume: 3
  start-page: 4559
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib34
  article-title: NiMn-Cl layered double hydroxide/carbon nanotube networks for high-performance chloride ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00224
– volume: 903
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib36
  article-title: NiCo layered double hydroxide nanosheets with enhanced electrochemical performance
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.163926
– volume: 431
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib37
  article-title: Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134100
– volume: 921
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib58
  article-title: Enhanced supercapacitor performance of ultrathin NiCoMn(OH) nanosheets over NiCo2O4 nanoarray on Ni foam
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165976
– volume: 33
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib5
  article-title: Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization
  publication-title: Adv. Funct. Mater.
– volume: 412
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib47
  article-title: Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128617
– volume: 11
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib3
  article-title: Electrochemical supercapacitors: from mechanism understanding to multifunctional applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003311
– volume: 13
  year: 2017
  ident: 10.1016/j.jpowsour.2023.233990_bib22
  article-title: Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201702616
– volume: 30
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib19
  article-title: Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908223
– volume: 13
  start-page: 28118
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib30
  article-title: Stability-enhanced α-Ni(OH)2 pillared by metaborate anions for pseudocapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04525
– volume: 544
  start-page: 46
  year: 2019
  ident: 10.1016/j.jpowsour.2023.233990_bib41
  article-title: Freestanding hierarchical nickel molybdate@reduced graphene oxide@nickel aluminum layered double hydroxides nanoarrays assembled from well-aligned uniform nanosheets as binder-free electrode materials for high performance supercapacitors
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.02.076
– volume: 9
  start-page: 8950
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib8
  article-title: Material and configuration design strategies towards flexible and wearable power supply devices: a review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11260G
– volume: 295
  start-page: 1
  year: 2019
  ident: 10.1016/j.jpowsour.2023.233990_bib18
  article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.021
– volume: 454
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib40
  article-title: Single-walled carbon nanotubes/Ni-Co-Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227912
– volume: 12
  start-page: 22075
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib45
  article-title: Jahn–Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices
  publication-title: Nanoscale
  doi: 10.1039/D0NR06225A
– volume: 4
  start-page: 8249
  year: 2016
  ident: 10.1016/j.jpowsour.2023.233990_bib51
  article-title: NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02746F
– volume: 50
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib12
  article-title: Insight into the composition effect of nickel cobalt layered double hydroxide nanoarrays with the enhanced synergistic effect for supercapacitor electrode
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104300
– volume: 8
  start-page: 17938
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib7
  article-title: Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03463K
– volume: 67
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib59
  article-title: Hierarchical and core-shell structured CuCo2O4@NiMn-LDH composites as supercapacitor electrode materials with high specific capacitance
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107327
– volume: 336
  start-page: 562
  year: 2018
  ident: 10.1016/j.jpowsour.2023.233990_bib56
  article-title: Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.055
– volume: 50
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib6
  article-title: Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: recent progress and future perspectives
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104223
– volume: 13
  start-page: 3718
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib43
  article-title: Three-dimensional transition metal phosphide heteronanorods for efficient overall water splitting
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000104
– volume: 646
  start-page: 753
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib57
  article-title: Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH)2 nanosheets and NiMn layered hydroxides
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.128
– volume: 152
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib4
  article-title: Materials design and preparation for high energy density and high power density electrochemical supercapacitors
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2022.100713
– volume: 39
  start-page: 1275
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib44
  article-title: Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode
  publication-title: Chin. J. Inorg. Chem.
  doi: 10.1002/cjoc.202100891
– volume: 73
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib46
  article-title: NiMn layered double hydroxide nanoarrays with high mass-loading prepared via a differentiated deposition strategy for high-performance supercapacitor electrode
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109132
– volume: 62
  start-page: 6224
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib48
  article-title: High-activity 2D/2D Core−Shell structure to NiMoO4-based electrodes for electrochemical energy storage
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03739
– volume: 41
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib54
  article-title: Mechanistic insight into hierarchical nickel cobalt layered double hydroxide nanosheet-supported-nanowires arrays for high-performance hybrid supercapacitors
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102858
– volume: 3
  start-page: 346
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib17
  article-title: Chemical modifications of layered double hydroxides in the supercapacitor
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12116
– volume: 5
  start-page: 5964
  year: 2017
  ident: 10.1016/j.jpowsour.2023.233990_bib49
  article-title: Ni foam-supported carbon-sheathed NiMoO4 nanowires as integrated electrode for high-performance hybrid supercapacitors
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00758
– volume: 13
  year: 2021
  ident: 10.1016/j.jpowsour.2023.233990_bib25
  article-title: Integrated battery–capacitor electrodes: pyridinic N-doped porous carbon-coated abundant oxygen vacancy Mn–Ni–layered double oxide for hybrid supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  year: 2022
  ident: 10.1016/j.jpowsour.2023.233990_bib26
  article-title: High-loading and high-performance NiMn layered double hydroxide nanosheets supported on nickel foam for supercapacitor via sodium dodecyl sulfonate intercalation
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104834
– volume: 37
  start-page: 6208
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib53
  article-title: NiCo layered double hydroxide nanoarrays grown on an etched Ni foam substrate for high-performance supercapacitor electrode
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c00315
– volume: 393
  year: 2020
  ident: 10.1016/j.jpowsour.2023.233990_bib20
  article-title: NiMn hydroxides supported on porous Ni/graphene films as electrically and thermally conductive electrodes for supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124598
– volume: 946
  year: 2023
  ident: 10.1016/j.jpowsour.2023.233990_bib35
  article-title: Ni-Co layered double-hydroxide arrays on stainless steel substrate: interfacial hydroxide layer enhanced electrocatalyst with high stability for oxygen evolution reaction in alkaline media
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.169325
SSID ssj0001170
Score 2.4925501
Snippet Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 233990
SubjectTerms Differentiated deposition
Molybdate intercalation
NiMn-LDH
Supercapacitor
Title Molybdate-intercalated NiMn layered double hydroxide nanoarrays supercapacitor electrode with enhanced stability via a differentiated deposition strategy
URI https://dx.doi.org/10.1016/j.jpowsour.2023.233990
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpn5YE1bWOnjTMiRFVA7QKV2CI7ttVUVVKlLZCF_8G_5S4PKBISA1sS-ZTIdz5_53x3R8gVExqcnkX2lFEOGIVwBAuEw1XPusIGQhXpYqNxfzjx7p97zw1yU-fCIK2y8v2lTy-8dfWkU81mZxHHnccuB2MDtA0g2uWAwjGD3fPRytvv3zQP7KxS_EmAaAlHb2QJz9qzRfqKh-RtbCLeZpwXvvm3DWpj0xnskd0KLdLr8oP2ScMkB2Rno4bgIfkYpfNcYdzuYOmHDOYcrjUdx6OEzmWOvTipTtdqbug011n6FmtDE5mkMstkvqTL9QKlIHaGxZ3Rqi8OjMEjWmqSacERoIAiCx5tTl9iSSWtO6uAh8DXaVPTv-iyLHibH5HJ4PbpZuhU_RaciLts5WDlHO15psuZDlwsBAhL0ga-9Q3zmbFW-BIUyyy3XsQtAMu-ZkwJAGXWDUDsmDSTNDEnhEaBCFxlhYlk1zPcSAhE-0opC_DTl8Kckl49yWFUFSPHnhjzsGadzcJaOSEqJyyVc0o6X3KLshzHnxJBrcPwh2GFsGf8IXv2D9lzsg13Xpn9fkGaq2xtLgG_rFSrMNAW2bq-exiOPwFy3PVs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5Remh7QC0FlUfbPbRHJ_GuE68PHBAUhUJyASRu7q53VziK7MhJAF_4H_yO_sHO-NGmUiUOFTfL9vixM579Zv3NDMAXLg06PUfsKas9NArpSR5JT-i-86WLpK7SxUbjwfAq-H7dv16Dn20uDNEqG99f-_TKWzd7us1odmdp2r3oCTQ2RNsIon2BKLxhVp7Z8g7jtvnB6TEq-SvnJ98uj4Ze01rAS4TPFx4ViTFBYHuCm8inmndofS4KXWh5yK1zMlT4DtwJFyTCIYYaGM61RPzh_AjF8Lov4GWA7oLaJnQe_vBKqJVL9esCwzN6vJW05ElnMsvvaFW-Q13LO1yIajL414y4MsudvIWNBp6yw3oE3sGazTbhzUrRwvfwOMqnpaaFAo9qTRSoZNw2bJyOMjZVJTX_ZCZf6qllN6Up8vvUWJapLFdFoco5my9nJIXBOnqTgjWNePAcWhNmNrupSAkMYWtF3C3ZbaqYYm0rF3RJdDtjW74Zm9cVdsstuHoWLWzDepZn9gOwJJKRr520ieoFVliFke9Aa-0Q74ZK2h3ot4McJ031c2rCMY1bmtskbpUTk3LiWjk70P0tN6vrfzwpEbU6jP-y5BgnqSdkd_9D9jO8Gl6OzuPz0_HZHrzGI0Gder8P64tiaT8ieFroT5WxMvjx3F_HL27uLr0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdate-intercalated+NiMn+layered+double+hydroxide+nanoarrays+supercapacitor+electrode+with+enhanced+stability+via+a+differentiated+deposition+strategy&rft.jtitle=Journal+of+power+sources&rft.au=Zeng%2C+Lei&rft.au=Tang%2C+Tingfu&rft.au=Liang%2C+Yifan&rft.au=Jiang%2C+Shiwen&rft.date=2024-02-28&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.volume=594&rft_id=info:doi/10.1016%2Fj.jpowsour.2023.233990&rft.externalDocID=S0378775323013666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon