Molybdate-intercalated NiMn layered double hydroxide nanoarrays supercapacitor electrode with enhanced stability via a differentiated deposition strategy
Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered structure, adjustable interlayer spacing, tailorable chemical valences, and ion exchange ability. However, NiMn-LDH still suffers from poor conduct...
Saved in:
Published in | Journal of power sources Vol. 594; p. 233990 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
28.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered structure, adjustable interlayer spacing, tailorable chemical valences, and ion exchange ability. However, NiMn-LDH still suffers from poor conductivity and low cyclic stability during the charge/discharge process. In this work, NiMn-LDH nanoarrays are grown on a carbon cloth substrate using a novel differentiated solvo/hydrothermal deposition strategy, in which molybdate anions act as precipitators during the second-step deposition and also as intercalated anions in the gallery of NiMn-LDH. The molybdate-intercalated NiMn-LDH nanoarray consists of open channels that allow electrolyte access and interconnected nanosheets decorated with tiny nanoflakes, and exhibits a high capacitance of 1712 F g−1 at 1 A g−1 with good cyclic performance, retaining 94.4 % of its capacitance after 8,000 charge/discharge cycles. The as-assembled NiMn-LDH//activated carbon hybrid supercapacitor delivers a high specific capacitance of 148.4 F g−1 at 1 A g−1, and achieves a high energy density of 66.8 Wh kg−1 at a power density of 900 W kg−1 with an excellent cycle stability (96.6 % capacitance maintained after 12,000 cycles).
[Display omitted]
•Molybdate as precipitator and intercalated anions for differentiated deposition.•NiMn-LDH nanoarray comprises open channels for effective electrolyte access.•Nanosheets decorated with tiny nanoflakes for enhanced accessible surface area.•Molybdate-intercalated NiMn-LDH shows the capacitance of 1712 F g−1 at 1 A g−1.•All-solid-state asymmetric supercapacitor delivers 66.8 Wh kg−1 at 900 W kg−1. |
---|---|
AbstractList | Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered structure, adjustable interlayer spacing, tailorable chemical valences, and ion exchange ability. However, NiMn-LDH still suffers from poor conductivity and low cyclic stability during the charge/discharge process. In this work, NiMn-LDH nanoarrays are grown on a carbon cloth substrate using a novel differentiated solvo/hydrothermal deposition strategy, in which molybdate anions act as precipitators during the second-step deposition and also as intercalated anions in the gallery of NiMn-LDH. The molybdate-intercalated NiMn-LDH nanoarray consists of open channels that allow electrolyte access and interconnected nanosheets decorated with tiny nanoflakes, and exhibits a high capacitance of 1712 F g−1 at 1 A g−1 with good cyclic performance, retaining 94.4 % of its capacitance after 8,000 charge/discharge cycles. The as-assembled NiMn-LDH//activated carbon hybrid supercapacitor delivers a high specific capacitance of 148.4 F g−1 at 1 A g−1, and achieves a high energy density of 66.8 Wh kg−1 at a power density of 900 W kg−1 with an excellent cycle stability (96.6 % capacitance maintained after 12,000 cycles).
[Display omitted]
•Molybdate as precipitator and intercalated anions for differentiated deposition.•NiMn-LDH nanoarray comprises open channels for effective electrolyte access.•Nanosheets decorated with tiny nanoflakes for enhanced accessible surface area.•Molybdate-intercalated NiMn-LDH shows the capacitance of 1712 F g−1 at 1 A g−1.•All-solid-state asymmetric supercapacitor delivers 66.8 Wh kg−1 at 900 W kg−1. |
ArticleNumber | 233990 |
Author | Tang, Tingfu Liang, Yifan Zeng, Lei Xu, Xuetang Wang, Fan Jiang, Shiwen |
Author_xml | – sequence: 1 givenname: Lei surname: Zeng fullname: Zeng, Lei – sequence: 2 givenname: Tingfu surname: Tang fullname: Tang, Tingfu – sequence: 3 givenname: Yifan surname: Liang fullname: Liang, Yifan – sequence: 4 givenname: Shiwen surname: Jiang fullname: Jiang, Shiwen – sequence: 5 givenname: Xuetang surname: Xu fullname: Xu, Xuetang email: xxtang@gxu.edu.cn – sequence: 6 givenname: Fan orcidid: 0000-0002-6106-4724 surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn |
BookMark | eNqFkElOxDAQRb0AifEKyBdI4yHEHYkFCDFJDBtYW-64TFcr2JHtBnIUbotDw4YNKw-q96vq7ZEtHzwQcsTZjDPeHK9mqyG8p7COM8GEnAkp25ZtkV0m1bxS6kTukL2UVowxzhXbJZ_3oR8X1mSo0GeInenL3dIHvPe0NyPE8rBhveiBLkcbwwdaoN74YGI0Y6JpPUzUYDrMIVLoocsxlJp3zEsKfml8VyJSNgvsMY_0DQ011KJzJdtn_G5nYQgJMwZfKmP5ehkPyLYzfYLDn3OfPF9dPl3cVHeP17cX53dVJ7nIFVe8sXUNTArb8lqdtIw1rlVOgVACnJsrI-a1cNLVnXQtbxorxGIupHC8Ldg-Od3kdjGkFMHpsomZRimDYK8505NavdK_avWkVm_UFrz5gw8RX00c_wfPNiCU5d4Qok4dwiQLY3GobcD_Ir4AVxahmw |
CitedBy_id | crossref_primary_10_1007_s12274_024_6915_8 crossref_primary_10_20517_energymater_2024_43 crossref_primary_10_1002_smll_202401315 crossref_primary_10_1016_j_cej_2024_150981 crossref_primary_10_1016_j_indcrop_2024_120035 |
Cites_doi | 10.1016/j.ensm.2022.08.039 10.1016/j.rser.2019.01.023 10.1039/C7TA03932H 10.1016/j.nanoen.2021.106079 10.1016/j.jallcom.2023.169865 10.3390/nano8100747 10.1016/j.jcis.2023.06.123 10.1016/j.electacta.2020.137081 10.1021/acsanm.0c01419 10.1016/j.jpowsour.2023.232712 10.1021/ja5096733 10.1039/C5TA03394B 10.1016/S1872-2067(20)63724-X 10.1016/j.ijhydene.2019.04.045 10.1016/j.electacta.2021.139692 10.1002/celc.201901122 10.1021/acsaem.0c00393 10.1126/science.1212741 10.1016/j.jpowsour.2019.227590 10.1016/j.electacta.2016.02.080 10.1016/j.jcis.2021.12.082 10.1016/j.est.2022.104899 10.1021/acsaem.0c00224 10.1016/j.jallcom.2022.163926 10.1016/j.cej.2021.134100 10.1016/j.jallcom.2022.165976 10.1016/j.cej.2021.128617 10.1002/aenm.202003311 10.1002/smll.201702616 10.1002/adfm.201908223 10.1021/acsami.1c04525 10.1016/j.jcis.2019.02.076 10.1039/D0TA11260G 10.1016/j.electacta.2018.10.021 10.1016/j.jpowsour.2020.227912 10.1039/D0NR06225A 10.1039/C6TA02746F 10.1016/j.est.2022.104300 10.1039/D0TA03463K 10.1016/j.est.2023.107327 10.1016/j.cej.2017.12.055 10.1016/j.est.2022.104223 10.1002/cssc.202000104 10.1016/j.jcis.2023.05.128 10.1016/j.mser.2022.100713 10.1002/cjoc.202100891 10.1016/j.est.2023.109132 10.1021/acs.inorgchem.2c03739 10.1016/j.est.2021.102858 10.1002/eem2.12116 10.1021/acssuschemeng.7b00758 10.1016/j.est.2022.104834 10.1021/acs.energyfuels.3c00315 10.1016/j.cej.2020.124598 10.1016/j.jallcom.2023.169325 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2023.233990 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jpowsour_2023_233990 S0378775323013666 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABMAC ABXRA ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c312t-1716d44e032d914759006f97f7e272eff87a2842f3f4c3f9166d22b8232f19e03 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 03:55:10 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Sat Sep 07 15:51:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor Differentiated deposition NiMn-LDH Molybdate intercalation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-1716d44e032d914759006f97f7e272eff87a2842f3f4c3f9166d22b8232f19e03 |
ORCID | 0000-0002-6106-4724 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2023_233990 crossref_primary_10_1016_j_jpowsour_2023_233990 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2023_233990 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-28 |
PublicationDateYYYYMMDD | 2024-02-28 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Journal of power sources |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Ye, Liang, Wu, Long, Xu, Wang (bib14) 2020; 449 Zhang, Huo, Wang, Lou, Xiang, Xie, Wang, Du, Wang, Yin (bib47) 2021; 412 Liu, Xu, Zheng, Li, Zeng, Lu (bib7) 2020; 8 Huang, Xie, You, Yuan, Xu, Xie, Chen (bib5) 2023; 33 Xie, Jiang, Chen, Mao, Ji, Fu, Sun, Wong (bib20) 2020; 393 Wang, Zhang, Yang, Yan, Hong, Dong, Liu, Zhang, Wen (bib18) 2019; 295 Yao, Yu, Wan, Du, Zhang, Chen, Xie (bib23) 2023; 649 Xin, Dai, Lv, Wei, Li, Li, Xue, Shi, Zou, Chen, Liu (bib30) 2021; 13 Zhu, Wu, Zeng, Liang, Xu, Wang (bib53) 2023; 37 Xu, Sun, Han, Wei, Cheng, Yin, Cui (bib50) 2020; 3 Acharya, Ko, Seong, Seo, Khil, Kim, Kim (bib13) 2020; 3 Guo, Liu, Hao, Zhu, Dong, Wen, Zha (bib32) 2016; 194 Guo, Song, Li, Tan, Ma, Pang, Wang, Zhang (bib41) 2019; 544 Zhang, Hu, Nie, Zhao, Wang, Li, Liu, Tang, Zhang, Li, Sun, Duan (bib55) 2021; 31 Wang, Zeng, Zhang, Long, Xu, Yan (bib58) 2022; 921 Wang, Cheng, Qiao, Zhang, Xia, Fan, Huang, Yang (bib26) 2022; 52 Xu, Zhao, Zhan, He, Wang, Chen, Wang, Ren, Chen (bib15) 2022; 53 Xiao, Ma, Xu, Liu, Li, Wang, Wang, Liu, Yuan (bib27) 2022; 611 Lin, Li, Yang, Li, Yao, Zhang, Yan, Xu, Komarneni (bib9) 2023; 560 Yan, Zhang, Zeng, Zhang, Wan, Yang (bib60) 2022; 52 Luo, Yin, Zhang, Zhang, Zheng, Han (bib34) 2020; 3 Hou, Yu, Zhou, Chen, Xu, Zhao, Gen, Zhang (bib57) 2023; 646 Li, Yan, Huo, Wang (bib48) 2023; 62 Gu, Zhang (bib51) 2016; 4 Asl, Hadi, Salehghadimi, Tabrizi, Farhoudian, Babapoor, Pahlevani (bib6) 2022; 50 Jing, Dong, Zhang (bib17) 2020; 3 Yang, Wu, Cai, Zhu, Zhang, Lu, Zhang (bib24) 2017; 5 Nejati, Davari, Akbari, Asadpour-Zeynali, Rezvani (bib28) 2019; 44 Mishra, Shetti, Basu, Reddy, Aminabhavi (bib10) 2019; 6 Tang, Zeng, Liang, Jiang, Dong, Xu, Wang (bib46) 2023; 73 Yang, Ye, Chen, Liao, Chen, Yang, Xu, Wang (bib38) 2020; 362 Li, Yang, Liao, Yang, Xu, Wang (bib12) 2022; 50 Yan, Wang, Cheng (bib16) 2018; 8 Wang, Wei, Du, Zhao, Liu, Wang, Zhou, An, Zhang (bib49) 2017; 5 Gao, Shang, Ding, Wen (bib8) 2021; 9 Han, Li, Lu, Luo, Wan, Li, Hu, Cheng (bib11) 2021; 86 Chen, He, Zhou, He, Meng, Cheng, Li (bib39) 2021; 21 Yu, Liu, Liu, Li, Ma (bib22) 2017; 13 Chen, Xue, Gao, Yu, Chen, Zhou, Sun, Huang (bib45) 2020; 12 Hsu, Chiang, Huang, Chao, Wu, Lu, Huang, Chang-Jian, Weng, Chen (bib21) 2022; 403 Dunn, Kamath, Tarascon (bib2) 2011; 334 Han, Zhao, Li (bib29) 2015; 3 Li, Sun, Cui, Li, Kou, Xu, Zhang (bib52) 2023; 949 Tsai, Ni, Chen, Huang (bib40) 2020; 454 Hu, Wang, Xiang, Zheng, Ma, Huo, Xie, Xu, Lin, Hu (bib31) 2021; 42 Li, Zang, Li, Li, Zou, Zhou, Su, Wang (bib43) 2020; 13 Dehghani-Sanij, Tharumalingam, Dusseault, Fraser (bib1) 2019; 104 Dong, Xie, Zhao, Qin, Huang (bib4) 2023; 152 Song, Hu (bib33) 2014; 136 Liu, Xu, Yang, Qian, Hua, Liu, Zheng, Lu (bib42) 2020; 16 Li, Zhou, Han, Gu, Ye, Xu, Wang, Li (bib44) 2022; 39 Chen, Lee (bib3) 2021; 11 Liang, Jiang, Zhang, Long, Yan, Dong, Luo, Xu, Wang (bib54) 2021; 41 Wang, Liu, Liu, Zhao, Wu (bib36) 2022; 903 Jiang, Qiao, Fu, Peng, Yu, Yang, Xia, Gao (bib25) 2021; 13 Wang, Zhao, Wang, Tian, Sun, Wang, Sun, Liu (bib59) 2023; 67 Tang, Shen, Cheng, Liang, Qu, Tabassum, Zou (bib19) 2020; 30 Ding, An, Ding, Zou, Zhao (bib37) 2022; 431 Lin, Jia, Liang, Chen, Cai, Qi, Qu, Cao, Fei, Feng (bib56) 2018; 336 Li, Long, Ye, Xu, Wang (bib35) 2023; 946 Gao (10.1016/j.jpowsour.2023.233990_bib8) 2021; 9 Li (10.1016/j.jpowsour.2023.233990_bib12) 2022; 50 Luo (10.1016/j.jpowsour.2023.233990_bib34) 2020; 3 Zhang (10.1016/j.jpowsour.2023.233990_bib55) 2021; 31 Xu (10.1016/j.jpowsour.2023.233990_bib50) 2020; 3 Huang (10.1016/j.jpowsour.2023.233990_bib5) 2023; 33 Wang (10.1016/j.jpowsour.2023.233990_bib36) 2022; 903 Zhang (10.1016/j.jpowsour.2023.233990_bib47) 2021; 412 Song (10.1016/j.jpowsour.2023.233990_bib33) 2014; 136 Wang (10.1016/j.jpowsour.2023.233990_bib58) 2022; 921 Liu (10.1016/j.jpowsour.2023.233990_bib42) 2020; 16 Liu (10.1016/j.jpowsour.2023.233990_bib7) 2020; 8 Yao (10.1016/j.jpowsour.2023.233990_bib23) 2023; 649 Han (10.1016/j.jpowsour.2023.233990_bib29) 2015; 3 Hou (10.1016/j.jpowsour.2023.233990_bib57) 2023; 646 Xie (10.1016/j.jpowsour.2023.233990_bib20) 2020; 393 Li (10.1016/j.jpowsour.2023.233990_bib52) 2023; 949 Wang (10.1016/j.jpowsour.2023.233990_bib26) 2022; 52 Chen (10.1016/j.jpowsour.2023.233990_bib3) 2021; 11 Dehghani-Sanij (10.1016/j.jpowsour.2023.233990_bib1) 2019; 104 Yang (10.1016/j.jpowsour.2023.233990_bib14) 2020; 449 Jiang (10.1016/j.jpowsour.2023.233990_bib25) 2021; 13 Xiao (10.1016/j.jpowsour.2023.233990_bib27) 2022; 611 Zhu (10.1016/j.jpowsour.2023.233990_bib53) 2023; 37 Lin (10.1016/j.jpowsour.2023.233990_bib56) 2018; 336 Lin (10.1016/j.jpowsour.2023.233990_bib9) 2023; 560 Li (10.1016/j.jpowsour.2023.233990_bib35) 2023; 946 Nejati (10.1016/j.jpowsour.2023.233990_bib28) 2019; 44 Chen (10.1016/j.jpowsour.2023.233990_bib39) 2021; 21 Yan (10.1016/j.jpowsour.2023.233990_bib16) 2018; 8 Yang (10.1016/j.jpowsour.2023.233990_bib38) 2020; 362 Yang (10.1016/j.jpowsour.2023.233990_bib24) 2017; 5 Asl (10.1016/j.jpowsour.2023.233990_bib6) 2022; 50 Guo (10.1016/j.jpowsour.2023.233990_bib32) 2016; 194 Jing (10.1016/j.jpowsour.2023.233990_bib17) 2020; 3 Acharya (10.1016/j.jpowsour.2023.233990_bib13) 2020; 3 Hsu (10.1016/j.jpowsour.2023.233990_bib21) 2022; 403 Dong (10.1016/j.jpowsour.2023.233990_bib4) 2023; 152 Wang (10.1016/j.jpowsour.2023.233990_bib49) 2017; 5 Xu (10.1016/j.jpowsour.2023.233990_bib15) 2022; 53 Gu (10.1016/j.jpowsour.2023.233990_bib51) 2016; 4 Hu (10.1016/j.jpowsour.2023.233990_bib31) 2021; 42 Tsai (10.1016/j.jpowsour.2023.233990_bib40) 2020; 454 Guo (10.1016/j.jpowsour.2023.233990_bib41) 2019; 544 Xin (10.1016/j.jpowsour.2023.233990_bib30) 2021; 13 Ding (10.1016/j.jpowsour.2023.233990_bib37) 2022; 431 Mishra (10.1016/j.jpowsour.2023.233990_bib10) 2019; 6 Yan (10.1016/j.jpowsour.2023.233990_bib60) 2022; 52 Chen (10.1016/j.jpowsour.2023.233990_bib45) 2020; 12 Liang (10.1016/j.jpowsour.2023.233990_bib54) 2021; 41 Tang (10.1016/j.jpowsour.2023.233990_bib19) 2020; 30 Han (10.1016/j.jpowsour.2023.233990_bib11) 2021; 86 Dunn (10.1016/j.jpowsour.2023.233990_bib2) 2011; 334 Wang (10.1016/j.jpowsour.2023.233990_bib59) 2023; 67 Wang (10.1016/j.jpowsour.2023.233990_bib18) 2019; 295 Yu (10.1016/j.jpowsour.2023.233990_bib22) 2017; 13 Tang (10.1016/j.jpowsour.2023.233990_bib46) 2023; 73 Li (10.1016/j.jpowsour.2023.233990_bib43) 2020; 13 Li (10.1016/j.jpowsour.2023.233990_bib44) 2022; 39 Li (10.1016/j.jpowsour.2023.233990_bib48) 2023; 62 |
References_xml | – volume: 3 start-page: 8679 year: 2020 end-page: 8690 ident: bib13 article-title: Hybrid electrodes based on Zn−Ni−Co ternary oxide nanowires and nanosheets for ultra-high-rate asymmetric supercapacitors publication-title: ACS Appl. Nano Mater. – volume: 53 start-page: 79 year: 2022 end-page: 135 ident: bib15 article-title: Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: progress and perspectives publication-title: Energy Storage Mater. – volume: 403 year: 2022 ident: bib21 article-title: Morphology evolution and electrochemical behavior of Ni publication-title: Electrochim. Acta – volume: 946 year: 2023 ident: bib35 article-title: Ni-Co layered double-hydroxide arrays on stainless steel substrate: interfacial hydroxide layer enhanced electrocatalyst with high stability for oxygen evolution reaction in alkaline media publication-title: J. Alloys Compd. – volume: 5 start-page: 16776 year: 2017 end-page: 16785 ident: bib24 article-title: Seed-assisted smart construction of high mass loading Ni–Co–Mn hydroxide nanoflakes for supercapacitor applications publication-title: J. Mater. Chem. A – volume: 13 year: 2021 ident: bib25 article-title: Integrated battery–capacitor electrodes: pyridinic N-doped porous carbon-coated abundant oxygen vacancy Mn–Ni–layered double oxide for hybrid supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 5393 year: 2020 end-page: 5404 ident: bib50 article-title: High-energy-density asymmetric supercapacitor based on a durable and stable manganese molybdate nanostructure electrode for energy storage systems publication-title: ACS Appl. Energy Mater. – volume: 44 start-page: 14842 year: 2019 end-page: 14852 ident: bib28 article-title: A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions publication-title: Int. J. Hydrogen Energy – volume: 412 year: 2021 ident: bib47 article-title: Stacking fault disorder induced by Mn doping in Ni(OH) publication-title: Chem. Eng. J. – volume: 921 year: 2022 ident: bib58 article-title: Enhanced supercapacitor performance of ultrathin NiCoMn(OH) nanosheets over NiCo publication-title: J. Alloys Compd. – volume: 431 year: 2022 ident: bib37 article-title: Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life publication-title: Chem. Eng. J. – volume: 611 start-page: 149 year: 2022 end-page: 160 ident: bib27 article-title: Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors publication-title: J. Colloid Interface Sci. – volume: 67 year: 2023 ident: bib59 article-title: Hierarchical and core-shell structured CuCo publication-title: J. Energy Storage – volume: 6 start-page: 5771 year: 2019 end-page: 5786 ident: bib10 article-title: Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors publication-title: Chemelectrochem – volume: 903 year: 2022 ident: bib36 article-title: NiCo layered double hydroxide nanosheets with enhanced electrochemical performance publication-title: J. Alloys Compd. – volume: 86 year: 2021 ident: bib11 article-title: High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage publication-title: Nano Energy – volume: 393 year: 2020 ident: bib20 article-title: NiMn hydroxides supported on porous Ni/graphene films as electrically and thermally conductive electrodes for supercapacitors publication-title: Chem. Eng. J. – volume: 33 year: 2023 ident: bib5 article-title: Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization publication-title: Adv. Funct. Mater. – volume: 62 start-page: 6224 year: 2023 end-page: 6232 ident: bib48 article-title: High-activity 2D/2D Core−Shell structure to NiMoO publication-title: Inorg. Chem. – volume: 52 year: 2022 ident: bib60 article-title: A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide publication-title: J. Energy Storage – volume: 104 start-page: 192 year: 2019 end-page: 208 ident: bib1 article-title: Study of energy storage systems and environmental challenges of batteries publication-title: Sustain. Energy Rev. – volume: 52 year: 2022 ident: bib26 article-title: High-loading and high-performance NiMn layered double hydroxide nanosheets supported on nickel foam for supercapacitor via sodium dodecyl sulfonate intercalation publication-title: J. Energy Storage – volume: 336 start-page: 562 year: 2018 end-page: 569 ident: bib56 article-title: Hierarchical CuCo publication-title: Chem. Eng. J. – volume: 3 start-page: 346 year: 2020 end-page: 379 ident: bib17 article-title: Chemical modifications of layered double hydroxides in the supercapacitor publication-title: Energy Environ. Mater. – volume: 13 start-page: 28118 year: 2021 end-page: 28128 ident: bib30 article-title: Stability-enhanced α-Ni(OH) publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 980 year: 2021 end-page: 993 ident: bib31 article-title: Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids publication-title: Chin. J. Catal. – volume: 50 year: 2022 ident: bib6 article-title: Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: recent progress and future perspectives publication-title: J. Energy Storage – volume: 30 year: 2020 ident: bib19 article-title: Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors publication-title: Adv. Funct. Mater. – volume: 9 start-page: 8950 year: 2021 end-page: 8965 ident: bib8 article-title: Material and configuration design strategies towards flexible and wearable power supply devices: a review publication-title: J. Mater. Chem. A – volume: 646 start-page: 753 year: 2023 end-page: 762 ident: bib57 article-title: Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH) publication-title: J. Colloid Interface Sci. – volume: 194 start-page: 179 year: 2016 end-page: 186 ident: bib32 article-title: Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials publication-title: Electrochim. Acta – volume: 560 year: 2023 ident: bib9 article-title: Design and construction of 1D/2D/3D fabric-based wearable micro-supercapacitors publication-title: J. Power Sources – volume: 8 start-page: 17938 year: 2020 end-page: 17950 ident: bib7 article-title: Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges publication-title: J. Mater. Chem. A – volume: 11 year: 2021 ident: bib3 article-title: Electrochemical supercapacitors: from mechanism understanding to multifunctional applications publication-title: Adv. Energy Mater. – volume: 454 year: 2020 ident: bib40 article-title: Single-walled carbon nanotubes/Ni-Co-Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices publication-title: J. Power Sources – volume: 449 year: 2020 ident: bib14 article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors publication-title: J. Power Sources – volume: 31 year: 2021 ident: bib55 article-title: Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors publication-title: Adv. Funct. Mater. – volume: 39 start-page: 1275 year: 2022 end-page: 1286 ident: bib44 article-title: Hydrogen evolution performance of CoFeO publication-title: Chin. J. Inorg. Chem. – volume: 37 start-page: 6208 year: 2023 end-page: 6219 ident: bib53 article-title: NiCo layered double hydroxide nanoarrays grown on an etched Ni foam substrate for high-performance supercapacitor electrode publication-title: Energy Fuels – volume: 152 year: 2023 ident: bib4 article-title: Materials design and preparation for high energy density and high power density electrochemical supercapacitors publication-title: Mater. Sci. Eng. R Rep. – volume: 73 year: 2023 ident: bib46 article-title: NiMn layered double hydroxide nanoarrays with high mass-loading prepared via a differentiated deposition strategy for high-performance supercapacitor electrode publication-title: J. Energy Storage – volume: 949 year: 2023 ident: bib52 article-title: Fabrication of Co-Fe-Mn composites with a mixed-dimensional structure for applications in high-performance supercapacitors publication-title: J. Alloys Compd. – volume: 21 year: 2021 ident: bib39 article-title: Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors publication-title: Mater. Today Chem. – volume: 12 start-page: 22075 year: 2020 end-page: 22081 ident: bib45 article-title: Jahn–Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices publication-title: Nanoscale – volume: 50 year: 2022 ident: bib12 article-title: Insight into the composition effect of nickel cobalt layered double hydroxide nanoarrays with the enhanced synergistic effect for supercapacitor electrode publication-title: J. Energy Storage – volume: 16 year: 2020 ident: bib42 article-title: Atomic modulation triggering improved performance of MoO publication-title: Small – volume: 13 start-page: 3718 year: 2020 end-page: 3725 ident: bib43 article-title: Three-dimensional transition metal phosphide heteronanorods for efficient overall water splitting publication-title: ChemSusChem – volume: 362 year: 2020 ident: bib38 article-title: Construction of nanowall-supported-nanorod NiCo LDH array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors publication-title: Electrochim. Acta – volume: 41 year: 2021 ident: bib54 article-title: Mechanistic insight into hierarchical nickel cobalt layered double hydroxide nanosheet-supported-nanowires arrays for high-performance hybrid supercapacitors publication-title: J. Energy Storage – volume: 5 start-page: 5964 year: 2017 end-page: 5971 ident: bib49 article-title: Ni foam-supported carbon-sheathed NiMoO publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 8249 year: 2016 end-page: 8254 ident: bib51 article-title: NiCo publication-title: J. Mater. Chem. A – volume: 649 start-page: 519 year: 2023 end-page: 527 ident: bib23 article-title: Structurally-stable Mg-Co-Ni LDH grown on reduced graphene by ball-milling and ion-exchange for highly-stable asymmetric supercapacitor publication-title: J. Colloid Interface Sci. – volume: 295 start-page: 1 year: 2019 end-page: 6 ident: bib18 article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time publication-title: Electrochim. Acta – volume: 544 start-page: 46 year: 2019 end-page: 52 ident: bib41 article-title: Freestanding hierarchical nickel molybdate@reduced graphene oxide@nickel aluminum layered double hydroxides nanoarrays assembled from well-aligned uniform nanosheets as binder-free electrode materials for high performance supercapacitors publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 747 year: 2018 ident: bib16 article-title: Research progress of NiMn layered double hydroxides for supercapacitors: a review publication-title: Nanomaterials – volume: 13 year: 2017 ident: bib22 article-title: Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors publication-title: Small – volume: 334 start-page: 928 year: 2011 end-page: 935 ident: bib2 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science – volume: 136 start-page: 16481 year: 2014 end-page: 16484 ident: bib33 article-title: Ultrathin Cobalt−Manganese layered double hydroxide is an efficient oxygen evolution catalyst publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 16348 year: 2015 end-page: 16353 ident: bib29 article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation publication-title: J. Mater. Chem. A – volume: 3 start-page: 4559 year: 2020 end-page: 4568 ident: bib34 article-title: NiMn-Cl layered double hydroxide/carbon nanotube networks for high-performance chloride ion batteries publication-title: ACS Appl. Energy Mater. – volume: 53 start-page: 79 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib15 article-title: Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: progress and perspectives publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.039 – volume: 104 start-page: 192 year: 2019 ident: 10.1016/j.jpowsour.2023.233990_bib1 article-title: Study of energy storage systems and environmental challenges of batteries publication-title: Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.023 – volume: 5 start-page: 16776 year: 2017 ident: 10.1016/j.jpowsour.2023.233990_bib24 article-title: Seed-assisted smart construction of high mass loading Ni–Co–Mn hydroxide nanoflakes for supercapacitor applications publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03932H – volume: 86 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib11 article-title: High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106079 – volume: 949 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib52 article-title: Fabrication of Co-Fe-Mn composites with a mixed-dimensional structure for applications in high-performance supercapacitors publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169865 – volume: 8 start-page: 747 year: 2018 ident: 10.1016/j.jpowsour.2023.233990_bib16 article-title: Research progress of NiMn layered double hydroxides for supercapacitors: a review publication-title: Nanomaterials doi: 10.3390/nano8100747 – volume: 649 start-page: 519 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib23 article-title: Structurally-stable Mg-Co-Ni LDH grown on reduced graphene by ball-milling and ion-exchange for highly-stable asymmetric supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.06.123 – volume: 362 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib38 article-title: Construction of nanowall-supported-nanorod NiCo LDH array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137081 – volume: 3 start-page: 8679 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib13 article-title: Hybrid electrodes based on Zn−Ni−Co ternary oxide nanowires and nanosheets for ultra-high-rate asymmetric supercapacitors publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01419 – volume: 560 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib9 article-title: Design and construction of 1D/2D/3D fabric-based wearable micro-supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232712 – volume: 136 start-page: 16481 year: 2014 ident: 10.1016/j.jpowsour.2023.233990_bib33 article-title: Ultrathin Cobalt−Manganese layered double hydroxide is an efficient oxygen evolution catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 3 start-page: 16348 year: 2015 ident: 10.1016/j.jpowsour.2023.233990_bib29 article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03394B – volume: 31 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib55 article-title: Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors publication-title: Adv. Funct. Mater. – volume: 42 start-page: 980 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib31 article-title: Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63724-X – volume: 21 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib39 article-title: Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors publication-title: Mater. Today Chem. – volume: 16 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib42 article-title: Atomic modulation triggering improved performance of MoO3 nanobelts for fiber-shaped supercapacitors publication-title: Small – volume: 44 start-page: 14842 year: 2019 ident: 10.1016/j.jpowsour.2023.233990_bib28 article-title: A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.045 – volume: 403 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib21 article-title: Morphology evolution and electrochemical behavior of NixMn1-x(OH)2 mixed hydroxides as high-performance electrode for supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139692 – volume: 6 start-page: 5771 year: 2019 ident: 10.1016/j.jpowsour.2023.233990_bib10 article-title: Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors publication-title: Chemelectrochem doi: 10.1002/celc.201901122 – volume: 3 start-page: 5393 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib50 article-title: High-energy-density asymmetric supercapacitor based on a durable and stable manganese molybdate nanostructure electrode for energy storage systems publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00393 – volume: 334 start-page: 928 year: 2011 ident: 10.1016/j.jpowsour.2023.233990_bib2 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – volume: 449 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib14 article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227590 – volume: 194 start-page: 179 year: 2016 ident: 10.1016/j.jpowsour.2023.233990_bib32 article-title: Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.080 – volume: 611 start-page: 149 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib27 article-title: Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.082 – volume: 52 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib60 article-title: A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104899 – volume: 3 start-page: 4559 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib34 article-title: NiMn-Cl layered double hydroxide/carbon nanotube networks for high-performance chloride ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00224 – volume: 903 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib36 article-title: NiCo layered double hydroxide nanosheets with enhanced electrochemical performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.163926 – volume: 431 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib37 article-title: Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134100 – volume: 921 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib58 article-title: Enhanced supercapacitor performance of ultrathin NiCoMn(OH) nanosheets over NiCo2O4 nanoarray on Ni foam publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165976 – volume: 33 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib5 article-title: Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization publication-title: Adv. Funct. Mater. – volume: 412 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib47 article-title: Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128617 – volume: 11 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib3 article-title: Electrochemical supercapacitors: from mechanism understanding to multifunctional applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003311 – volume: 13 year: 2017 ident: 10.1016/j.jpowsour.2023.233990_bib22 article-title: Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors publication-title: Small doi: 10.1002/smll.201702616 – volume: 30 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib19 article-title: Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908223 – volume: 13 start-page: 28118 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib30 article-title: Stability-enhanced α-Ni(OH)2 pillared by metaborate anions for pseudocapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04525 – volume: 544 start-page: 46 year: 2019 ident: 10.1016/j.jpowsour.2023.233990_bib41 article-title: Freestanding hierarchical nickel molybdate@reduced graphene oxide@nickel aluminum layered double hydroxides nanoarrays assembled from well-aligned uniform nanosheets as binder-free electrode materials for high performance supercapacitors publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.02.076 – volume: 9 start-page: 8950 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib8 article-title: Material and configuration design strategies towards flexible and wearable power supply devices: a review publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11260G – volume: 295 start-page: 1 year: 2019 ident: 10.1016/j.jpowsour.2023.233990_bib18 article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.021 – volume: 454 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib40 article-title: Single-walled carbon nanotubes/Ni-Co-Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227912 – volume: 12 start-page: 22075 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib45 article-title: Jahn–Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices publication-title: Nanoscale doi: 10.1039/D0NR06225A – volume: 4 start-page: 8249 year: 2016 ident: 10.1016/j.jpowsour.2023.233990_bib51 article-title: NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02746F – volume: 50 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib12 article-title: Insight into the composition effect of nickel cobalt layered double hydroxide nanoarrays with the enhanced synergistic effect for supercapacitor electrode publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104300 – volume: 8 start-page: 17938 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib7 article-title: Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03463K – volume: 67 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib59 article-title: Hierarchical and core-shell structured CuCo2O4@NiMn-LDH composites as supercapacitor electrode materials with high specific capacitance publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107327 – volume: 336 start-page: 562 year: 2018 ident: 10.1016/j.jpowsour.2023.233990_bib56 article-title: Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.055 – volume: 50 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib6 article-title: Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: recent progress and future perspectives publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104223 – volume: 13 start-page: 3718 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib43 article-title: Three-dimensional transition metal phosphide heteronanorods for efficient overall water splitting publication-title: ChemSusChem doi: 10.1002/cssc.202000104 – volume: 646 start-page: 753 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib57 article-title: Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH)2 nanosheets and NiMn layered hydroxides publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.128 – volume: 152 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib4 article-title: Materials design and preparation for high energy density and high power density electrochemical supercapacitors publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2022.100713 – volume: 39 start-page: 1275 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib44 article-title: Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode publication-title: Chin. J. Inorg. Chem. doi: 10.1002/cjoc.202100891 – volume: 73 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib46 article-title: NiMn layered double hydroxide nanoarrays with high mass-loading prepared via a differentiated deposition strategy for high-performance supercapacitor electrode publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109132 – volume: 62 start-page: 6224 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib48 article-title: High-activity 2D/2D Core−Shell structure to NiMoO4-based electrodes for electrochemical energy storage publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03739 – volume: 41 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib54 article-title: Mechanistic insight into hierarchical nickel cobalt layered double hydroxide nanosheet-supported-nanowires arrays for high-performance hybrid supercapacitors publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102858 – volume: 3 start-page: 346 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib17 article-title: Chemical modifications of layered double hydroxides in the supercapacitor publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12116 – volume: 5 start-page: 5964 year: 2017 ident: 10.1016/j.jpowsour.2023.233990_bib49 article-title: Ni foam-supported carbon-sheathed NiMoO4 nanowires as integrated electrode for high-performance hybrid supercapacitors publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00758 – volume: 13 year: 2021 ident: 10.1016/j.jpowsour.2023.233990_bib25 article-title: Integrated battery–capacitor electrodes: pyridinic N-doped porous carbon-coated abundant oxygen vacancy Mn–Ni–layered double oxide for hybrid supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 52 year: 2022 ident: 10.1016/j.jpowsour.2023.233990_bib26 article-title: High-loading and high-performance NiMn layered double hydroxide nanosheets supported on nickel foam for supercapacitor via sodium dodecyl sulfonate intercalation publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104834 – volume: 37 start-page: 6208 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib53 article-title: NiCo layered double hydroxide nanoarrays grown on an etched Ni foam substrate for high-performance supercapacitor electrode publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c00315 – volume: 393 year: 2020 ident: 10.1016/j.jpowsour.2023.233990_bib20 article-title: NiMn hydroxides supported on porous Ni/graphene films as electrically and thermally conductive electrodes for supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124598 – volume: 946 year: 2023 ident: 10.1016/j.jpowsour.2023.233990_bib35 article-title: Ni-Co layered double-hydroxide arrays on stainless steel substrate: interfacial hydroxide layer enhanced electrocatalyst with high stability for oxygen evolution reaction in alkaline media publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169325 |
SSID | ssj0001170 |
Score | 2.4925501 |
Snippet | Nickel-manganese layered double hydroxide (NiMn-LDH) is a promising electrode material for supercapacitor due to its unique two-dimensional (2D) layered... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 233990 |
SubjectTerms | Differentiated deposition Molybdate intercalation NiMn-LDH Supercapacitor |
Title | Molybdate-intercalated NiMn layered double hydroxide nanoarrays supercapacitor electrode with enhanced stability via a differentiated deposition strategy |
URI | https://dx.doi.org/10.1016/j.jpowsour.2023.233990 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpn5YE1bWOnjTMiRFVA7QKV2CI7ttVUVVKlLZCF_8G_5S4PKBISA1sS-ZTIdz5_53x3R8gVExqcnkX2lFEOGIVwBAuEw1XPusIGQhXpYqNxfzjx7p97zw1yU-fCIK2y8v2lTy-8dfWkU81mZxHHnccuB2MDtA0g2uWAwjGD3fPRytvv3zQP7KxS_EmAaAlHb2QJz9qzRfqKh-RtbCLeZpwXvvm3DWpj0xnskd0KLdLr8oP2ScMkB2Rno4bgIfkYpfNcYdzuYOmHDOYcrjUdx6OEzmWOvTipTtdqbug011n6FmtDE5mkMstkvqTL9QKlIHaGxZ3Rqi8OjMEjWmqSacERoIAiCx5tTl9iSSWtO6uAh8DXaVPTv-iyLHibH5HJ4PbpZuhU_RaciLts5WDlHO15psuZDlwsBAhL0ga-9Q3zmbFW-BIUyyy3XsQtAMu-ZkwJAGXWDUDsmDSTNDEnhEaBCFxlhYlk1zPcSAhE-0opC_DTl8Kckl49yWFUFSPHnhjzsGadzcJaOSEqJyyVc0o6X3KLshzHnxJBrcPwh2GFsGf8IXv2D9lzsg13Xpn9fkGaq2xtLgG_rFSrMNAW2bq-exiOPwFy3PVs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5Remh7QC0FlUfbPbRHJ_GuE68PHBAUhUJyASRu7q53VziK7MhJAF_4H_yO_sHO-NGmUiUOFTfL9vixM579Zv3NDMAXLg06PUfsKas9NArpSR5JT-i-86WLpK7SxUbjwfAq-H7dv16Dn20uDNEqG99f-_TKWzd7us1odmdp2r3oCTQ2RNsIon2BKLxhVp7Z8g7jtvnB6TEq-SvnJ98uj4Ze01rAS4TPFx4ViTFBYHuCm8inmndofS4KXWh5yK1zMlT4DtwJFyTCIYYaGM61RPzh_AjF8Lov4GWA7oLaJnQe_vBKqJVL9esCwzN6vJW05ElnMsvvaFW-Q13LO1yIajL414y4MsudvIWNBp6yw3oE3sGazTbhzUrRwvfwOMqnpaaFAo9qTRSoZNw2bJyOMjZVJTX_ZCZf6qllN6Up8vvUWJapLFdFoco5my9nJIXBOnqTgjWNePAcWhNmNrupSAkMYWtF3C3ZbaqYYm0rF3RJdDtjW74Zm9cVdsstuHoWLWzDepZn9gOwJJKRr520ieoFVliFke9Aa-0Q74ZK2h3ot4McJ031c2rCMY1bmtskbpUTk3LiWjk70P0tN6vrfzwpEbU6jP-y5BgnqSdkd_9D9jO8Gl6OzuPz0_HZHrzGI0Gder8P64tiaT8ieFroT5WxMvjx3F_HL27uLr0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdate-intercalated+NiMn+layered+double+hydroxide+nanoarrays+supercapacitor+electrode+with+enhanced+stability+via+a+differentiated+deposition+strategy&rft.jtitle=Journal+of+power+sources&rft.au=Zeng%2C+Lei&rft.au=Tang%2C+Tingfu&rft.au=Liang%2C+Yifan&rft.au=Jiang%2C+Shiwen&rft.date=2024-02-28&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.volume=594&rft_id=info:doi/10.1016%2Fj.jpowsour.2023.233990&rft.externalDocID=S0378775323013666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |