Visual analytics for monitoring credit scoring models
Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a large volume of credit transactions is generated daily alongside a potential increase in this information with the advent of Open Finance, it is...
Saved in:
Published in | Information visualization Vol. 22; no. 4; pp. 340 - 357 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.10.2023
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a large volume of credit transactions is generated daily alongside a potential increase in this information with the advent of Open Finance, it is challenging to monitor this information quickly so we can act in case these models lose performance. Considering this context, our research aims to provide a Visual Analytics approach to assist in monitoring credit models. For this, initially, we carried out a systematic review of the literature on the subject and conducted semi-structured interviews with 13 domain experts. Considering the needs raised with this study, we created a prototype called Visual Analytics for monitoring Credit Scoring models (VACS). The main contributions of this work are twofold: The requirements gathered through interviews with specialists, which allowed the analysis of how the models are monitored within financial institutions, something that is not disclosed and that can help in the standardization of the monitoring process; and VACS, which was evaluated by four domain experts who considered it a very complete and easy-to-use tool. |
---|---|
AbstractList | Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a large volume of credit transactions is generated daily alongside a potential increase in this information with the advent of Open Finance, it is challenging to monitor this information quickly so we can act in case these models lose performance. Considering this context, our research aims to provide a Visual Analytics approach to assist in monitoring credit models. For this, initially, we carried out a systematic review of the literature on the subject and conducted semi-structured interviews with 13 domain experts. Considering the needs raised with this study, we created a prototype called Visual Analytics for monitoring Credit Scoring models (VACS). The main contributions of this work are twofold: The requirements gathered through interviews with specialists, which allowed the analysis of how the models are monitored within financial institutions, something that is not disclosed and that can help in the standardization of the monitoring process; and VACS, which was evaluated by four domain experts who considered it a very complete and easy-to-use tool. |
Author | Manssour, Isabel Harb Baldo, Daiane Rodrigues Regio, Murilo Santos |
Author_xml | – sequence: 1 givenname: Daiane Rodrigues surname: Baldo fullname: Baldo, Daiane Rodrigues organization: Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil – sequence: 2 givenname: Murilo Santos orcidid: 0000-0002-2821-6458 surname: Regio fullname: Regio, Murilo Santos email: murilo.regio@acad.pucrs.br organization: Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil – sequence: 3 givenname: Isabel Harb orcidid: 0000-0001-9446-6757 surname: Manssour fullname: Manssour, Isabel Harb organization: Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil |
BookMark | eNp9kEtLxDAUhYOM4MzoD3BXcN0x9zZN0qUMvmDAjbotMU2GDG0zJuli_r0dKgqKru6D8917OAsy631vCLkEugIQ4hqYKKQAjgWApJIWJ2R-3OVSIJt99cDPyCLGHaUoGK3mpHx1cVBtpnrVHpLTMbM-ZJ3vXfLB9dtMB9O4lEU9jZ1vTBvPyalVbTQXn3VJXu5un9cP-ebp_nF9s8l1AZhy4EaC5aDHdxyBV8xKDRYUWMVVhQ0vmX5jjTWWlZXWiLSkiCixZMYYVSzJ1XR3H_z7YGKqd34Io9VYo-RYyapkbFSJSaWDjzEYW2uXVHK-T0G5tgZaHzOqf2U0kvCD3AfXqXD4l1lNTFRb8-3nb-ADepx1-g |
CitedBy_id | crossref_primary_10_3390_make6030085 crossref_primary_10_1007_s10614_025_10893_5 |
Cites_doi | 10.1109/PacificVis52677.2021.00032 10.1016/j.asoc.2013.09.016 10.1016/j.ejor.2021.03.006 10.1109/WICT.2011.6141362 10.1111/cgf.13681 10.1016/j.knosys.2017.07.034 10.1145/2939672.2939785 10.1007/s11277-021-09158-9 10.3389/frai.2021.681915 10.1109/TVCG.2018.2864499 10.1002/9781119201731 10.1137/1.9781611974560 10.1016/j.ejor.2020.01.028 10.1016/j.indmarman.2019.08.005 10.1016/S0169-2070(00)00034-0 10.1007/s11156-017-0670-9 10.1016/j.asoc.2020.106263 10.3390/risks7020053 10.1111/cgf.13667 10.1080/13563467.2021.1926955 10.1109/TVCG.2018.2864903 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1177/14738716231180803 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1473-8724 |
EndPage | 357 |
ExternalDocumentID | 10_1177_14738716231180803 10.1177_14738716231180803 |
GroupedDBID | -TM .2L .2N .DC 01A 0R~ 1~K 29I 54M 5GY 77K 8R4 8R5 AACTG AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA AATBZ ABAWP ABCCA ABCJG ABEIX ABFWQ ABFXH ABIDT ABJNI ABKRH ABLUO ABPNF ABQPY ABQXT ABRHV ABUJY ACDXX ACFUR ACFZE ACGFS ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADVBO ADYCS AEDXQ AENEX AEOBU AEPTA AEQLS AESZF AEUHG AEVPJ AEVXP AEWDL AEWHI AEXNY AFEET AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWFA AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARCSS ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AYPQM AZFZN BBRGL BDDNI BDZRT BMVBW BPACV CAG CEADM CFDXU COF CS3 DG~ DO- DOPDO DU5 DV7 DV8 EBS EJD F5P FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HVGLF HZ~ J8X K.F MK~ O9- P.B P2P PQQKQ Q2X Q7P Q83 ROL S01 SASJQ SAUOL SCNPE SFC SPV SSDHQ ZPLXX ZPPRI ZRKOI ~32 AAYXX ACCVC AJGYC AMNSR CITATION 7SC 8FD AAPII AJVBE E3H F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c312t-16e81f61c002621694f8c1f1a1fa6a92d654cb4dfef459cc220502228254eeea3 |
ISSN | 1473-8716 |
IngestDate | Fri Jul 25 08:00:38 EDT 2025 Tue Jul 01 05:27:13 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Tue Jun 17 22:38:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | visual analytics monitoring data modeling and credit risk Credit scoring |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-16e81f61c002621694f8c1f1a1fa6a92d654cb4dfef459cc220502228254eeea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2821-6458 0000-0001-9446-6757 |
PQID | 2862989544 |
PQPubID | 25946 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2862989544 crossref_citationtrail_10_1177_14738716231180803 crossref_primary_10_1177_14738716231180803 sage_journals_10_1177_14738716231180803 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231000 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Thousand Oaks |
PublicationTitle | Information visualization |
PublicationYear | 2023 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Taplin, Hunt 2019; 7 Cashman, Humayoun, Heimerl 2019; 38 Tripathi, Shukla, Reddy 2022; 123 Troisi, Maione, Grimaldi 2020; 90 Zhou, Huang, Chen 2021 Garcia Caballero, Westenberg, Gebre 2019; 38 Tidwell 2011 Zhang, Wang, Molino 2019; 25 D’Ignazio 2017; 23 Szepannek, Lübke 2021; 4 Ke, Meng, Finley 2018; 30 Schlechtingen, Santos 2014; 14 Lian 2018; 51 Wexler, Pushkarna, Bolukbasi 2020; 26 Gunnarsson, vanden Broucke, Baesens 2021; 295 Thomas 2000; 16 Řezáč, Řezáč 2011; 61 Dastile, Celik, Potsane 2020; 91 Bolton 2010 De Baets, Harvey 2020; 284 Bequé, Coussement, Gayler 2017; 134 Sarikaya, Correll, Bartram 2019; 25 Bernards 2022; 27 Veiga, Gibran, Bonsere 2020; 1 Louzada, Ara, Fernandes 2016; 21 bibr3-14738716231180803 bibr21-14738716231180803 bibr34-14738716231180803 Chakravart NL (bibr36-14738716231180803) 1967 bibr20-14738716231180803 bibr30-14738716231180803 Wexler J (bibr10-14738716231180803) 2020; 26 Louzada F (bibr13-14738716231180803) 2016; 21 Zhou J (bibr19-14738716231180803) 2021 Ke G (bibr24-14738716231180803) 2018; 30 bibr9-14738716231180803 bibr26-14738716231180803 Sicsú AL (bibr17-14738716231180803) 2010 bibr6-14738716231180803 Thomas JJ (bibr8-14738716231180803) 2005 bibr23-14738716231180803 Tidwell J (bibr35-14738716231180803) 2011 bibr12-14738716231180803 bibr22-14738716231180803 Dunkerley F (bibr16-14738716231180803) 2021 bibr38-14738716231180803 bibr15-14738716231180803 bibr25-14738716231180803 bibr28-14738716231180803 bibr2-14738716231180803 Dodge J (bibr29-14738716231180803) Veiga FDS (bibr5-14738716231180803) 2020; 1 bibr7-14738716231180803 Bolton C (bibr31-14738716231180803) 2010 bibr14-14738716231180803 Maxwell JA (bibr32-14738716231180803) 2008; 2 Řezáč M (bibr18-14738716231180803) 2011; 61 bibr4-14738716231180803 bibr1-14738716231180803 bibr11-14738716231180803 Lazar J (bibr37-14738716231180803) 2017 D’Ignazio C (bibr33-14738716231180803) 2017; 23 Gingerich M (bibr27-14738716231180803); 29 |
References_xml | – volume: 25 start-page: 364 issue: 1 year: 2019 end-page: 373 article-title: Manifold: A model-agnostic framework for interpretation and diagnosis of machine learning models publication-title: IEEE Transactions Vis Comput Graph – volume: 284 start-page: 882 year: 2020 end-page: 895 article-title: Using judgment to select and adjust forecasts from statistical models publication-title: Eur J Oper Res – volume: 4 start-page: 681915 year: 2021 article-title: Facing the challenges of developing fair risk scoring models publication-title: Front Artif Intell – volume: 134 start-page: 213 year: 2017 end-page: 227 article-title: Approaches for credit scorecard calibration: an empirical analysis publication-title: Knowl Based Syst – volume: 21 start-page: 117 issue: 2 year: 2016 end-page: 134 article-title: Classification methods applied to credit scoring: systematic review and overall comparison publication-title: Surv Oper Res Manag Sci – year: 2021 article-title: Facilitating machine learning model comparison and explanation through a radial visualisation publication-title: arXiv preprint arXiv:210407377 – volume: 51 start-page: 253 issue: 1 year: 2018 end-page: 282 article-title: Bank competition and the cost of bank loans publication-title: Rev Quant Finance Account – volume: 123 start-page: 785 year: 2022 end-page: 812 article-title: Credit scoring models using ensemble learning and classification approaches: A comprehensive survey publication-title: Wirel Pers Commun – volume: 30 start-page: 4 year: 2018 end-page: 9 article-title: Lightgbm: A highly efficient gradient boosting decision tree. nips 2017 publication-title: Adv Neural Inf Process Syst – volume: 27 start-page: 116 issue: 1 year: 2022 end-page: 131 article-title: The world bank, agricultural credit, and the rise of neoliberalism in global development publication-title: New Political Econ – volume: 295 start-page: 292 issue: 1 year: 2021 end-page: 305 article-title: Deep learning for credit scoring: Do or dont? publication-title: Eur J Oper Res – year: 2010 publication-title: Logistic regression and its application in credit scoring – volume: 38 start-page: 185 year: 2019 end-page: 199 article-title: A user-based visual analytics workflow for exploratory model analysis publication-title: Comput Graph Forum – volume: 25 start-page: 682 issue: 1 year: 2019 end-page: 692 article-title: What do we talk about when we talk about dashboards? publication-title: IEEE Transactions Vis Comput Graph – volume: 26 start-page: 56 issue: 1 year: 2020 end-page: 65 article-title: The what-if tool: interactive probing of machine learning models publication-title: IEEE Transactions Vis Comput Graph – volume: 1 start-page: 203 issue: 15 year: 2020 end-page: 226 article-title: Open banking: Expectativas e desafios para o mercado financeiro no brasil publication-title: Administração de Empresas em Revista – volume: 14 start-page: 447 year: 2014 end-page: 460 article-title: Wind turbine condition monitoring based on scada data using normal behavior models. Part 2: Application examples publication-title: Appl Soft Comput – volume: 23 start-page: 6 issue: 1 year: 2017 end-page: 18 article-title: Creative data literacy: Bridging the gap between the data-haves and data-have nots publication-title: Inf Des J – volume: 61 start-page: 486 issue: 5 year: 2011 end-page: 507 article-title: How to measure the quality of credit scoring models publication-title: Finance Úvěr Czech J Econ Finance – volume: 38 start-page: 1 year: 2019 end-page: 12 article-title: V-Awake: A visual analytics approach for correcting sleep predictions from deep learning models publication-title: Comput Graph Forum – volume: 7 start-page: 53 issue: 2 year: 2019 article-title: The population accuracy index: A new measure of population stability for model monitoring publication-title: Risks – volume: 90 start-page: 538 year: 2020 end-page: 557 article-title: Growth hacking: Insights on data-driven decision-making from three firms publication-title: Ind Mark Manag – year: 2011 publication-title: Designing interfaces: patterns for effective interaction design – volume: 16 start-page: 149 issue: 2 year: 2000 end-page: 172 article-title: A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers publication-title: Int Journal Forecast – volume: 91 start-page: 106263 year: 2020 article-title: Statistical and machine learning models in credit scoring: A systematic literature survey publication-title: Appl Soft Comput – ident: bibr22-14738716231180803 doi: 10.1109/PacificVis52677.2021.00032 – ident: bibr26-14738716231180803 doi: 10.1016/j.asoc.2013.09.016 – ident: bibr38-14738716231180803 doi: 10.1016/j.ejor.2021.03.006 – volume-title: Illuminating the path:[the research and development agenda for visual analytics] year: 2005 ident: bibr8-14738716231180803 – ident: bibr3-14738716231180803 doi: 10.1109/WICT.2011.6141362 – ident: bibr21-14738716231180803 doi: 10.1111/cgf.13681 – volume-title: Credit scoring: desenvolvimento, implantação, acompanhamento year: 2010 ident: bibr17-14738716231180803 – ident: bibr6-14738716231180803 doi: 10.1016/j.knosys.2017.07.034 – ident: bibr23-14738716231180803 doi: 10.1145/2939672.2939785 – volume: 61 start-page: 486 issue: 5 year: 2011 ident: bibr18-14738716231180803 publication-title: Finance Úvěr Czech J Econ Finance – ident: bibr14-14738716231180803 doi: 10.1007/s11277-021-09158-9 – volume-title: Future of the credit information market year: 2021 ident: bibr16-14738716231180803 – start-page: 275 volume-title: Proceedings of the 24th international conference on intelligent user interfaces ident: bibr29-14738716231180803 – ident: bibr30-14738716231180803 doi: 10.3389/frai.2021.681915 – ident: bibr20-14738716231180803 doi: 10.1109/TVCG.2018.2864499 – ident: bibr15-14738716231180803 doi: 10.1002/9781119201731 – year: 2010 ident: bibr31-14738716231180803 publication-title: Logistic regression and its application in credit scoring – volume: 26 start-page: 56 issue: 1 year: 2020 ident: bibr10-14738716231180803 publication-title: IEEE Transactions Vis Comput Graph – ident: bibr11-14738716231180803 doi: 10.1137/1.9781611974560 – ident: bibr28-14738716231180803 doi: 10.1016/j.ejor.2020.01.028 – year: 2011 ident: bibr35-14738716231180803 publication-title: Designing interfaces: patterns for effective interaction design – volume: 2 start-page: 214 volume-title: The Sage handbook of applied social research methods year: 2008 ident: bibr32-14738716231180803 – volume: 1 start-page: 203 issue: 15 year: 2020 ident: bibr5-14738716231180803 publication-title: Administração de Empresas em Revista – ident: bibr9-14738716231180803 doi: 10.1016/j.indmarman.2019.08.005 – volume-title: Research methods in human-computer interaction year: 2017 ident: bibr37-14738716231180803 – volume: 21 start-page: 117 issue: 2 year: 2016 ident: bibr13-14738716231180803 publication-title: Surv Oper Res Manag Sci – ident: bibr12-14738716231180803 doi: 10.1016/S0169-2070(00)00034-0 – year: 2021 ident: bibr19-14738716231180803 publication-title: arXiv preprint arXiv:210407377 – ident: bibr1-14738716231180803 doi: 10.1007/s11156-017-0670-9 – volume: 23 start-page: 6 issue: 1 year: 2017 ident: bibr33-14738716231180803 publication-title: Inf Des J – ident: bibr4-14738716231180803 doi: 10.1016/j.asoc.2020.106263 – ident: bibr7-14738716231180803 doi: 10.3390/risks7020053 – volume-title: Handbook of methods of applied statistics year: 1967 ident: bibr36-14738716231180803 – ident: bibr25-14738716231180803 doi: 10.1111/cgf.13667 – ident: bibr2-14738716231180803 doi: 10.1080/13563467.2021.1926955 – volume: 30 start-page: 4 year: 2018 ident: bibr24-14738716231180803 publication-title: Adv Neural Inf Process Syst – volume: 29 start-page: 1728 volume-title: Proceedings of the AAAI conference on artificial intelligence ident: bibr27-14738716231180803 – ident: bibr34-14738716231180803 doi: 10.1109/TVCG.2018.2864903 |
SSID | ssj0027409 |
Score | 2.3154054 |
SecondaryResourceType | review_article |
Snippet | Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 340 |
SubjectTerms | Credit risk Credit scoring Data models Decision making Financial institutions Interviews Literature reviews Mathematical analysis Monitoring Scoring models Subject specialists |
Title | Visual analytics for monitoring credit scoring models |
URI | https://journals.sagepub.com/doi/full/10.1177/14738716231180803 https://www.proquest.com/docview/2862989544 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZge4EHBAxE2YbyMGkSVVD9I27yOCGmCaloG9s0nqLYcVClrEUkRWJ_PXe2Gxt1oMFL1DrXq-L7Yvvsu-8IOcg5Z1NV4Kl_lacCJuC0yI1MC2kmWgtlKsu2P_skTy7Fx-vsOoQE2eySXr3Tt3fmlfyPVaEN7IpZsv9g2UEpNMBnsC9cwcJwvZeNr-bdyub6V-1PS7eMMYM39i21YXXIBjrvx512X23Vmy5ejvpkJIuBH1aZT8sMG5xtvXSx74AjMz5f1uDOr0Lg4bn5OrcCYLF5uxx_xqLEw90ZTIR4PGBHoq5SpsWsIRVvNbAQtBafcd25m0jFlKfoe7lpJW5zKdLrwZaxCFQiGjm5Y23ykzB3rNWb4_vUMQRMOf4ZrE0p8mLyMJkNIYZeutyQfUi2GbgUMCZuH305PZtF7rkNCBoexZ-BIz3XhpLfVzHBNYmiAe0C5eIpeeI9i-TIweQZeWAWz8njiG9yh2QOMMkAmATMnwTAJA4wiQdM4gDzglwef7h4f5L6uhmp5pT1KZUmp42kGh1sRmUhmlzThla0qWRVsFpmQitRN6YRWaE15lqj34-bBcaYir8kW4vlwrwiSY41jFAdPLWQvFac41YhE2qSQ-tkRCbrfii1J5XH2iZtST2P_EbXjcjb4SffHKPK34T31p1b-hevKxl44UVeZEKMyCF2eLj1R0Wv7y25Sx4F7O-Rrf77yuzDwrNXbzxifgEZ1nd- |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BewAO7Iiy5gBCQgqKHcd1DhwQUBVKEUgtKqeQuI5UAQWRVAg-iV_hp_BkKWUVlx44JplYoxkvb-zxG4ANYdu0HLh46u8Lk-kF2HSF4qbLlSUlC5SfsO3XT3m1yY5bTmsEXvK7MJkFox1Mq9IaJZN1f3TjPXFWthHka1xCkBMxL1xdU0-POlyLdo8OtG83Ka0cNvarZlZRwJQ2obFJuBIk5ERi6EEJd1koJAmJT0Kf-y5tc4fJgLVDFTLHlRJvoWJEhGGUUsq3dbujUBTIwlmA4t7l2Xl9ILxLEkpQQRM1zM5Qv1X64yr4Dm0HssmSBa4yBa-5adK8luudXqyt8vyJNfJ_2G4aJjOcbeylA2MGRlR3FiYG2BfnwLnoRD0t4yMvC7JVGxrAG7fJJIcSBpKpdmIjkuljUjQomofmUPRegEL3rqsWwRBY0Qeb08Zj3G4Hto0bZ5QFltBvrRJYuVc9mVGsY6WPG49krOpfPFCC7f4v9ym_yG_CK3lX8XJne1THpK5wHcZKsIWef__0Y0NLf5Zch7Fqo37inRyd1pZhnGqIl6YyrkAhfuipVQ3J4mAtGwsGXA27C70B974yGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qBdGDb7FaNQdFENJmN5ttcvBQrMVaFQWVeorJZgNFrcWkiP4o_4p_yZ08tD7x4sFjkskyzOxmvsnOfgOwbpsmrfkO7vp7ts5UANYdW3Ld4dIQgvnSS9j2D4_43hnb71idAjzlZ2EyC0YVLKtSGiUfa1zd_SCsZnuMVcJqJgJ9hU0I8iLmzavb8uFepWzRdquh_LtBaXP3dGdPz7oK6MIkNNYJlzYJORGYflDCHRbagoTEI6HHPYcG3GLCZ0EoQ2Y5QuBJVMyKMJWSUnqmGncERlVgREA2Wr84PjkcSvGSohJUUEcNs33UL5V-Hwnf4O1QRVkS5JpT8JybJ61tuaoMYmWZxw_Mkf_HftMwmeFtrZ4ukBkoyN4sTAyxMM6Bdd6NBkrGQ34WZK3WFJDXbpKPHUpoSKrajbVIpJdJ86BoHs7-RO8FKPZue3IRNBs7--BwyniMm4FvmvgDjTLfsNVdowRG7llXZFTr2PHj2iUZu_onD5Rg6_WVfsoz8pNwOZ8ubu5wl6rc1LEdi7ESbKL33x59O9DSryXXYOy40XQPWkftZRinCumlFY1lKMZ3A7mikFnsr2bLQYPLv55BL3aENI4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+analytics+for+monitoring+credit+scoring+models&rft.jtitle=Information+visualization&rft.au=Baldo%2C+Daiane+Rodrigues&rft.au=Regio%2C+Murilo+Santos&rft.au=Manssour%2C+Isabel+Harb&rft.date=2023-10-01&rft.pub=SAGE+Publications&rft.issn=1473-8716&rft.eissn=1473-8724&rft.volume=22&rft.issue=4&rft.spage=340&rft.epage=357&rft_id=info:doi/10.1177%2F14738716231180803&rft.externalDocID=10.1177_14738716231180803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-8716&client=summon |