TENSOR-PRODUCT COACTION FUNCTORS
Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product f...
Saved in:
Published in | Journal of the Australian Mathematical Society (2001) Vol. 112; no. 1; pp. 52 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action
$(C,\unicode[STIX]{x1D6FE})$
, then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if
$(C,\unicode[STIX]{x1D6FE})$
is the action by translation on
$\ell ^{\infty }(G)$
, we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the
$E$
-ization functor we defined earlier, where
$E$
is a large ideal of
$B(G)$
. |
---|---|
AbstractList | Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action \((C,\unicode[STIX]{x1D6FE})\), then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if \((C,\unicode[STIX]{x1D6FE})\) is the action by translation on \(\ell ^{\infty }(G)\), we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the \(E\)-ization functor we defined earlier, where \(E\) is a large ideal of \(B(G)\). Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ . Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1 (2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ . |
Author | KALISZEWSKI, S. LANDSTAD, MAGNUS B. QUIGG, JOHN |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0001-8049-7878 surname: KALISZEWSKI fullname: KALISZEWSKI, S. email: kaliszewski@asu.edu organization: School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA e-mail: kaliszewski@asu.edu – sequence: 2 givenname: MAGNUS B. surname: LANDSTAD fullname: LANDSTAD, MAGNUS B. email: magnus.landstad@ntnu.no organization: Department of Mathematical Sciences, Norwegian University of Science & Technology, NO-7491 Trondheim, Norway e-mail: magnus.landstad@ntnu.no – sequence: 3 givenname: JOHN surname: QUIGG fullname: QUIGG, JOHN email: quigg@asu.edu organization: School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA e-mail: quigg@asu.edu |
BookMark | eNp1UEtLw0AQXqSCbfUHeAt4ju5MNtndY4ltLZRE8jgvm2QjLbapu-3Bf29CAx7Eucww3wu-GZkcu6Mh5BHoM1DgLzkwFnEhONJhouCGTIeXL4DyyXgP-B2ZObenFIFFdEq8Ypnkaea_Z-lrGRdenC7iYpMm3qpM4iLN8nty2-pPZx7GPSflalnEb_42XW_ixdavA8CzDyFCqxFlZUAyTmXNGmZoU9eMaiNRDgAzwnDkkZChxkDyRstKCslZWAVz8nT1Pdnu62LcWe27iz32kQo5l4gRIPQsuLJq2zlnTatOdnfQ9lsBVUMR6k8RvSYYNfpQ2V3zYX6t_1f9AGmQW4o |
Cites_doi | 10.2140/akt.2016.1.155 10.2140/pjm.2016.284.147 10.1142/S0129167X04002107 10.2140/pjm.2018.293.301 10.1017/S0143385712000405 10.1515/crelle-2015-0061 10.1090/surv/224 |
ContentType | Journal Article |
Copyright | 2020 Australian Mathematical Publishing Association Inc. |
Copyright_xml | – notice: 2020 Australian Mathematical Publishing Association Inc. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S1446788720000063 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1446-8107 |
EndPage | 67 |
ExternalDocumentID | 10_1017_S1446788720000063 |
GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X 09C 09E 0E1 0R~ 2WC 5GY 5VS 6~7 74X 74Y 7~V 88I 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABKKG ABMWE ABMYL ABQTM ABROB ABTAH ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACIMK ACIPV ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DOHLZ DU5 DWQXO EBS EGQIC EJD ESX GNUQQ HCIFZ HST HZ~ H~9 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KC5 KCGVB KFECR L98 LHUNA LW7 M-V M2P M7S M8. NIKVX NMFBF NZEOI O9- P2P PTHSS PYCCK RAMDC RCA ROL RR0 S6U SAAAG SJN T9M TN5 TR2 UPT UT1 VH1 WFFJZ WQ3 WXU WXY WYP XOL YQT ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ AAKNA AATMM AAYXX ABGDZ ABHFL ABJNI ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI ACRPL ADNMO ADXHL AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c312t-1521fa229be194709c4d4e0dcc40ae9299be14e8e7276895a2397da9b989745b3 |
IEDL.DBID | BENPR |
ISSN | 1446-7887 |
IngestDate | Fri Jul 25 11:46:49 EDT 2025 Tue Jul 01 04:24:13 EDT 2025 Wed Mar 13 06:03:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | crossed product coaction Fell bundle 46M15 action 46L55 tensor product |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-1521fa229be194709c4d4e0dcc40ae9299be14e8e7276895a2397da9b989745b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8049-7878 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/08E44228C87E6A570CD2B8D12E09DB17/S1446788720000063a.pdf/div-class-title-tensor-product-coaction-functors-div.pdf |
PQID | 2779226121 |
PQPubID | 6327074 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2779226121 crossref_primary_10_1017_S1446788720000063 cambridge_journals_10_1017_S1446788720000063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Canberra |
PublicationTitle | Journal of the Australian Mathematical Society (2001) |
PublicationTitleAlternate | J. Aust. Math. Soc |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S1446788720000063_r1 Fell (S1446788720000063_r8) 1988 S1446788720000063_r10 S1446788720000063_r5 S1446788720000063_r4 S1446788720000063_r3 Quigg (S1446788720000063_r12) 1996; 60 S1446788720000063_r2 S1446788720000063_r9 S1446788720000063_r7 Ng (S1446788720000063_r11) 1996; 60 Echterhoff (S1446788720000063_r6) 2006 |
References_xml | – ident: S1446788720000063_r3 doi: 10.2140/akt.2016.1.155 – volume: 60 start-page: 204 year: 1996 ident: S1446788720000063_r12 article-title: Discrete C ∗ -coactions and C ∗ -algebraic bundles publication-title: J. Aust. Math. Soc. Ser. A – ident: S1446788720000063_r9 doi: 10.2140/pjm.2016.284.147 – volume-title: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles. Vol. 2 year: 1988 ident: S1446788720000063_r8 – volume-title: A Categorical Approach to Imprimitivity Theorems for C ∗ -Dynamical Systems, Vol. 180 year: 2006 ident: S1446788720000063_r6 – ident: S1446788720000063_r1 – ident: S1446788720000063_r5 doi: 10.1142/S0129167X04002107 – ident: S1446788720000063_r10 doi: 10.2140/pjm.2018.293.301 – ident: S1446788720000063_r2 doi: 10.1017/S0143385712000405 – ident: S1446788720000063_r4 doi: 10.1515/crelle-2015-0061 – volume: 60 start-page: 118 year: 1996 ident: S1446788720000063_r11 article-title: Discrete coactions on C ∗ -algebras publication-title: J. Aust. Math. Soc. Ser. A – ident: S1446788720000063_r7 doi: 10.1090/surv/224 |
SSID | ssj0021460 |
Score | 2.2456074 |
Snippet | Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss... Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1 (2) (2016), 155–208], further developed by... Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 52 |
SubjectTerms | Expanders Mathematical analysis Tensors |
Title | TENSOR-PRODUCT COACTION FUNCTORS |
URI | https://www.cambridge.org/core/product/identifier/S1446788720000063/type/journal_article https://www.proquest.com/docview/2779226121 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoEB8RSFUmVgQlg0rp3YE4LQUCE1qdJE6hYltjP2Qcv_x86jVYXUJYMd2cpddPedffcdwJO0HSUKxZF0igJpj88QwwVDNMsF0S5fP03t8CRwxgn5ntN5feC2qdMqG5tYGmq5FOaM_BW7Lscl39Xbao1M1yhzu1q30GhBR5tgpoOvzscomEa7kEvbgbIkUgc9Zd5cc69pSKPNoBnDJVA2PKB7doVDL3VopEvP41_AeQ0ZrfdKx5dwohZXcDbZ8a1ursGKR8EsjNA0Cj8TL7a8sEoOsfwk8OIwmt1A4o9ib4zq3gdIDG28RcatFhnGPFc2J-6ACyKJGkihJZgpjWnMBFFMafzhME4zrIGFzHjOmY4QaD68hfZiuVB3YCmmIZtNBeVkQKRyOCn0FrSguWQ4s0UXXnbfndZ_8Catsr_c9J-YuvDciCZdVYwYx17uNcLbL71X5f3x6Qc4xabaoEyS7kF7-_OrHjUG2OZ9aDH_q1-r-w9X2Key |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ikKBTLAgrBoXDu1B4RQH7T0EdQmUreQhzO2hRYh_hS_kXPStKqQunXJYEdOcj77-y6-B8BNZFoqjJUkkRXHBBFfEEFjQbgfhAwhH686drjbs5ouex3yYQ5-s1gY7VaZ7YnJRh2NQ_2P_IFWKpIm-a6eJh9EV43Sp6tZCY1ULdrq5xtNtuljq4bze0tpo-5Um2ReVYCEZZPOiAas2KdUBgoN-EpJhixiqhSF-G6-QragO5gSCpHdEpL7FCE78mUgBXJvHpRx3C3YZuWy1CtKNF4WBh7uOkkAJppYiZdedoqqU1TrRt1GE1qus44uczmsYuIqJCQ41ziA_TlBNZ5TjTqEnBodwV53kd11egyGU-8N7D5569s1t-oYVTt1RTEabq_q2P3BCbgbkckp5EfjkToDQwkkiCYPuWQlFilLshgfwWMeRIL6ZliA-8V3e_P1MvVSX7OK909MBbjLRONN0vwb624uZsJbDr1UnPP13dew03S6Ha_T6rUvYJfqOIfEPbsI-dnnl7pE9jELrpIpN-B90zr2B7wx4SI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJEYPxmdEUXvQi3EDXfragzFaaECkJaUk3Gof2yOgYIx_zV_nbB8QYsKNSw-7zbadne43s_vNDMBtLGs8SjgjsZYkBBHfIAZNDKIGYaQg5ONVxA73ba0zUl7H6rgEv0UsjKBVFmtiulDH00jskdeprjOa5ruqJzktYtCynmYfRFSQEietRTmNTEV6_Ocb3bf5Y7eFc31HqdX2zA7JKwyQqCnTBRHglQSUspCjM683WKTECm_EEb5nwNFyEB0KNziivGYwNaAI33HAQmagHa6GTRx3Byo6ekWNMlRe2vbAXbp7uAal4ZjocKWcveJMVSSsFo2ijaZGushBusrssI6Q6wCRop51CAe5uSo9Z_p1BCU-OYb9_jLX6_wEJK9tDx2XDFynNTI9yXQyYopkjWzTc9zhKYy2IpUzKE-mE34OEjfQXJTVSGVKQ4m5xpQEH6EmahgbNJCjKjwsv9vP_565nzHPdP-fmKpwX4jGn2XZODbdXCuEtxp6pUYXm7tvYBf1y3_r2r1L2KMi6CHlategvPj84ldoiizC63zOJXjftpr9AXmK5rQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TENSOR-PRODUCT+COACTION+FUNCTORS&rft.jtitle=Journal+of+the+Australian+Mathematical+Society+%282001%29&rft.au=KALISZEWSKI%2C+S.&rft.au=LANDSTAD%2C+MAGNUS+B.&rft.au=QUIGG%2C+JOHN&rft.date=2022-02-01&rft.issn=1446-7887&rft.eissn=1446-8107&rft.volume=112&rft.issue=1&rft.spage=52&rft.epage=67&rft_id=info:doi/10.1017%2FS1446788720000063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1446788720000063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-7887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-7887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-7887&client=summon |