TENSOR-PRODUCT COACTION FUNCTORS

Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product f...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Australian Mathematical Society (2001) Vol. 112; no. 1; pp. 52 - 67
Main Authors KALISZEWSKI, S., LANDSTAD, MAGNUS B., QUIGG, JOHN
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ .
AbstractList Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action \((C,\unicode[STIX]{x1D6FE})\), then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if \((C,\unicode[STIX]{x1D6FE})\) is the action by translation on \(\ell ^{\infty }(G)\), we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the \(E\)-ization functor we defined earlier, where \(E\) is a large ideal of \(B(G)\).
Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ .
Recent work by Baum et al.  [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory   1 (2) (2016), 155–208], further developed by Buss et al.  [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math.   740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ .
Author KALISZEWSKI, S.
LANDSTAD, MAGNUS B.
QUIGG, JOHN
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0001-8049-7878
  surname: KALISZEWSKI
  fullname: KALISZEWSKI, S.
  email: kaliszewski@asu.edu
  organization: School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA e-mail: kaliszewski@asu.edu
– sequence: 2
  givenname: MAGNUS B.
  surname: LANDSTAD
  fullname: LANDSTAD, MAGNUS B.
  email: magnus.landstad@ntnu.no
  organization: Department of Mathematical Sciences, Norwegian University of Science & Technology, NO-7491 Trondheim, Norway e-mail: magnus.landstad@ntnu.no
– sequence: 3
  givenname: JOHN
  surname: QUIGG
  fullname: QUIGG, JOHN
  email: quigg@asu.edu
  organization: School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA e-mail: quigg@asu.edu
BookMark eNp1UEtLw0AQXqSCbfUHeAt4ju5MNtndY4ltLZRE8jgvm2QjLbapu-3Bf29CAx7Eucww3wu-GZkcu6Mh5BHoM1DgLzkwFnEhONJhouCGTIeXL4DyyXgP-B2ZObenFIFFdEq8Ypnkaea_Z-lrGRdenC7iYpMm3qpM4iLN8nty2-pPZx7GPSflalnEb_42XW_ixdavA8CzDyFCqxFlZUAyTmXNGmZoU9eMaiNRDgAzwnDkkZChxkDyRstKCslZWAVz8nT1Pdnu62LcWe27iz32kQo5l4gRIPQsuLJq2zlnTatOdnfQ9lsBVUMR6k8RvSYYNfpQ2V3zYX6t_1f9AGmQW4o
Cites_doi 10.2140/akt.2016.1.155
10.2140/pjm.2016.284.147
10.1142/S0129167X04002107
10.2140/pjm.2018.293.301
10.1017/S0143385712000405
10.1515/crelle-2015-0061
10.1090/surv/224
ContentType Journal Article
Copyright 2020 Australian Mathematical Publishing Association Inc.
Copyright_xml – notice: 2020 Australian Mathematical Publishing Association Inc.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S1446788720000063
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1446-8107
EndPage 67
ExternalDocumentID 10_1017_S1446788720000063
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
09C
09E
0E1
0R~
2WC
5GY
5VS
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABTAH
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIPV
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HST
HZ~
H~9
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
L98
LHUNA
LW7
M-V
M2P
M7S
M8.
NIKVX
NMFBF
NZEOI
O9-
P2P
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6U
SAAAG
SJN
T9M
TN5
TR2
UPT
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
XOL
YQT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
AAKNA
AATMM
AAYXX
ABGDZ
ABHFL
ABJNI
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
ADXHL
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c312t-1521fa229be194709c4d4e0dcc40ae9299be14e8e7276895a2397da9b989745b3
IEDL.DBID BENPR
ISSN 1446-7887
IngestDate Fri Jul 25 11:46:49 EDT 2025
Tue Jul 01 04:24:13 EDT 2025
Wed Mar 13 06:03:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords crossed product
coaction
Fell bundle
46M15
action
46L55
tensor product
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-1521fa229be194709c4d4e0dcc40ae9299be14e8e7276895a2397da9b989745b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8049-7878
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/08E44228C87E6A570CD2B8D12E09DB17/S1446788720000063a.pdf/div-class-title-tensor-product-coaction-functors-div.pdf
PQID 2779226121
PQPubID 6327074
PageCount 16
ParticipantIDs proquest_journals_2779226121
crossref_primary_10_1017_S1446788720000063
cambridge_journals_10_1017_S1446788720000063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Canberra
PublicationTitle Journal of the Australian Mathematical Society (2001)
PublicationTitleAlternate J. Aust. Math. Soc
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S1446788720000063_r1
Fell (S1446788720000063_r8) 1988
S1446788720000063_r10
S1446788720000063_r5
S1446788720000063_r4
S1446788720000063_r3
Quigg (S1446788720000063_r12) 1996; 60
S1446788720000063_r2
S1446788720000063_r9
S1446788720000063_r7
Ng (S1446788720000063_r11) 1996; 60
Echterhoff (S1446788720000063_r6) 2006
References_xml – ident: S1446788720000063_r3
  doi: 10.2140/akt.2016.1.155
– volume: 60
  start-page: 204
  year: 1996
  ident: S1446788720000063_r12
  article-title: Discrete C ∗ -coactions and C ∗ -algebraic bundles
  publication-title: J. Aust. Math. Soc. Ser. A
– ident: S1446788720000063_r9
  doi: 10.2140/pjm.2016.284.147
– volume-title: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles. Vol. 2
  year: 1988
  ident: S1446788720000063_r8
– volume-title: A Categorical Approach to Imprimitivity Theorems for C ∗ -Dynamical Systems, Vol. 180
  year: 2006
  ident: S1446788720000063_r6
– ident: S1446788720000063_r1
– ident: S1446788720000063_r5
  doi: 10.1142/S0129167X04002107
– ident: S1446788720000063_r10
  doi: 10.2140/pjm.2018.293.301
– ident: S1446788720000063_r2
  doi: 10.1017/S0143385712000405
– ident: S1446788720000063_r4
  doi: 10.1515/crelle-2015-0061
– volume: 60
  start-page: 118
  year: 1996
  ident: S1446788720000063_r11
  article-title: Discrete coactions on C ∗ -algebras
  publication-title: J. Aust. Math. Soc. Ser. A
– ident: S1446788720000063_r7
  doi: 10.1090/surv/224
SSID ssj0021460
Score 2.2456074
Snippet Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss...
Recent work by Baum et al.  [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory   1 (2) (2016), 155–208], further developed by...
Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 52
SubjectTerms Expanders
Mathematical analysis
Tensors
Title TENSOR-PRODUCT COACTION FUNCTORS
URI https://www.cambridge.org/core/product/identifier/S1446788720000063/type/journal_article
https://www.proquest.com/docview/2779226121
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoEB8RSFUmVgQlg0rp3YE4LQUCE1qdJE6hYltjP2Qcv_x86jVYXUJYMd2cpddPedffcdwJO0HSUKxZF0igJpj88QwwVDNMsF0S5fP03t8CRwxgn5ntN5feC2qdMqG5tYGmq5FOaM_BW7Lscl39Xbao1M1yhzu1q30GhBR5tgpoOvzscomEa7kEvbgbIkUgc9Zd5cc69pSKPNoBnDJVA2PKB7doVDL3VopEvP41_AeQ0ZrfdKx5dwohZXcDbZ8a1ursGKR8EsjNA0Cj8TL7a8sEoOsfwk8OIwmt1A4o9ib4zq3gdIDG28RcatFhnGPFc2J-6ACyKJGkihJZgpjWnMBFFMafzhME4zrIGFzHjOmY4QaD68hfZiuVB3YCmmIZtNBeVkQKRyOCn0FrSguWQ4s0UXXnbfndZ_8Catsr_c9J-YuvDciCZdVYwYx17uNcLbL71X5f3x6Qc4xabaoEyS7kF7-_OrHjUG2OZ9aDH_q1-r-w9X2Key
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ikKBTLAgrBoXDu1B4RQH7T0EdQmUreQhzO2hRYh_hS_kXPStKqQunXJYEdOcj77-y6-B8BNZFoqjJUkkRXHBBFfEEFjQbgfhAwhH686drjbs5ouex3yYQ5-s1gY7VaZ7YnJRh2NQ_2P_IFWKpIm-a6eJh9EV43Sp6tZCY1ULdrq5xtNtuljq4bze0tpo-5Um2ReVYCEZZPOiAas2KdUBgoN-EpJhixiqhSF-G6-QragO5gSCpHdEpL7FCE78mUgBXJvHpRx3C3YZuWy1CtKNF4WBh7uOkkAJppYiZdedoqqU1TrRt1GE1qus44uczmsYuIqJCQ41ziA_TlBNZ5TjTqEnBodwV53kd11egyGU-8N7D5569s1t-oYVTt1RTEabq_q2P3BCbgbkckp5EfjkToDQwkkiCYPuWQlFilLshgfwWMeRIL6ZliA-8V3e_P1MvVSX7OK909MBbjLRONN0vwb624uZsJbDr1UnPP13dew03S6Ha_T6rUvYJfqOIfEPbsI-dnnl7pE9jELrpIpN-B90zr2B7wx4SI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJEYPxmdEUXvQi3EDXfragzFaaECkJaUk3Gof2yOgYIx_zV_nbB8QYsKNSw-7zbadne43s_vNDMBtLGs8SjgjsZYkBBHfIAZNDKIGYaQg5ONVxA73ba0zUl7H6rgEv0UsjKBVFmtiulDH00jskdeprjOa5ruqJzktYtCynmYfRFSQEietRTmNTEV6_Ocb3bf5Y7eFc31HqdX2zA7JKwyQqCnTBRHglQSUspCjM683WKTECm_EEb5nwNFyEB0KNziivGYwNaAI33HAQmagHa6GTRx3Byo6ekWNMlRe2vbAXbp7uAal4ZjocKWcveJMVSSsFo2ijaZGushBusrssI6Q6wCRop51CAe5uSo9Z_p1BCU-OYb9_jLX6_wEJK9tDx2XDFynNTI9yXQyYopkjWzTc9zhKYy2IpUzKE-mE34OEjfQXJTVSGVKQ4m5xpQEH6EmahgbNJCjKjwsv9vP_565nzHPdP-fmKpwX4jGn2XZODbdXCuEtxp6pUYXm7tvYBf1y3_r2r1L2KMi6CHlategvPj84ldoiizC63zOJXjftpr9AXmK5rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TENSOR-PRODUCT+COACTION+FUNCTORS&rft.jtitle=Journal+of+the+Australian+Mathematical+Society+%282001%29&rft.au=KALISZEWSKI%2C+S.&rft.au=LANDSTAD%2C+MAGNUS+B.&rft.au=QUIGG%2C+JOHN&rft.date=2022-02-01&rft.issn=1446-7887&rft.eissn=1446-8107&rft.volume=112&rft.issue=1&rft.spage=52&rft.epage=67&rft_id=info:doi/10.1017%2FS1446788720000063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1446788720000063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-7887&client=summon