Acid‐Catalyzed Carbene Transfer from Diazo Compounds: Carbocation versus Carbene as Key Intermediate

An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form cataly...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of organic chemistry Vol. 2022; no. 17
Main Authors Qu, Zheng‐Wang, Zhu, Hui, Grimme, Stefan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates. An efficient and general mechanism of acid‐catalyzed formal carbene transfer from diazo compounds is disclosed by state‐of‐the‐art DFT calculations, suggesting electrophilic carbocations instead of neutral carbenes as the actual catalytic species.
AbstractList An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates.
An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C ‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates.
An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates. An efficient and general mechanism of acid‐catalyzed formal carbene transfer from diazo compounds is disclosed by state‐of‐the‐art DFT calculations, suggesting electrophilic carbocations instead of neutral carbenes as the actual catalytic species.
Author Qu, Zheng‐Wang
Zhu, Hui
Grimme, Stefan
Author_xml – sequence: 1
  givenname: Zheng‐Wang
  orcidid: 0000-0001-6631-3681
  surname: Qu
  fullname: Qu, Zheng‐Wang
  email: qu@thch.uni-bonn.de
  organization: University of Bonn
– sequence: 2
  givenname: Hui
  surname: Zhu
  fullname: Zhu, Hui
  organization: University of Bonn
– sequence: 3
  givenname: Stefan
  orcidid: 0000-0002-5844-4371
  surname: Grimme
  fullname: Grimme, Stefan
  organization: University of Bonn
BookMark eNqFkLFOwzAQQC1UJNrCyhyJOeViJ7HNVoUChUpdisRmuclZStXExU5B6cQn8I18CSlFZWS6G967k96A9GpbIyGXEYwiAHqNK5uPKFAKEIM4If0IpAwhldDr9pjFYSTZyxkZeL8CAJmmUZ-YcV4WXx-fmW70ut1hEWTaLbHGYOF07Q26wDhbBbel3tkgs9XGbuvC3_xgNtdNaevgDZ3f-qOpffCEbTCtG3QVFqVu8JycGr32ePE7h-T5brLIHsLZ_H6ajWdhziIqQpRSAOOQxDEkqaEgNIsEZUYmCXIDORrBl2ByVnRIzpdJwpHHhRFUgGHIhuTqcHfj7OsWfaNWduvq7qWiacq45AmLO2p0oHJnvXdo1MaVlXatikDtW6p9S3Vs2QnyILyXa2z_odXkcZ79ud-o4Xqz
Cites_doi 10.1002/anie.202007001
10.1002/cctc.202100086
10.1002/anie.201608937
10.1039/b508541a
10.1021/acs.joc.8b03278
10.1039/C9DT04560K
10.1002/anie.201710337
10.1002/chem.201900379
10.1002/cctc.202100674
10.1021/acs.orglett.1c01982
10.1002/cctc.202001755
10.1039/C8OB02703J
10.1021/acs.orglett.8b01988
10.1002/ange.201710337
10.1002/ange.202007176
10.1039/P29930000799
10.1002/cctc.202001392
10.1002/cctc.202001396
10.1002/ejoc.201900827
10.1039/D1CC03048E
10.1039/D1CC01856F
10.1021/acscatal.0c03218
10.1039/a706459d
10.1016/j.chempr.2020.06.035
10.1103/PhysRevLett.91.146401
10.1002/chem.201200497
10.1002/open.201900176
10.1002/anie.202007176
10.1021/j100002a024
10.1002/adsc.202101312
10.1021/acscatal.1c04746
10.1039/C7CP04913G
10.1002/jcc.21759
10.1002/adsc.201801389
10.1021/acs.chemrev.7b00382
10.1063/1.3382344
10.1002/cctc.202000981
10.1002/aic.690480220
10.1002/ange.201608937
10.1021/jp050536c
10.1039/b515623h
10.1002/open.202000110
10.1021/acs.joc.9b02035
10.1002/ajoc.202000709
10.1039/C6CC05524A
10.1002/cctc.202000604
ContentType Journal Article
Copyright 2022 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
DOI 10.1002/ejoc.202200408
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0690
EndPage n/a
ExternalDocumentID 10_1002_ejoc_202200408
EJOC202200408
Genre article
GrantInformation_xml – fundername: German Science Foundation (DFG)
  funderid: 490737079
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
1OB
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3128-e9980370544056f208a31823f955e7f0cef87b0fc3d544c7b557e74df8280f3e3
IEDL.DBID DR2
ISSN 1434-193X
IngestDate Wed Aug 13 05:03:41 EDT 2025
Tue Jul 01 03:58:42 EDT 2025
Wed Jan 22 16:24:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3128-e9980370544056f208a31823f955e7f0cef87b0fc3d544c7b557e74df8280f3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5844-4371
0000-0001-6631-3681
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202200408
PQID 2663797534
PQPubID 986364
PageCount 4
ParticipantIDs proquest_journals_2663797534
crossref_primary_10_1002_ejoc_202200408
wiley_primary_10_1002_ejoc_202200408_EJOC202200408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 6, 2022
PublicationDateYYYYMMDD 2022-05-06
PublicationDate_xml – month: 05
  year: 2022
  text: May 6, 2022
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of organic chemistry
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2021; 23
1995; 99
2019; 17
2020 2020; 59 132
2006; 8
1997
2016; 52
2011; 32
2012; 18
2022; 64
1993
2020; 12
2020; 10
2017 2017; 56 129
2019; 361
2018; 20
2017; 117
2021; 57
2021; 13
2020; 6
2002; 48
2021; 10
2016 2016; 55 128
2019; 84
2003; 91
2020; 9
2019; 25
2022; 12
2010; 132
2020; 49
2019
2005; 7
2005; 109
2017; 19
2021; 60
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_43_2
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 32184
  year: 2017
  end-page: 32215
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 2132
  year: 2021
  end-page: 2137
  publication-title: ChemCatChem
– volume: 18
  start-page: 9955
  year: 2012
  end-page: 9964
  publication-title: Chem. Eur. J.
– volume: 60
  start-page: 6864
  year: 2021
  end-page: 6878
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 11171
  year: 2020
  end-page: 11176
  publication-title: ACS Catal.
– volume: 99
  start-page: 606
  year: 1995
  end-page: 611
  publication-title: J. Phys. Chem.
– volume: 23
  start-page: 5831
  year: 2021
  end-page: 5835
  publication-title: Org. Lett.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  publication-title: Phys. Chem. Chem. Phys.
– volume: 48
  start-page: 369
  year: 2002
  end-page: 385
  publication-title: AIChE J.
– volume: 55 128
  start-page: 14807 15027
  year: 2016 2016
  end-page: 14811 15031
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 2364
  year: 2020
  end-page: 2381
  publication-title: Chem
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  publication-title: J. Comput. Chem.
– volume: 57
  start-page: 6736
  year: 2021
  end-page: 6739
  publication-title: Chem. Commun.
– volume: 17
  start-page: 432
  year: 2019
  end-page: 448
  publication-title: Org. Biomol. Chem.
– volume: 52
  start-page: 12011
  year: 2016
  end-page: 12023
  publication-title: Chem. Commun.
– volume: 132
  start-page: 154104
  year: 2010
  end-page: 154119
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 5369
  year: 2020
  end-page: 5373
  publication-title: ChemCatChem
– volume: 10
  start-page: 571
  year: 2021
  end-page: 575
  publication-title: Asian J. Org. Chem.
– volume: 59 132
  start-page: 15492 15621
  year: 2020 2020
  end-page: 15496 15626
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 2163
  year: 1997
  end-page: 2164
  publication-title: Chem. Commun.
– volume: 13
  start-page: 207
  year: 2021
  end-page: 211
  publication-title: ChemCatChem
– volume: 84
  start-page: 4478
  year: 2019
  end-page: 4485
  publication-title: J. Org. Chem.
– volume: 84
  start-page: 14508
  year: 2019
  end-page: 14519
  publication-title: J. Org. Chem.
– volume: 64
  start-page: 773
  year: 2022
  end-page: 780
  publication-title: Adv. Synth. Catal.
– start-page: 799
  year: 1993
  end-page: 805
  publication-title: J. Chem. Soc. Perkin Trans. 2
– volume: 8
  start-page: 1057
  year: 2006
  end-page: 1065
  publication-title: Phys. Chem. Chem. Phys.
– volume: 57
  start-page: 7758
  year: 2021
  end-page: 7761
  publication-title: Chem. Commun.
– volume: 12
  start-page: 6186
  year: 2020
  end-page: 6190
  publication-title: ChemCatChem
– volume: 56 129
  start-page: 16588 16815
  year: 2017 2017
  end-page: 16592 16819
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 442
  year: 2022
  end-page: 452
  publication-title: ACS Catal.
– volume: 109
  start-page: 5656
  year: 2005
  end-page: 5667
  publication-title: J. Phys. Chem. A
– volume: 117
  start-page: 13810
  year: 2017
  end-page: 13889
  publication-title: Chem. Rev.
– volume: 9
  start-page: 743
  year: 2020
  end-page: 747
  publication-title: ChemistryOpen
– start-page: 4609
  year: 2019
  end-page: 4612
  publication-title: Eur. J. Org. Chem.
– volume: 20
  start-page: 4672
  year: 2018
  end-page: 4676
  publication-title: Org. Lett.
– volume: 361
  start-page: 1301
  year: 2019
  end-page: 1306
  publication-title: Adv. Synth. Catal.
– volume: 13
  start-page: 3401
  year: 2021
  end-page: 3404
  publication-title: ChemCatChem
– volume: 25
  start-page: 4670
  year: 2019
  end-page: 4672
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 807
  year: 2019
  end-page: 810
  publication-title: ChemistryOpen
– volume: 49
  start-page: 901
  year: 2020
  end-page: 910
  publication-title: Dalton Trans.
– volume: 12
  start-page: 3656
  year: 2020
  end-page: 3660
  publication-title: ChemCatChem
– volume: 13
  start-page: 1503
  year: 2021
  end-page: 1508
  publication-title: ChemCatChem
– ident: e_1_2_7_2_2
  doi: 10.1002/anie.202007001
– ident: e_1_2_7_41_2
  doi: 10.1002/cctc.202100086
– ident: e_1_2_7_25_1
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201608937
– ident: e_1_2_7_30_2
  doi: 10.1039/b508541a
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.joc.8b03278
– ident: e_1_2_7_19_1
  doi: 10.1039/C9DT04560K
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201710337
– ident: e_1_2_7_47_2
  doi: 10.1002/chem.201900379
– ident: e_1_2_7_40_2
  doi: 10.1002/cctc.202100674
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.orglett.1c01982
– ident: e_1_2_7_39_2
  doi: 10.1002/cctc.202001755
– ident: e_1_2_7_4_2
  doi: 10.1039/C8OB02703J
– ident: e_1_2_7_38_1
– ident: e_1_2_7_9_2
  doi: 10.1021/acs.orglett.8b01988
– ident: e_1_2_7_18_2
  doi: 10.1002/ange.201710337
– ident: e_1_2_7_13_2
  doi: 10.1002/ange.202007176
– ident: e_1_2_7_31_2
  doi: 10.1039/P29930000799
– ident: e_1_2_7_46_2
  doi: 10.1002/cctc.202001392
– ident: e_1_2_7_42_2
  doi: 10.1002/cctc.202001396
– ident: e_1_2_7_48_2
  doi: 10.1002/ejoc.201900827
– ident: e_1_2_7_7_2
  doi: 10.1039/D1CC03048E
– ident: e_1_2_7_15_2
  doi: 10.1039/D1CC01856F
– ident: e_1_2_7_16_2
  doi: 10.1021/acscatal.0c03218
– ident: e_1_2_7_35_2
– ident: e_1_2_7_51_1
  doi: 10.1039/a706459d
– ident: e_1_2_7_14_1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.chempr.2020.06.035
– ident: e_1_2_7_22_1
– ident: e_1_2_7_27_2
  doi: 10.1103/PhysRevLett.91.146401
– ident: e_1_2_7_33_2
  doi: 10.1002/chem.201200497
– ident: e_1_2_7_49_2
  doi: 10.1002/open.201900176
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202007176
– ident: e_1_2_7_37_2
  doi: 10.1021/j100002a024
– ident: e_1_2_7_1_1
– ident: e_1_2_7_26_2
– ident: e_1_2_7_24_2
  doi: 10.1002/adsc.202101312
– ident: e_1_2_7_21_1
  doi: 10.1021/acscatal.1c04746
– ident: e_1_2_7_50_2
  doi: 10.1039/C7CP04913G
– ident: e_1_2_7_29_2
  doi: 10.1002/jcc.21759
– ident: e_1_2_7_12_1
  doi: 10.1002/adsc.201801389
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.7b00382
– ident: e_1_2_7_28_2
  doi: 10.1063/1.3382344
– ident: e_1_2_7_45_2
  doi: 10.1002/cctc.202000981
– ident: e_1_2_7_34_2
  doi: 10.1002/aic.690480220
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.201608937
– ident: e_1_2_7_36_2
  doi: 10.1021/jp050536c
– ident: e_1_2_7_6_1
– ident: e_1_2_7_32_2
  doi: 10.1039/b515623h
– ident: e_1_2_7_44_2
  doi: 10.1002/open.202000110
– ident: e_1_2_7_23_2
  doi: 10.1021/acs.joc.9b02035
– ident: e_1_2_7_20_1
  doi: 10.1002/ajoc.202000709
– ident: e_1_2_7_5_1
  doi: 10.1039/C6CC05524A
– ident: e_1_2_7_43_2
  doi: 10.1002/cctc.202000604
SSID ssj0009661
Score 2.3671584
Snippet An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Carbenes
Carbocations
Diazo compounds
Electrophilic substitution
Protonation
Reaction mechanisms
Substrates
Title Acid‐Catalyzed Carbene Transfer from Diazo Compounds: Carbocation versus Carbene as Key Intermediate
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202200408
https://www.proquest.com/docview/2663797534
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagCyz8Iwql8oDElNbEdp2yVaFVBeJHiErdItuxpYLUoCYd2olH4Bl5EmynSVsWJNgSyWclPt_d59PdZwAuSEB5LJj02jHBHiFx4AWcX3k-5SpQIqZa23zH_UOrPyC3Qzpc6eLP-SHKhJu1DOevrYFzkTaXpKHqNbEUhL5Vs-v2tQVbFhU9L_mjDJZ3Jy6CiWeQyrBgbUR-c118PSotoeYqYHURp7cLePGteaHJW2OaiYac_6Bx_M_P7IGdBRyFnXz_7IMNNT4AW2FxC9wh0B05ir8-PkOb5pnNVQxDPhHGQUIX5bSaQNuhAm9GfJ5A613sPU3ptRuW5PlAaEs_pmkpyVN4p2bQJSNd50qmjsCg130J-97ibgZPYhPSPGWOaQgzA_gM4mtpHwXceAcf6zalimkklQ6YQFri2AyRTFDKFCOxNic8pLHCx6AyTsbqBEAUtIkMqOCaMAPOMFeEa60pQmY0x7wKLgvdRO85BUeUky37kV23qFy3KqgVqosWpphGBoFgZtuHSRX4Tge_zBJ1bx_D8u30L0JnYNs-u8LIVg1UsslUnRvwkok62PTJU91t02-41eiB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQDLDwjygU8IDElNbEdp2yVWlRgbZIiErdIjuxJUBqUZMOdOIReEaeBJ_TtJQFCcZEPivx2XefT3ffIXTOAi4TJWKvnjDqMZYEXiDlpedzqQOtEm4MxDu6vVq7z24HvMgmhFqYnB9iHnCDk-HsNRxwCEhXF6yh-nkEHIQ-6BnKfdegrTfQ5zcfFgxSFs27OxejzLNYZVDwNhK_uiy_7JcWYPM7ZHU-53oLqeJr81STl8okU5V4-oPI8V-_s402Z4gUN_IttINW9HAXrYdFI7g9ZBrxU_L5_hFCpOdtqhMcyrGyNhI7R2f0GEORCm4-yekIg4GBVk3plRs2ykOCGLI_JulcUqb4Tr9hF490xSuZ3kf969Zj2PZm7Rm8mFqv5ml7UyNUWMxnQV_N-CSQ1kD41NQ518KQWJtAKGJimtghsVCcCy1YYuwljxiq6QFaHY6G-hBhEtRZHHAlDRMWn1GpmTTGcELsaEllCV0UyolecxaOKOdb9iNYt2i-biVULnQXzU5jGlkQQgVUELMS8p0Sfpklat3eh_Ono78InaH19mO3E3VuenfHaAPeuzzJWhmtZuOJPrFYJlOnbrd-AdE_68Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELZQkYAF8SsKBTwgMVk1sR2nbFXaqrRQOlCpW-TEtlSGpurP0E48As_Ik2A7TdpOSIyJ7jKcfb7Pl7vvAHigARMy5gmqSUoQpTJAgRBPyGNCBSqWTGub73jr-e0B7QzZcKuLP-OHKBJu1jPceW0dfCJ1dUMaqj5TS0Ho2WW23b779o-fLeryaH9Du-tnjKmUUGSgyjCnbcRedVd_NyxtsOY2YnUhp3UCjtdYEdazxT0Fe2p8Bg7DfETbOdD1ZCR_vr5Dm4NZrpSEoZjG5vSCLgRpNYW2fQQ2RmKVQuv6dojS7NmJpVmyDtq6jMWs0BQz2FVL6DKFrq1kri7AoNX8CNtoPTgBJcTEG6TMHQoTbtCYgWO-9nAgjOt6RNcYU1zjROmAx1gnRBqRhMeMccWp1Ob6hTVR5BKUxulYXQGIgxpNAhYLTblBTkQoKrTWDGMjLYgog8fcbtEk48eIMiZkL7IWjgoLl0ElN2u09pNZZOAB4ba3l5aB50z9x1eiZuc9LJ6u_6N0Dw76jVb0-tLr3oAj-9oVMPoVUJpPF-rWgIx5fOf20S9fSskc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acid%E2%80%90Catalyzed+Carbene+Transfer+from+Diazo+Compounds%3A+Carbocation+versus+Carbene+as+Key+Intermediate&rft.jtitle=European+journal+of+organic+chemistry&rft.au=Zheng%E2%80%90Wang+Qu&rft.au=Zhu%2C+Hui&rft.au=Grimme%2C+Stefan&rft.date=2022-05-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-193X&rft.eissn=1099-0690&rft.volume=2022&rft.issue=17&rft_id=info:doi/10.1002%2Fejoc.202200408&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-193X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-193X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-193X&client=summon