Acid‐Catalyzed Carbene Transfer from Diazo Compounds: Carbocation versus Carbene as Key Intermediate
An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form cataly...
Saved in:
Published in | European journal of organic chemistry Vol. 2022; no. 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates.
An efficient and general mechanism of acid‐catalyzed formal carbene transfer from diazo compounds is disclosed by state‐of‐the‐art DFT calculations, suggesting electrophilic carbocations instead of neutral carbenes as the actual catalytic species. |
---|---|
AbstractList | An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates. An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C ‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates. An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In sharp contrast to recent proposal via neutral carbene‐like intermediates, the new mechanism involves selective diazo C‐protonation to form catalytic electrophilic carbocations, thus enabling a broad choice of metal‐free acid catalysts and nucleophilic substrates. An efficient and general mechanism of acid‐catalyzed formal carbene transfer from diazo compounds is disclosed by state‐of‐the‐art DFT calculations, suggesting electrophilic carbocations instead of neutral carbenes as the actual catalytic species. |
Author | Qu, Zheng‐Wang Zhu, Hui Grimme, Stefan |
Author_xml | – sequence: 1 givenname: Zheng‐Wang orcidid: 0000-0001-6631-3681 surname: Qu fullname: Qu, Zheng‐Wang email: qu@thch.uni-bonn.de organization: University of Bonn – sequence: 2 givenname: Hui surname: Zhu fullname: Zhu, Hui organization: University of Bonn – sequence: 3 givenname: Stefan orcidid: 0000-0002-5844-4371 surname: Grimme fullname: Grimme, Stefan organization: University of Bonn |
BookMark | eNqFkLFOwzAQQC1UJNrCyhyJOeViJ7HNVoUChUpdisRmuclZStXExU5B6cQn8I18CSlFZWS6G967k96A9GpbIyGXEYwiAHqNK5uPKFAKEIM4If0IpAwhldDr9pjFYSTZyxkZeL8CAJmmUZ-YcV4WXx-fmW70ut1hEWTaLbHGYOF07Q26wDhbBbel3tkgs9XGbuvC3_xgNtdNaevgDZ3f-qOpffCEbTCtG3QVFqVu8JycGr32ePE7h-T5brLIHsLZ_H6ajWdhziIqQpRSAOOQxDEkqaEgNIsEZUYmCXIDORrBl2ByVnRIzpdJwpHHhRFUgGHIhuTqcHfj7OsWfaNWduvq7qWiacq45AmLO2p0oHJnvXdo1MaVlXatikDtW6p9S3Vs2QnyILyXa2z_odXkcZ79ud-o4Xqz |
Cites_doi | 10.1002/anie.202007001 10.1002/cctc.202100086 10.1002/anie.201608937 10.1039/b508541a 10.1021/acs.joc.8b03278 10.1039/C9DT04560K 10.1002/anie.201710337 10.1002/chem.201900379 10.1002/cctc.202100674 10.1021/acs.orglett.1c01982 10.1002/cctc.202001755 10.1039/C8OB02703J 10.1021/acs.orglett.8b01988 10.1002/ange.201710337 10.1002/ange.202007176 10.1039/P29930000799 10.1002/cctc.202001392 10.1002/cctc.202001396 10.1002/ejoc.201900827 10.1039/D1CC03048E 10.1039/D1CC01856F 10.1021/acscatal.0c03218 10.1039/a706459d 10.1016/j.chempr.2020.06.035 10.1103/PhysRevLett.91.146401 10.1002/chem.201200497 10.1002/open.201900176 10.1002/anie.202007176 10.1021/j100002a024 10.1002/adsc.202101312 10.1021/acscatal.1c04746 10.1039/C7CP04913G 10.1002/jcc.21759 10.1002/adsc.201801389 10.1021/acs.chemrev.7b00382 10.1063/1.3382344 10.1002/cctc.202000981 10.1002/aic.690480220 10.1002/ange.201608937 10.1021/jp050536c 10.1039/b515623h 10.1002/open.202000110 10.1021/acs.joc.9b02035 10.1002/ajoc.202000709 10.1039/C6CC05524A 10.1002/cctc.202000604 |
ContentType | Journal Article |
Copyright | 2022 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/ejoc.202200408 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0690 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ejoc_202200408 EJOC202200408 |
Genre | article |
GrantInformation_xml | – fundername: German Science Foundation (DFG) funderid: 490737079 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 1OB AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3128-e9980370544056f208a31823f955e7f0cef87b0fc3d544c7b557e74df8280f3e3 |
IEDL.DBID | DR2 |
ISSN | 1434-193X |
IngestDate | Wed Aug 13 05:03:41 EDT 2025 Tue Jul 01 03:58:42 EDT 2025 Wed Jan 22 16:24:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3128-e9980370544056f208a31823f955e7f0cef87b0fc3d544c7b557e74df8280f3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5844-4371 0000-0001-6631-3681 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202200408 |
PQID | 2663797534 |
PQPubID | 986364 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2663797534 crossref_primary_10_1002_ejoc_202200408 wiley_primary_10_1002_ejoc_202200408_EJOC202200408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 6, 2022 |
PublicationDateYYYYMMDD | 2022-05-06 |
PublicationDate_xml | – month: 05 year: 2022 text: May 6, 2022 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | European journal of organic chemistry |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2021; 23 1995; 99 2019; 17 2020 2020; 59 132 2006; 8 1997 2016; 52 2011; 32 2012; 18 2022; 64 1993 2020; 12 2020; 10 2017 2017; 56 129 2019; 361 2018; 20 2017; 117 2021; 57 2021; 13 2020; 6 2002; 48 2021; 10 2016 2016; 55 128 2019; 84 2003; 91 2020; 9 2019; 25 2022; 12 2010; 132 2020; 49 2019 2005; 7 2005; 109 2017; 19 2021; 60 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_43_2 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_2 e_1_2_7_38_1 |
References_xml | – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 32184 year: 2017 end-page: 32215 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 2132 year: 2021 end-page: 2137 publication-title: ChemCatChem – volume: 18 start-page: 9955 year: 2012 end-page: 9964 publication-title: Chem. Eur. J. – volume: 60 start-page: 6864 year: 2021 end-page: 6878 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 11171 year: 2020 end-page: 11176 publication-title: ACS Catal. – volume: 99 start-page: 606 year: 1995 end-page: 611 publication-title: J. Phys. Chem. – volume: 23 start-page: 5831 year: 2021 end-page: 5835 publication-title: Org. Lett. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 369 year: 2002 end-page: 385 publication-title: AIChE J. – volume: 55 128 start-page: 14807 15027 year: 2016 2016 end-page: 14811 15031 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 2364 year: 2020 end-page: 2381 publication-title: Chem – volume: 32 start-page: 1456 year: 2011 end-page: 1465 publication-title: J. Comput. Chem. – volume: 57 start-page: 6736 year: 2021 end-page: 6739 publication-title: Chem. Commun. – volume: 17 start-page: 432 year: 2019 end-page: 448 publication-title: Org. Biomol. Chem. – volume: 52 start-page: 12011 year: 2016 end-page: 12023 publication-title: Chem. Commun. – volume: 132 start-page: 154104 year: 2010 end-page: 154119 publication-title: J. Chem. Phys. – volume: 12 start-page: 5369 year: 2020 end-page: 5373 publication-title: ChemCatChem – volume: 10 start-page: 571 year: 2021 end-page: 575 publication-title: Asian J. Org. Chem. – volume: 59 132 start-page: 15492 15621 year: 2020 2020 end-page: 15496 15626 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 2163 year: 1997 end-page: 2164 publication-title: Chem. Commun. – volume: 13 start-page: 207 year: 2021 end-page: 211 publication-title: ChemCatChem – volume: 84 start-page: 4478 year: 2019 end-page: 4485 publication-title: J. Org. Chem. – volume: 84 start-page: 14508 year: 2019 end-page: 14519 publication-title: J. Org. Chem. – volume: 64 start-page: 773 year: 2022 end-page: 780 publication-title: Adv. Synth. Catal. – start-page: 799 year: 1993 end-page: 805 publication-title: J. Chem. Soc. Perkin Trans. 2 – volume: 8 start-page: 1057 year: 2006 end-page: 1065 publication-title: Phys. Chem. Chem. Phys. – volume: 57 start-page: 7758 year: 2021 end-page: 7761 publication-title: Chem. Commun. – volume: 12 start-page: 6186 year: 2020 end-page: 6190 publication-title: ChemCatChem – volume: 56 129 start-page: 16588 16815 year: 2017 2017 end-page: 16592 16819 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 442 year: 2022 end-page: 452 publication-title: ACS Catal. – volume: 109 start-page: 5656 year: 2005 end-page: 5667 publication-title: J. Phys. Chem. A – volume: 117 start-page: 13810 year: 2017 end-page: 13889 publication-title: Chem. Rev. – volume: 9 start-page: 743 year: 2020 end-page: 747 publication-title: ChemistryOpen – start-page: 4609 year: 2019 end-page: 4612 publication-title: Eur. J. Org. Chem. – volume: 20 start-page: 4672 year: 2018 end-page: 4676 publication-title: Org. Lett. – volume: 361 start-page: 1301 year: 2019 end-page: 1306 publication-title: Adv. Synth. Catal. – volume: 13 start-page: 3401 year: 2021 end-page: 3404 publication-title: ChemCatChem – volume: 25 start-page: 4670 year: 2019 end-page: 4672 publication-title: Chem. Eur. J. – volume: 8 start-page: 807 year: 2019 end-page: 810 publication-title: ChemistryOpen – volume: 49 start-page: 901 year: 2020 end-page: 910 publication-title: Dalton Trans. – volume: 12 start-page: 3656 year: 2020 end-page: 3660 publication-title: ChemCatChem – volume: 13 start-page: 1503 year: 2021 end-page: 1508 publication-title: ChemCatChem – ident: e_1_2_7_2_2 doi: 10.1002/anie.202007001 – ident: e_1_2_7_41_2 doi: 10.1002/cctc.202100086 – ident: e_1_2_7_25_1 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201608937 – ident: e_1_2_7_30_2 doi: 10.1039/b508541a – ident: e_1_2_7_11_1 doi: 10.1021/acs.joc.8b03278 – ident: e_1_2_7_19_1 doi: 10.1039/C9DT04560K – ident: e_1_2_7_18_1 doi: 10.1002/anie.201710337 – ident: e_1_2_7_47_2 doi: 10.1002/chem.201900379 – ident: e_1_2_7_40_2 doi: 10.1002/cctc.202100674 – ident: e_1_2_7_8_2 doi: 10.1021/acs.orglett.1c01982 – ident: e_1_2_7_39_2 doi: 10.1002/cctc.202001755 – ident: e_1_2_7_4_2 doi: 10.1039/C8OB02703J – ident: e_1_2_7_38_1 – ident: e_1_2_7_9_2 doi: 10.1021/acs.orglett.8b01988 – ident: e_1_2_7_18_2 doi: 10.1002/ange.201710337 – ident: e_1_2_7_13_2 doi: 10.1002/ange.202007176 – ident: e_1_2_7_31_2 doi: 10.1039/P29930000799 – ident: e_1_2_7_46_2 doi: 10.1002/cctc.202001392 – ident: e_1_2_7_42_2 doi: 10.1002/cctc.202001396 – ident: e_1_2_7_48_2 doi: 10.1002/ejoc.201900827 – ident: e_1_2_7_7_2 doi: 10.1039/D1CC03048E – ident: e_1_2_7_15_2 doi: 10.1039/D1CC01856F – ident: e_1_2_7_16_2 doi: 10.1021/acscatal.0c03218 – ident: e_1_2_7_35_2 – ident: e_1_2_7_51_1 doi: 10.1039/a706459d – ident: e_1_2_7_14_1 – ident: e_1_2_7_17_1 doi: 10.1016/j.chempr.2020.06.035 – ident: e_1_2_7_22_1 – ident: e_1_2_7_27_2 doi: 10.1103/PhysRevLett.91.146401 – ident: e_1_2_7_33_2 doi: 10.1002/chem.201200497 – ident: e_1_2_7_49_2 doi: 10.1002/open.201900176 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202007176 – ident: e_1_2_7_37_2 doi: 10.1021/j100002a024 – ident: e_1_2_7_1_1 – ident: e_1_2_7_26_2 – ident: e_1_2_7_24_2 doi: 10.1002/adsc.202101312 – ident: e_1_2_7_21_1 doi: 10.1021/acscatal.1c04746 – ident: e_1_2_7_50_2 doi: 10.1039/C7CP04913G – ident: e_1_2_7_29_2 doi: 10.1002/jcc.21759 – ident: e_1_2_7_12_1 doi: 10.1002/adsc.201801389 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.7b00382 – ident: e_1_2_7_28_2 doi: 10.1063/1.3382344 – ident: e_1_2_7_45_2 doi: 10.1002/cctc.202000981 – ident: e_1_2_7_34_2 doi: 10.1002/aic.690480220 – ident: e_1_2_7_10_3 doi: 10.1002/ange.201608937 – ident: e_1_2_7_36_2 doi: 10.1021/jp050536c – ident: e_1_2_7_6_1 – ident: e_1_2_7_32_2 doi: 10.1039/b515623h – ident: e_1_2_7_44_2 doi: 10.1002/open.202000110 – ident: e_1_2_7_23_2 doi: 10.1021/acs.joc.9b02035 – ident: e_1_2_7_20_1 doi: 10.1002/ajoc.202000709 – ident: e_1_2_7_5_1 doi: 10.1039/C6CC05524A – ident: e_1_2_7_43_2 doi: 10.1002/cctc.202000604 |
SSID | ssj0009661 |
Score | 2.3671584 |
Snippet | An efficient mechanism for the acid‐catalyzed formal carbene transfer from diazo compounds to nucleophilic substrates is disclosed by DFT calculations. In... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Carbenes Carbocations Diazo compounds Electrophilic substitution Protonation Reaction mechanisms Substrates |
Title | Acid‐Catalyzed Carbene Transfer from Diazo Compounds: Carbocation versus Carbene as Key Intermediate |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202200408 https://www.proquest.com/docview/2663797534 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagCyz8Iwql8oDElNbEdp2yVaFVBeJHiErdItuxpYLUoCYd2olH4Bl5EmynSVsWJNgSyWclPt_d59PdZwAuSEB5LJj02jHBHiFx4AWcX3k-5SpQIqZa23zH_UOrPyC3Qzpc6eLP-SHKhJu1DOevrYFzkTaXpKHqNbEUhL5Vs-v2tQVbFhU9L_mjDJZ3Jy6CiWeQyrBgbUR-c118PSotoeYqYHURp7cLePGteaHJW2OaiYac_6Bx_M_P7IGdBRyFnXz_7IMNNT4AW2FxC9wh0B05ir8-PkOb5pnNVQxDPhHGQUIX5bSaQNuhAm9GfJ5A613sPU3ptRuW5PlAaEs_pmkpyVN4p2bQJSNd50qmjsCg130J-97ibgZPYhPSPGWOaQgzA_gM4mtpHwXceAcf6zalimkklQ6YQFri2AyRTFDKFCOxNic8pLHCx6AyTsbqBEAUtIkMqOCaMAPOMFeEa60pQmY0x7wKLgvdRO85BUeUky37kV23qFy3KqgVqosWpphGBoFgZtuHSRX4Tge_zBJ1bx_D8u30L0JnYNs-u8LIVg1UsslUnRvwkok62PTJU91t02-41eiB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQDLDwjygU8IDElNbEdp2yVWlRgbZIiErdIjuxJUBqUZMOdOIReEaeBJ_TtJQFCcZEPivx2XefT3ffIXTOAi4TJWKvnjDqMZYEXiDlpedzqQOtEm4MxDu6vVq7z24HvMgmhFqYnB9iHnCDk-HsNRxwCEhXF6yh-nkEHIQ-6BnKfdegrTfQ5zcfFgxSFs27OxejzLNYZVDwNhK_uiy_7JcWYPM7ZHU-53oLqeJr81STl8okU5V4-oPI8V-_s402Z4gUN_IttINW9HAXrYdFI7g9ZBrxU_L5_hFCpOdtqhMcyrGyNhI7R2f0GEORCm4-yekIg4GBVk3plRs2ykOCGLI_JulcUqb4Tr9hF490xSuZ3kf969Zj2PZm7Rm8mFqv5ml7UyNUWMxnQV_N-CSQ1kD41NQ518KQWJtAKGJimtghsVCcCy1YYuwljxiq6QFaHY6G-hBhEtRZHHAlDRMWn1GpmTTGcELsaEllCV0UyolecxaOKOdb9iNYt2i-biVULnQXzU5jGlkQQgVUELMS8p0Sfpklat3eh_Ono78InaH19mO3E3VuenfHaAPeuzzJWhmtZuOJPrFYJlOnbrd-AdE_68Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELZQkYAF8SsKBTwgMVk1sR2nbFXaqrRQOlCpW-TEtlSGpurP0E48As_Ik2A7TdpOSIyJ7jKcfb7Pl7vvAHigARMy5gmqSUoQpTJAgRBPyGNCBSqWTGub73jr-e0B7QzZcKuLP-OHKBJu1jPceW0dfCJ1dUMaqj5TS0Ho2WW23b779o-fLeryaH9Du-tnjKmUUGSgyjCnbcRedVd_NyxtsOY2YnUhp3UCjtdYEdazxT0Fe2p8Bg7DfETbOdD1ZCR_vr5Dm4NZrpSEoZjG5vSCLgRpNYW2fQQ2RmKVQuv6dojS7NmJpVmyDtq6jMWs0BQz2FVL6DKFrq1kri7AoNX8CNtoPTgBJcTEG6TMHQoTbtCYgWO-9nAgjOt6RNcYU1zjROmAx1gnRBqRhMeMccWp1Ob6hTVR5BKUxulYXQGIgxpNAhYLTblBTkQoKrTWDGMjLYgog8fcbtEk48eIMiZkL7IWjgoLl0ElN2u09pNZZOAB4ba3l5aB50z9x1eiZuc9LJ6u_6N0Dw76jVb0-tLr3oAj-9oVMPoVUJpPF-rWgIx5fOf20S9fSskc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acid%E2%80%90Catalyzed+Carbene+Transfer+from+Diazo+Compounds%3A+Carbocation+versus+Carbene+as+Key+Intermediate&rft.jtitle=European+journal+of+organic+chemistry&rft.au=Zheng%E2%80%90Wang+Qu&rft.au=Zhu%2C+Hui&rft.au=Grimme%2C+Stefan&rft.date=2022-05-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-193X&rft.eissn=1099-0690&rft.volume=2022&rft.issue=17&rft_id=info:doi/10.1002%2Fejoc.202200408&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-193X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-193X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-193X&client=summon |