Disentangling Structural Domains in Solution‐Processed 2D Lead Halide Perovskite by Transient Absorption Spectroscopy

2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by tem...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 19; no. 5
Main Authors Song, Mu‐Sen, Wang, Hai, Zhang, Yu‐Peng, Hu, Zi‐Fan, Zhang, Jia, Wang, Yuan, Zhao, Le‐Yi, Wang, Hai‐Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices. The study demonstrates that there are two structural domains exist in the = 1 and 2 films. As the number of inorganic layers number increases, the energy level difference between the two domains gets smaller. Thus, they predict the coexistence of the two domains in = 3 and 4 films.
AbstractList 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA 2 MA n‐1 Pb n I 3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI 6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr 3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices.
2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices.
2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices. The study demonstrates that there are two structural domains exist in the = 1 and 2 films. As the number of inorganic layers number increases, the energy level difference between the two domains gets smaller. Thus, they predict the coexistence of the two domains in = 3 and 4 films.
Author Song, Mu‐Sen
Zhang, Yu‐Peng
Wang, Hai‐Yu
Zhao, Le‐Yi
Wang, Hai
Wang, Yuan
Hu, Zi‐Fan
Zhang, Jia
Author_xml – sequence: 1
  givenname: Mu‐Sen
  surname: Song
  fullname: Song, Mu‐Sen
  organization: Jilin University
– sequence: 2
  givenname: Hai
  orcidid: 0000-0002-0781-1389
  surname: Wang
  fullname: Wang, Hai
  email: wanghai03@jlu.edu.cn
  organization: Jilin University
– sequence: 3
  givenname: Yu‐Peng
  surname: Zhang
  fullname: Zhang, Yu‐Peng
  organization: Jilin University
– sequence: 4
  givenname: Zi‐Fan
  surname: Hu
  fullname: Hu, Zi‐Fan
  organization: Jilin University
– sequence: 5
  givenname: Jia
  surname: Zhang
  fullname: Zhang, Jia
  organization: Jilin University
– sequence: 6
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: Jilin University
– sequence: 7
  givenname: Le‐Yi
  surname: Zhao
  fullname: Zhao, Le‐Yi
  organization: Jilin University
– sequence: 8
  givenname: Hai‐Yu
  surname: Wang
  fullname: Wang, Hai‐Yu
  email: haiyu_wang@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkL9OwzAQxi1UJNrCymyJOcV2_jlj1QJFitSKljlynEvlktrBTqiy8Qg8I09CqqIycsvd8P2-u_tGaKCNBoRuKZlQQth9VRs7YYQFhAYxv0BDyiPf4zxJBueZkys0cm5HSNhXNESHuXKgG6G3ldJbvG5sK5vWigrPzV4o7bDSeG2qtlFGf39-rayR4BwUmM1xCqLAC1GpAvAKrPlwb6oBnHd4Y4V2qjfG09wZWx9pvK5BNtY4aeruGl2WonJw89vH6PXxYTNbeOny6Xk2TT3pU8Y9yagvKJd-UkZhWZKYB0UQ5XFEWdI_ypKAEwIUaCw5EAlxGZZ-EeZUxjKXYeSP0d3Jt7bmvQXXZDvTWt2vzHwa-4yQmPBeNTmpZH-es1BmtVV7YbuMkuwYbnYMNzuH2wPJCTioCrp_1Fm6Wr78sT8LLIK7
Cites_doi 10.1038/s41467-021-22529-x
10.1021/jacs.2c09457
10.1002/adom.202001431
10.1002/adfm.202312074
10.1021/acs.jpcc.5b00695
10.1021/acs.jpclett.0c02661
10.1063/5.0145925
10.1063/5.0031821
10.1063/1.5042489
10.1103/PhysRevB.47.15776
10.1038/nnano.2016.110
10.1021/cg400645t
10.1103/PhysRevMaterials.2.064605
10.1126/sciadv.1601156
10.1021/acs.jpclett.9b02058
10.1021/acs.nanolett.6b01218
10.1021/acs.jpclett.0c02339
10.1002/adma.202006233
10.1103/PhysRevMaterials.2.034001
10.1021/nn500368m
10.1038/s41377-024-01500-7
10.1002/advs.202302554
10.1002/adma.201302927
10.1021/jacs.5b11740
10.1038/ncomms11330
10.1002/aenm.201904050
10.1021/acs.jpclett.0c00004
10.1007/s12274-022-4911-4
10.1021/acsenergylett.8b01315
10.1103/PhysRevLett.122.166601
10.1002/lpor.202200176
10.1021/jp500078b
10.1038/s41563-018-0262-7
10.1002/adma.201707312
10.1002/advs.201800664
10.1038/s41560-022-01039-0
10.1038/s41467-019-09794-7
10.1021/acs.jpclett.9b01011
10.1186/s43074-022-00049-1
10.1021/jacs.8b07765
10.1038/s41377-023-01334-9
10.1038/s41578-019-0080-9
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202401478
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202401478
LPOR202401478
Genre researchArticle
GrantInformation_xml – fundername: Jilin Provincial Scientific and Technological Development Program
  funderid: 20230101059JC
– fundername: National Natural Science Foundation of China
  funderid: 61927814; 21903035; 22073037; 21773087; 62175088
GroupedDBID 05W
0R~
1OC
33P
3SF
3WU
4.4
52U
66C
8-1
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
XV2
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
LW6
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3128-c213a18c39f65ff0784d46b76129240294800e1e17c8e0ce7f5f3d5b1c7cbc563
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Thu Jul 24 01:41:41 EDT 2025
Tue Jul 01 05:26:16 EDT 2025
Tue Mar 04 09:30:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3128-c213a18c39f65ff0784d46b76129240294800e1e17c8e0ce7f5f3d5b1c7cbc563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0781-1389
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202401478
PQID 3173200708
PQPubID 1016358
PageCount 8
ParticipantIDs proquest_journals_3173200708
crossref_primary_10_1002_lpor_202401478
wiley_primary_10_1002_lpor_202401478_LPOR202401478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2021; 8
1993; 47
2023; 10
2013; 25
2018 2020 2019; 2 8 18
2021 2023 2020; 33 16 11
2019 2015 2018; 10 119 8
2019 2018; 122 30
2024; 34
2020; 11
2019 2022; 141 144
2016; 16
2019 2016; 10 7
2018; 3
2018; 2
2016; 2
2018; 5
2020 2013; 11 13
2022; 3
2019 2019 2021 2020 2016 2022 2024 2024; 4 10 12 10 11 7 13 13
2023; 158
2016; 138
2014; 8
2022; 16
e_1_2_7_1_6
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_1_5
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_2_3
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_8_3
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_1_8
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_1_7
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_9_3
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 8
  start-page: 2541
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 2273
  year: 2018
  publication-title: ACS Energy. Lett.
– volume: 10 7
  start-page: 5451
  year: 2019 2016
  publication-title: J. Phys. Chem. Lett. Nat. Commun.
– volume: 158
  year: 2023
  publication-title: J. Chem. Phys.
– volume: 2 8 18
  start-page: 349
  year: 2018 2020 2019
  publication-title: Phys. Rev. Mater. Adv. Opt. Mater. Nat. Mater.
– volume: 141 144
  start-page: 1235
  year: 2019 2022
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 10 119 8
  start-page: 2546
  year: 2019 2015 2018
  publication-title: J. Phys. Chem. Lett. J. Phys. Chem. C AIP Adv.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 16
  start-page: 3809
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  start-page: 8765
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 6539
  year: 2013
  publication-title: Adv. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 8
  year: 2021
  publication-title: Appl. Phys. Rev.
– volume: 118
  start-page: 6650
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 4 10 12 10 11 7 13 13
  start-page: 169 1868 2207 872 528 138 1
  year: 2019 2019 2021 2020 2016 2022 2024 2024
  publication-title: Nat. Rev. Mater. Nat. Commun. Nat. Commun. Adv. Energy. Mater. Nat. Nanotechnol. Nat. Energy Light: Sci. Appl. Light: Sci. Appl.
– volume: 122 30
  year: 2019 2018
  publication-title: Phys. Rev. Lett. Adv. Mater.
– volume: 3
  start-page: 5
  year: 2022
  publication-title: PhotoniX
– volume: 138
  start-page: 2649
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 47
  year: 1993
  publication-title: Phys. Rev. B
– volume: 11 13
  start-page: 1502 2722
  year: 2020 2013
  publication-title: J. Phys. Chem. Lett. Cryst. Growth. Des.
– volume: 16
  year: 2022
  publication-title: Laser. Photonics. Rev.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 33 16 11
  start-page: 3408 9975
  year: 2021 2023 2020
  publication-title: Adv. Mater. Nano Res. J. Phys. Chem. Lett.
– ident: e_1_2_7_1_3
  doi: 10.1038/s41467-021-22529-x
– ident: e_1_2_7_5_2
  doi: 10.1021/jacs.2c09457
– ident: e_1_2_7_8_2
  doi: 10.1002/adom.202001431
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.202312074
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.jpcc.5b00695
– ident: e_1_2_7_9_3
  doi: 10.1021/acs.jpclett.0c02661
– ident: e_1_2_7_20_1
  doi: 10.1063/5.0145925
– ident: e_1_2_7_17_1
  doi: 10.1063/5.0031821
– ident: e_1_2_7_2_3
  doi: 10.1063/1.5042489
– ident: e_1_2_7_18_1
  doi: 10.1103/PhysRevB.47.15776
– ident: e_1_2_7_1_5
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_7_3_2
  doi: 10.1021/cg400645t
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevMaterials.2.064605
– ident: e_1_2_7_4_1
  doi: 10.1126/sciadv.1601156
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.jpclett.9b02058
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.nanolett.6b01218
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.jpclett.0c02339
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.202006233
– ident: e_1_2_7_14_1
  doi: 10.1103/PhysRevMaterials.2.034001
– ident: e_1_2_7_10_1
  doi: 10.1021/nn500368m
– ident: e_1_2_7_1_7
  doi: 10.1038/s41377-024-01500-7
– ident: e_1_2_7_23_1
  doi: 10.1002/advs.202302554
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201302927
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.5b11740
– ident: e_1_2_7_7_2
  doi: 10.1038/ncomms11330
– ident: e_1_2_7_1_4
  doi: 10.1002/aenm.201904050
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.jpclett.0c00004
– ident: e_1_2_7_9_2
  doi: 10.1007/s12274-022-4911-4
– ident: e_1_2_7_16_1
  doi: 10.1021/acsenergylett.8b01315
– ident: e_1_2_7_21_1
  doi: 10.1103/PhysRevLett.122.166601
– ident: e_1_2_7_15_1
  doi: 10.1002/lpor.202200176
– ident: e_1_2_7_19_1
  doi: 10.1021/jp500078b
– ident: e_1_2_7_8_3
  doi: 10.1038/s41563-018-0262-7
– ident: e_1_2_7_21_2
  doi: 10.1002/adma.201707312
– ident: e_1_2_7_22_1
  doi: 10.1002/advs.201800664
– ident: e_1_2_7_1_6
  doi: 10.1038/s41560-022-01039-0
– ident: e_1_2_7_1_2
  doi: 10.1038/s41467-019-09794-7
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.jpclett.9b01011
– ident: e_1_2_7_12_1
  doi: 10.1186/s43074-022-00049-1
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.8b07765
– ident: e_1_2_7_1_8
  doi: 10.1038/s41377-023-01334-9
– ident: e_1_2_7_1_1
  doi: 10.1038/s41578-019-0080-9
SSID ssj0055556
Score 2.416912
Snippet 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms 2D perovskite
Absorption spectroscopy
Bleaches
Energy levels
Lead compounds
Low temperature
Metal halides
Optoelectronic devices
Perovskites
Spectrum analysis
structural domain
Temperature dependence
transient absorption
Title Disentangling Structural Domains in Solution‐Processed 2D Lead Halide Perovskite by Transient Absorption Spectroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401478
https://www.proquest.com/docview/3173200708
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT1woqygU5AMSp7RJnPVYUaoKIahaKvUW2Y6NKiCpmgIqJz6Bb-RLGDtLKRckyC2KbCW2x_Nm4vcGoTOXcYswzsC-KTUcRqgRCkXU9SiPeSgDn-lTvjdef-xcTdzJNxZ_rg9RJdyUZej9Whk4ZVl7JRr6CPgU4jvwSJbjK7avOrClUNGw0o9y4dL0osAjBoR6ZqnaaNrt9ebrXmkFNb8DVu1xenVEy3fND5o8tJ4XrMXffsg4_udjttFWAUdxJ18_O2hDJLuoXkBTXBh-todeu1PNUlKk3-Qej7TqrFLswN30iU6TDE8TXKbYPt8_Cv4B9GF3sSrjifsA-GOBB2KevmQqZYzZEmtPqRiZuMOydK63Lzya6co8ii-z3Efj3uXdRd8oajYYnICrM7htEWoFnITSc6UEAOLEjsd8AFKh-pETOoBQhSUsnwfC5MKXriSxyyzuc8ZdjxygWpIm4hBhKQLToTJgVhw6oXAhFiAsZHYgpIQYWjbQeTln0SyX5ohyEWY7UuMZVePZQM1ySqPCRLMIgBNRiVoTHtt6bn7pJboe3A6ru6O_NDpGm7aqH6zPsDVRDSZLnACoWbBTvXC_ABl18og
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI5gHODC-BWDATkgcepom_4eJwYaMAYCJnGrmjRBE9AhOkDjxCPwjDwJdtoOxgUJequqRG0cx59d-zMhOy4XFuOCg37HseFwFhuhxEJdLxaJCFXgc53l2_XaPef42i2zCbEWJueHGAfcUDP0eY0KjgHpvS_W0DsAqODggUmyHD-YJjPY1hvp81sXYwYpFy5dYBR4zABnzyx5G017b3L8pF36ApvfIau2OYdVwsu3zVNNbhtPQ94Qrz-IHP_1OQtkvkCktJlvoUUyJdMlUi3QKS10P1smL62-LlTCut_0hl5q4lkk7aCtwX3cTzPaT2kZZft4ey9KEGAOu0WxkydtA-ZPJD2Xj4PnDKPGlI-oNpZYlEmbPBs86hOMXj7o5jxYMjNaIb3Dg6v9tlG0bTAEA2tnCNtisRUIFirPVQowiJM4HvcBS4X4Lyd0AKRKS1q-CKQppK9cxRKXW8IXXLgeWyWVdJDKNUKVDEwnVgG3ktAJpQvuAOMhtwOpFLjRqkZ2S6FFDzk7R5TzMNsRrmc0Xs8aqZcyjQotzSLATgxjtSY8trVwfpkl6pyfXYzv1v8yaJvMtq9OO1HnqHuyQeZsbCesU9rqpAKCk5uAcYZ8S-_iT0Gx9qQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJMSFHbHjAxKnQBI7i4-IUJVFULVU4mbFjo0qIK0Ii-DEJ_CNfAljJ2mBCxLkFkW2Eo_H8zzxe4PQTiCkR4QU4N9p6lBBUocpQ9QNU5lJpuNI2FO-52GzS0-ugqsvLP5SH2KYcDOeYddr4-CDTO-PRENvAZ_C_g4ikkejeBxN0tBlpnhD0h4KSAVwWX5RHBIH9npuLdvo-vvf238PSyOs-RWx2pDTmEVp_bLlSZObvccHsSdff-g4_udr5tBMhUfxQTmB5tGYyhfQbIVNceX5xSJ6TnqWpmRYv_k17ljZWSPZgZP-XdrLC9zLcZ1j-3h7rwgI0IefYFPHEzcB8WcKt9R9_6kwOWMsXrANlYaSiQ9E0b-36xfuDGxpHkOYeVlC3cbR5WHTqYo2OJJArHOk75HUiyVhOgy0BgRCMxqKCJAUM39yGAWIqjzlRTJWrlSRDjTJAuHJSAoZhGQZTeT9XK0grFXs0lTHwssYZSqAzQARTPix0ho20XoV7dY244NSm4OXKsw-N-PJh-O5ijZqk_LKRwsOyImYTK0Lj31rm1964Weti_bwbu0vjbbRVCtp8LPj89N1NO2bWsL2PNsGmgC7qU0AOA9iy87hT2rH9VM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+Structural+Domains+in+Solution%E2%80%90Processed+2D+Lead+Halide+Perovskite+by+Transient+Absorption+Spectroscopy&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Song%2C+Mu%E2%80%90Sen&rft.au=Wang%2C+Hai&rft.au=Zhang%2C+Yu%E2%80%90Peng&rft.au=Hu%2C+Zi%E2%80%90Fan&rft.date=2025-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=5&rft_id=info:doi/10.1002%2Flpor.202401478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202401478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon