Disentangling Structural Domains in Solution‐Processed 2D Lead Halide Perovskite by Transient Absorption Spectroscopy
2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by tem...
Saved in:
Published in | Laser & photonics reviews Vol. 19; no. 5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices.
The study demonstrates that there are two structural domains exist in the = 1 and 2 films. As the number of inorganic layers number increases, the energy level difference between the two domains gets smaller. Thus, they predict the coexistence of the two domains in = 3 and 4 films. |
---|---|
AbstractList | 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA 2 MA n‐1 Pb n I 3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI 6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr 3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices. 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices. 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their fundamental properties is urgent for improving device performance. Here, the structural domains in 2D PEA2MAn‐1PbnI3n+1 films are studied by temperature‐dependent transient absorption (TA) measurements. For = 1 film at low temperatures, the ground state bleach (GSB) shows obvious splitting when the high‐energy state is resonantly excited, whereas only one GSB exists under low‐energy resonant excitation, indicating that the two split energy states correspond to different structural domains. For = 2 film, similar phenomena are observed, but the energy level difference between the two domains is decreased. With further increase of the inorganic layers number, the two domains can no longer be distinguished. In addition, by changing the organic cations, it is demonstrated that the two structural domains originate from distortions in the inorganic PbI6 octahedral frames. Finally, the possibility that the two energy states are from the formation of polaron states is ruled out by TA measurement on CsPbBr3 QDs. The results provide new insights into the structural domain properties of 2D LHPs, which directly influence the suitability of these materials for future optoelectronic devices. The study demonstrates that there are two structural domains exist in the = 1 and 2 films. As the number of inorganic layers number increases, the energy level difference between the two domains gets smaller. Thus, they predict the coexistence of the two domains in = 3 and 4 films. |
Author | Song, Mu‐Sen Zhang, Yu‐Peng Wang, Hai‐Yu Zhao, Le‐Yi Wang, Hai Wang, Yuan Hu, Zi‐Fan Zhang, Jia |
Author_xml | – sequence: 1 givenname: Mu‐Sen surname: Song fullname: Song, Mu‐Sen organization: Jilin University – sequence: 2 givenname: Hai orcidid: 0000-0002-0781-1389 surname: Wang fullname: Wang, Hai email: wanghai03@jlu.edu.cn organization: Jilin University – sequence: 3 givenname: Yu‐Peng surname: Zhang fullname: Zhang, Yu‐Peng organization: Jilin University – sequence: 4 givenname: Zi‐Fan surname: Hu fullname: Hu, Zi‐Fan organization: Jilin University – sequence: 5 givenname: Jia surname: Zhang fullname: Zhang, Jia organization: Jilin University – sequence: 6 givenname: Yuan surname: Wang fullname: Wang, Yuan organization: Jilin University – sequence: 7 givenname: Le‐Yi surname: Zhao fullname: Zhao, Le‐Yi organization: Jilin University – sequence: 8 givenname: Hai‐Yu surname: Wang fullname: Wang, Hai‐Yu email: haiyu_wang@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkL9OwzAQxi1UJNrCymyJOcV2_jlj1QJFitSKljlynEvlktrBTqiy8Qg8I09CqqIycsvd8P2-u_tGaKCNBoRuKZlQQth9VRs7YYQFhAYxv0BDyiPf4zxJBueZkys0cm5HSNhXNESHuXKgG6G3ldJbvG5sK5vWigrPzV4o7bDSeG2qtlFGf39-rayR4BwUmM1xCqLAC1GpAvAKrPlwb6oBnHd4Y4V2qjfG09wZWx9pvK5BNtY4aeruGl2WonJw89vH6PXxYTNbeOny6Xk2TT3pU8Y9yagvKJd-UkZhWZKYB0UQ5XFEWdI_ypKAEwIUaCw5EAlxGZZ-EeZUxjKXYeSP0d3Jt7bmvQXXZDvTWt2vzHwa-4yQmPBeNTmpZH-es1BmtVV7YbuMkuwYbnYMNzuH2wPJCTioCrp_1Fm6Wr78sT8LLIK7 |
Cites_doi | 10.1038/s41467-021-22529-x 10.1021/jacs.2c09457 10.1002/adom.202001431 10.1002/adfm.202312074 10.1021/acs.jpcc.5b00695 10.1021/acs.jpclett.0c02661 10.1063/5.0145925 10.1063/5.0031821 10.1063/1.5042489 10.1103/PhysRevB.47.15776 10.1038/nnano.2016.110 10.1021/cg400645t 10.1103/PhysRevMaterials.2.064605 10.1126/sciadv.1601156 10.1021/acs.jpclett.9b02058 10.1021/acs.nanolett.6b01218 10.1021/acs.jpclett.0c02339 10.1002/adma.202006233 10.1103/PhysRevMaterials.2.034001 10.1021/nn500368m 10.1038/s41377-024-01500-7 10.1002/advs.202302554 10.1002/adma.201302927 10.1021/jacs.5b11740 10.1038/ncomms11330 10.1002/aenm.201904050 10.1021/acs.jpclett.0c00004 10.1007/s12274-022-4911-4 10.1021/acsenergylett.8b01315 10.1103/PhysRevLett.122.166601 10.1002/lpor.202200176 10.1021/jp500078b 10.1038/s41563-018-0262-7 10.1002/adma.201707312 10.1002/advs.201800664 10.1038/s41560-022-01039-0 10.1038/s41467-019-09794-7 10.1021/acs.jpclett.9b01011 10.1186/s43074-022-00049-1 10.1021/jacs.8b07765 10.1038/s41377-023-01334-9 10.1038/s41578-019-0080-9 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202401478 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202401478 LPOR202401478 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Jilin Provincial Scientific and Technological Development Program funderid: 20230101059JC – fundername: National Natural Science Foundation of China funderid: 61927814; 21903035; 22073037; 21773087; 62175088 |
GroupedDBID | 05W 0R~ 1OC 33P 3SF 3WU 4.4 52U 66C 8-1 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 LW6 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3128-c213a18c39f65ff0784d46b76129240294800e1e17c8e0ce7f5f3d5b1c7cbc563 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Thu Jul 24 01:41:41 EDT 2025 Tue Jul 01 05:26:16 EDT 2025 Tue Mar 04 09:30:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3128-c213a18c39f65ff0784d46b76129240294800e1e17c8e0ce7f5f3d5b1c7cbc563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0781-1389 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202401478 |
PQID | 3173200708 |
PQPubID | 1016358 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3173200708 crossref_primary_10_1002_lpor_202401478 wiley_primary_10_1002_lpor_202401478_LPOR202401478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2021; 8 1993; 47 2023; 10 2013; 25 2018 2020 2019; 2 8 18 2021 2023 2020; 33 16 11 2019 2015 2018; 10 119 8 2019 2018; 122 30 2024; 34 2020; 11 2019 2022; 141 144 2016; 16 2019 2016; 10 7 2018; 3 2018; 2 2016; 2 2018; 5 2020 2013; 11 13 2022; 3 2019 2019 2021 2020 2016 2022 2024 2024; 4 10 12 10 11 7 13 13 2023; 158 2016; 138 2014; 8 2022; 16 e_1_2_7_1_6 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_1_5 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_8_3 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_1_8 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_1_7 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_9_3 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 8 start-page: 2541 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 2273 year: 2018 publication-title: ACS Energy. Lett. – volume: 10 7 start-page: 5451 year: 2019 2016 publication-title: J. Phys. Chem. Lett. Nat. Commun. – volume: 158 year: 2023 publication-title: J. Chem. Phys. – volume: 2 8 18 start-page: 349 year: 2018 2020 2019 publication-title: Phys. Rev. Mater. Adv. Opt. Mater. Nat. Mater. – volume: 141 144 start-page: 1235 year: 2019 2022 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 10 119 8 start-page: 2546 year: 2019 2015 2018 publication-title: J. Phys. Chem. Lett. J. Phys. Chem. C AIP Adv. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 16 start-page: 3809 year: 2016 publication-title: Nano Lett. – volume: 11 start-page: 8765 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 6539 year: 2013 publication-title: Adv. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 8 year: 2021 publication-title: Appl. Phys. Rev. – volume: 118 start-page: 6650 year: 2014 publication-title: J. Phys. Chem. C – volume: 4 10 12 10 11 7 13 13 start-page: 169 1868 2207 872 528 138 1 year: 2019 2019 2021 2020 2016 2022 2024 2024 publication-title: Nat. Rev. Mater. Nat. Commun. Nat. Commun. Adv. Energy. Mater. Nat. Nanotechnol. Nat. Energy Light: Sci. Appl. Light: Sci. Appl. – volume: 122 30 year: 2019 2018 publication-title: Phys. Rev. Lett. Adv. Mater. – volume: 3 start-page: 5 year: 2022 publication-title: PhotoniX – volume: 138 start-page: 2649 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 47 year: 1993 publication-title: Phys. Rev. B – volume: 11 13 start-page: 1502 2722 year: 2020 2013 publication-title: J. Phys. Chem. Lett. Cryst. Growth. Des. – volume: 16 year: 2022 publication-title: Laser. Photonics. Rev. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 33 16 11 start-page: 3408 9975 year: 2021 2023 2020 publication-title: Adv. Mater. Nano Res. J. Phys. Chem. Lett. – ident: e_1_2_7_1_3 doi: 10.1038/s41467-021-22529-x – ident: e_1_2_7_5_2 doi: 10.1021/jacs.2c09457 – ident: e_1_2_7_8_2 doi: 10.1002/adom.202001431 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.202312074 – ident: e_1_2_7_2_2 doi: 10.1021/acs.jpcc.5b00695 – ident: e_1_2_7_9_3 doi: 10.1021/acs.jpclett.0c02661 – ident: e_1_2_7_20_1 doi: 10.1063/5.0145925 – ident: e_1_2_7_17_1 doi: 10.1063/5.0031821 – ident: e_1_2_7_2_3 doi: 10.1063/1.5042489 – ident: e_1_2_7_18_1 doi: 10.1103/PhysRevB.47.15776 – ident: e_1_2_7_1_5 doi: 10.1038/nnano.2016.110 – ident: e_1_2_7_3_2 doi: 10.1021/cg400645t – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevMaterials.2.064605 – ident: e_1_2_7_4_1 doi: 10.1126/sciadv.1601156 – ident: e_1_2_7_7_1 doi: 10.1021/acs.jpclett.9b02058 – ident: e_1_2_7_24_1 doi: 10.1021/acs.nanolett.6b01218 – ident: e_1_2_7_25_1 doi: 10.1021/acs.jpclett.0c02339 – ident: e_1_2_7_9_1 doi: 10.1002/adma.202006233 – ident: e_1_2_7_14_1 doi: 10.1103/PhysRevMaterials.2.034001 – ident: e_1_2_7_10_1 doi: 10.1021/nn500368m – ident: e_1_2_7_1_7 doi: 10.1038/s41377-024-01500-7 – ident: e_1_2_7_23_1 doi: 10.1002/advs.202302554 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201302927 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.5b11740 – ident: e_1_2_7_7_2 doi: 10.1038/ncomms11330 – ident: e_1_2_7_1_4 doi: 10.1002/aenm.201904050 – ident: e_1_2_7_3_1 doi: 10.1021/acs.jpclett.0c00004 – ident: e_1_2_7_9_2 doi: 10.1007/s12274-022-4911-4 – ident: e_1_2_7_16_1 doi: 10.1021/acsenergylett.8b01315 – ident: e_1_2_7_21_1 doi: 10.1103/PhysRevLett.122.166601 – ident: e_1_2_7_15_1 doi: 10.1002/lpor.202200176 – ident: e_1_2_7_19_1 doi: 10.1021/jp500078b – ident: e_1_2_7_8_3 doi: 10.1038/s41563-018-0262-7 – ident: e_1_2_7_21_2 doi: 10.1002/adma.201707312 – ident: e_1_2_7_22_1 doi: 10.1002/advs.201800664 – ident: e_1_2_7_1_6 doi: 10.1038/s41560-022-01039-0 – ident: e_1_2_7_1_2 doi: 10.1038/s41467-019-09794-7 – ident: e_1_2_7_2_1 doi: 10.1021/acs.jpclett.9b01011 – ident: e_1_2_7_12_1 doi: 10.1186/s43074-022-00049-1 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.8b07765 – ident: e_1_2_7_1_8 doi: 10.1038/s41377-023-01334-9 – ident: e_1_2_7_1_1 doi: 10.1038/s41578-019-0080-9 |
SSID | ssj0055556 |
Score | 2.416912 |
Snippet | 2D lead halide perovskites (LHPs) exhibit outstanding optoelectronic properties, making them utilized in various emerging applications. Understanding their... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | 2D perovskite Absorption spectroscopy Bleaches Energy levels Lead compounds Low temperature Metal halides Optoelectronic devices Perovskites Spectrum analysis structural domain Temperature dependence transient absorption |
Title | Disentangling Structural Domains in Solution‐Processed 2D Lead Halide Perovskite by Transient Absorption Spectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401478 https://www.proquest.com/docview/3173200708 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT1woqygU5AMSp7RJnPVYUaoKIahaKvUW2Y6NKiCpmgIqJz6Bb-RLGDtLKRckyC2KbCW2x_Nm4vcGoTOXcYswzsC-KTUcRqgRCkXU9SiPeSgDn-lTvjdef-xcTdzJNxZ_rg9RJdyUZej9Whk4ZVl7JRr6CPgU4jvwSJbjK7avOrClUNGw0o9y4dL0osAjBoR6ZqnaaNrt9ebrXmkFNb8DVu1xenVEy3fND5o8tJ4XrMXffsg4_udjttFWAUdxJ18_O2hDJLuoXkBTXBh-todeu1PNUlKk3-Qej7TqrFLswN30iU6TDE8TXKbYPt8_Cv4B9GF3sSrjifsA-GOBB2KevmQqZYzZEmtPqRiZuMOydK63Lzya6co8ii-z3Efj3uXdRd8oajYYnICrM7htEWoFnITSc6UEAOLEjsd8AFKh-pETOoBQhSUsnwfC5MKXriSxyyzuc8ZdjxygWpIm4hBhKQLToTJgVhw6oXAhFiAsZHYgpIQYWjbQeTln0SyX5ohyEWY7UuMZVePZQM1ySqPCRLMIgBNRiVoTHtt6bn7pJboe3A6ru6O_NDpGm7aqH6zPsDVRDSZLnACoWbBTvXC_ABl18og |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI5gHODC-BWDATkgcepom_4eJwYaMAYCJnGrmjRBE9AhOkDjxCPwjDwJdtoOxgUJequqRG0cx59d-zMhOy4XFuOCg37HseFwFhuhxEJdLxaJCFXgc53l2_XaPef42i2zCbEWJueHGAfcUDP0eY0KjgHpvS_W0DsAqODggUmyHD-YJjPY1hvp81sXYwYpFy5dYBR4zABnzyx5G017b3L8pF36ApvfIau2OYdVwsu3zVNNbhtPQ94Qrz-IHP_1OQtkvkCktJlvoUUyJdMlUi3QKS10P1smL62-LlTCut_0hl5q4lkk7aCtwX3cTzPaT2kZZft4ey9KEGAOu0WxkydtA-ZPJD2Xj4PnDKPGlI-oNpZYlEmbPBs86hOMXj7o5jxYMjNaIb3Dg6v9tlG0bTAEA2tnCNtisRUIFirPVQowiJM4HvcBS4X4Lyd0AKRKS1q-CKQppK9cxRKXW8IXXLgeWyWVdJDKNUKVDEwnVgG3ktAJpQvuAOMhtwOpFLjRqkZ2S6FFDzk7R5TzMNsRrmc0Xs8aqZcyjQotzSLATgxjtSY8trVwfpkl6pyfXYzv1v8yaJvMtq9OO1HnqHuyQeZsbCesU9rqpAKCk5uAcYZ8S-_iT0Gx9qQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJMSFHbHjAxKnQBI7i4-IUJVFULVU4mbFjo0qIK0Ii-DEJ_CNfAljJ2mBCxLkFkW2Eo_H8zzxe4PQTiCkR4QU4N9p6lBBUocpQ9QNU5lJpuNI2FO-52GzS0-ugqsvLP5SH2KYcDOeYddr4-CDTO-PRENvAZ_C_g4ikkejeBxN0tBlpnhD0h4KSAVwWX5RHBIH9npuLdvo-vvf238PSyOs-RWx2pDTmEVp_bLlSZObvccHsSdff-g4_udr5tBMhUfxQTmB5tGYyhfQbIVNceX5xSJ6TnqWpmRYv_k17ljZWSPZgZP-XdrLC9zLcZ1j-3h7rwgI0IefYFPHEzcB8WcKt9R9_6kwOWMsXrANlYaSiQ9E0b-36xfuDGxpHkOYeVlC3cbR5WHTqYo2OJJArHOk75HUiyVhOgy0BgRCMxqKCJAUM39yGAWIqjzlRTJWrlSRDjTJAuHJSAoZhGQZTeT9XK0grFXs0lTHwssYZSqAzQARTPix0ho20XoV7dY244NSm4OXKsw-N-PJh-O5ijZqk_LKRwsOyImYTK0Lj31rm1964Weti_bwbu0vjbbRVCtp8LPj89N1NO2bWsL2PNsGmgC7qU0AOA9iy87hT2rH9VM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+Structural+Domains+in+Solution%E2%80%90Processed+2D+Lead+Halide+Perovskite+by+Transient+Absorption+Spectroscopy&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Song%2C+Mu%E2%80%90Sen&rft.au=Wang%2C+Hai&rft.au=Zhang%2C+Yu%E2%80%90Peng&rft.au=Hu%2C+Zi%E2%80%90Fan&rft.date=2025-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=5&rft_id=info:doi/10.1002%2Flpor.202401478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202401478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |