A New Approach Toward Extreme Thermal Stability of Femtosecond Laser Induced Modifications in Glasses

Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over ref...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 19; no. 3
Main Authors Ktafi, Imane, Kong, Jing, Cavillon, Maxime, Poumellec, Bertrand, Yembele, Maureen, Valois, Renaud, Allix, Mathieu, Peng, Gang‐Ding, Lancry, Matthieu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al2O3‐40SiO2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding. Femtosecond laser irradiation inside Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses can induce polarization‐controlled birefringent nanostructures, along with local precipitation of refractory nanocrystals like tetragonal ZrO2 or mullite. These structures yield a persisting positive index contrast with extraordinary thermal stability (>1600 °C), opening a route to the design of optical functions embedded in glass and operating under extreme environments.
AbstractList Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al 2 O 3 ‐SiO 2 and ZrO 2 ‐Al 2 O 3 ‐SiO 2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al 2 O 3 ‐40SiO 2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding.
Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al2O3‐40SiO2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding. Femtosecond laser irradiation inside Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses can induce polarization‐controlled birefringent nanostructures, along with local precipitation of refractory nanocrystals like tetragonal ZrO2 or mullite. These structures yield a persisting positive index contrast with extraordinary thermal stability (>1600 °C), opening a route to the design of optical functions embedded in glass and operating under extreme environments.
Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al2O3‐40SiO2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding.
Author Ktafi, Imane
Yembele, Maureen
Cavillon, Maxime
Poumellec, Bertrand
Kong, Jing
Allix, Mathieu
Valois, Renaud
Peng, Gang‐Ding
Lancry, Matthieu
Author_xml – sequence: 1
  givenname: Imane
  surname: Ktafi
  fullname: Ktafi, Imane
  organization: Université Paris‐Saclay
– sequence: 2
  givenname: Jing
  surname: Kong
  fullname: Kong, Jing
  organization: University of New South Wales
– sequence: 3
  givenname: Maxime
  surname: Cavillon
  fullname: Cavillon, Maxime
  email: maxime.cavillon@universite-paris-saclay.fr
  organization: Université Paris‐Saclay
– sequence: 4
  givenname: Bertrand
  surname: Poumellec
  fullname: Poumellec, Bertrand
  organization: Université Paris‐Saclay
– sequence: 5
  givenname: Maureen
  surname: Yembele
  fullname: Yembele, Maureen
  organization: Université de Lorraine
– sequence: 6
  givenname: Renaud
  surname: Valois
  fullname: Valois, Renaud
  organization: Université d'Orléans
– sequence: 7
  givenname: Mathieu
  surname: Allix
  fullname: Allix, Mathieu
  organization: Université d'Orléans
– sequence: 8
  givenname: Gang‐Ding
  surname: Peng
  fullname: Peng, Gang‐Ding
  organization: University of New South Wales
– sequence: 9
  givenname: Matthieu
  orcidid: 0000-0003-2007-7438
  surname: Lancry
  fullname: Lancry, Matthieu
  organization: Université Paris‐Saclay
BookMark eNqFkM1PAjEQxRuDiYBePTfxvNiPtXSPhACSrGIUz5vSTkPJ7nZtlyD_vUsweHQu8w6_N5P3BqhX-xoQuqdkRAlhj2Xjw4gRlhJKpLhCfSoFT6TMst5FS3KDBjHuCHnqRvQRTPArHPCkaYJXeovX_qCCwbPvNkAFeL2FUKkSf7Rq40rXHrG3eA5V6yNoXxucqwgBL2uz12DwizfOOq1a5-uIXY0XpYoR4i26tqqMcPe7h-hzPltPn5N8tVhOJ3miOWUisdSoNAOREaY33I6llkIbo5jaZJKTsUwlHwMV2naCaZIC51SATVNGuBKKD9HD-W6X5msPsS12fh_q7mXRgZyzjHPZUaMzpYOPMYAtmuAqFY4FJcWpyuJUZXGpsjNkZ8PBlXD8hy7yt9X7n_cHHu96CQ
Cites_doi 10.1007/s00339-020-04062-8
10.1007/BF00720421
10.1111/j.1151-2916.1999.tb02171.x
10.3390/mi11020131
10.1007/s00339-017-1507-z
10.1063/1.1137196
10.3390/s21041454
10.3390/s20030762
10.1039/D3NA00748K
10.1016/j.ceramint.2021.12.051
10.1111/j.2041-1294.2010.00026.x
10.3390/s8106448
10.1364/AO.496351
10.1016/j.applthermaleng.2015.08.096
10.3390/nano14141228
10.1109/JSEN.2022.3226962
10.1364/OE.22.026825
10.1038/srep23620
10.1038/s41377-021-00534-5
10.1002/adom.202200379
10.1038/nphoton.2012.182
10.3390/app11020600
10.1364/OME.1.000998
10.1111/ijag.12336
10.1007/s00340-016-6337-8
10.1016/j.mseb.2023.116790
10.1111/jace.14570
10.1186/s11671-015-0780-z
10.1002/lpor.202301403
10.4236/wjnse.2015.54014
10.1016/j.pmatsci.2023.101226
10.1134/S1087659621050175
10.3390/s19040877
10.1111/j.1551-2916.2007.01945.x
10.1063/1.2185587
10.1111/j.1551-2916.2005.00440.x
10.3390/s18061791
10.1111/j.0022-2720.2004.01302.x
10.3390/catal9090768
10.1364/OPTICA.2.000313
10.1111/jace.17164
10.1016/j.earscirev.2016.12.008
10.1088/2515-7647/ab382f
10.1016/j.jnoncrysol.2017.10.008
10.3390/s17122909
10.1016/j.optmat.2024.115294
10.1002/pssa.202100023
10.1364/OL.43.000062
10.1364/OL.35.002810
10.1364/OE.27.006201
ContentType Journal Article
Copyright 2024 The Author(s). Laser & Photonics Reviews published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Laser & Photonics Reviews published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202401086
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202401086
LPOR202401086
Genre article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐22‐CE08‐0001‐01
GroupedDBID 05W
0R~
1OC
24P
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
LW6
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3126-f1da49e6902cb3f78c86cdda2ab9830784837e16cf4832c04e3316ef44203a6a3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Tue Jul 22 18:41:10 EDT 2025
Tue Jul 01 04:32:48 EDT 2025
Wed Feb 05 10:03:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3126-f1da49e6902cb3f78c86cdda2ab9830784837e16cf4832c04e3316ef44203a6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2007-7438
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401086
PQID 3163329338
PQPubID 1016358
PageCount 10
ParticipantIDs proquest_journals_3163329338
crossref_primary_10_1002_lpor_202401086
wiley_primary_10_1002_lpor_202401086_LPOR202401086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 21
2020; 20
2023; 6
2018; 124
2017; 43
1982; 53
2020; 126
2019; 19
2024; 142
2008; 8
2020; 11
2022; 22
1999; 82
2014; 22
2023; 62
2018; 9
2004; 214
2010; 1
2023; 297
2019; 27
2015; 91
2017; 165
2024; 150
2015; 2
2021; 47
2019; 9
2015; 5
2011; 1
2010; 35
2012
1985; 4
2010
2019; 1
2015; 10
2007; 90
2016; 122
2022; 48
2020; 103
2024; 14
2024; 18
2005; 88
2018; 18
2016; 6
2021; 10
2021; 11
2018; 479
2017; 17
2006; 88
2021; 218
2022; 12
2015
2014
2022; 10
2017; 100
2012; 6
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
Kwon S. Y. (e_1_2_11_51_1) 2015
e_1_2_11_56_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_1_1
Zamyatin D. A. (e_1_2_11_43_1) 2022; 12
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 10
  start-page: 73
  year: 2015
  publication-title: Nanoscale Res. Lett.
– volume: 53
  start-page: 1456
  year: 1982
  publication-title: Rev. Sci. Instrum.
– volume: 10
  start-page: 93
  year: 2021
  publication-title: Light. Sci. Appl.
– volume: 9
  start-page: 768
  year: 2019
  publication-title: Catalysts
– volume: 90
  start-page: 3019
  year: 2007
  publication-title: J. Am. Ceram. Soc.
– volume: 18
  start-page: 1791
  year: 2018
  publication-title: Sensors
– volume: 2
  start-page: 313
  year: 2015
  publication-title: Optica
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– year: 2014
– volume: 100
  start-page: 115
  year: 2017
  publication-title: J. Am. Ceram. Soc.
– volume: 122
  start-page: 66
  year: 2016
  publication-title: Appl. Phys. B Lasers Opt.
– volume: 165
  start-page: 185
  year: 2017
  publication-title: Earth‐Sci. Rev.
– volume: 126
  start-page: 876
  year: 2020
  publication-title: Appl. Phys. A
– volume: 6
  start-page: 489
  year: 2023
  publication-title: Nanoscale Adv.
– volume: 91
  start-page: 860
  year: 2015
  publication-title: Appl. Therm. Eng.
– volume: 142
  year: 2024
  publication-title: Prog. Mater. Sci.
– volume: 18
  year: 2024
  publication-title: Laser Photonics Rev.
– volume: 22
  start-page: 3
  year: 2022
  publication-title: Sensors
– start-page: 3
  year: 2010
  end-page: 4
– volume: 1
  start-page: 248
  year: 2010
  publication-title: Int. J. Appl. Glas. Sci.
– year: 2015
– volume: 22
  year: 2014
  publication-title: Opt. Express
– volume: 1
  start-page: 998
  year: 2011
  publication-title: Opt. Mater. Express
– volume: 20
  start-page: 762
  year: 2020
  publication-title: Sensors
– volume: 11
  start-page: 131
  year: 2020
  publication-title: Micromachines
– volume: 47
  start-page: 417
  year: 2021
  publication-title: Glas. Phys. Chem.
– volume: 150
  year: 2024
  publication-title: Opt. Mater. (Amst)
– volume: 88
  start-page: 2544
  year: 2005
  publication-title: J. Am. Ceram. Soc.
– volume: 124
  start-page: 82
  year: 2018
  publication-title: Appl. Phys. A Mater. Sci. Process
– volume: 297
  year: 2023
  publication-title: Mater. Sci. Eng. B
– volume: 35
  start-page: 2810
  year: 2010
  publication-title: Opt. Lett.
– volume: 88
  start-page: 2
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 1454
  year: 2021
  publication-title: Sensors
– volume: 14
  start-page: 1228
  year: 2024
  publication-title: Nanomaterials
– volume: 11
  start-page: 600
  year: 2021
  publication-title: Appl. Sci.
– volume: 8
  start-page: 6448
  year: 2008
  publication-title: Sensors
– volume: 218
  year: 2021
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
– volume: 19
  start-page: 877
  year: 2019
  publication-title: Sensors
– volume: 62
  start-page: 6794
  year: 2023
  publication-title: Appl. Opt.
– volume: 12
  start-page: 969
  year: 2022
  publication-title: A Syst. Rev. Miner.
– year: 2012
– volume: 5
  start-page: 115
  year: 2015
  publication-title: World J. Nano Sci. Eng.
– volume: 4
  start-page: 1082
  year: 1985
  publication-title: J. Mater. Sci. Lett.
– volume: 479
  start-page: 49
  year: 2018
  publication-title: J. Non. Cryst. Solids
– volume: 9
  start-page: 447
  year: 2018
  publication-title: Int. J. Appl. Glas. Sci.
– volume: 48
  start-page: 8433
  year: 2022
  publication-title: Ceram. Int.
– volume: 82
  start-page: 2876
  year: 1999
  publication-title: J. Am. Ceram. Soc.
– volume: 27
  start-page: 6201
  year: 2019
  publication-title: Opt. Express
– volume: 1
  year: 2019
  publication-title: J. Phys. Photonics
– volume: 17
  start-page: 2909
  year: 2017
  publication-title: Sensors
– volume: 103
  start-page: 4286
  year: 2020
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 43
  start-page: 62
  year: 2017
  publication-title: Opt. Lett.
– volume: 214
  start-page: 62
  year: 2004
  publication-title: J. Microsc.
– volume: 6
  start-page: 627
  year: 2012
  publication-title: Nat. Photonics
– ident: e_1_2_11_12_1
  doi: 10.1007/s00339-020-04062-8
– ident: e_1_2_11_5_1
– ident: e_1_2_11_47_1
  doi: 10.1007/BF00720421
– ident: e_1_2_11_16_1
– volume: 12
  start-page: 969
  year: 2022
  ident: e_1_2_11_43_1
  publication-title: A Syst. Rev. Miner.
– ident: e_1_2_11_49_1
  doi: 10.1111/j.1151-2916.1999.tb02171.x
– ident: e_1_2_11_22_1
  doi: 10.3390/mi11020131
– ident: e_1_2_11_31_1
  doi: 10.1007/s00339-017-1507-z
– ident: e_1_2_11_54_1
  doi: 10.1063/1.1137196
– ident: e_1_2_11_9_1
  doi: 10.3390/s21041454
– ident: e_1_2_11_14_1
  doi: 10.3390/s20030762
– ident: e_1_2_11_41_1
  doi: 10.1039/D3NA00748K
– ident: e_1_2_11_48_1
  doi: 10.1016/j.ceramint.2021.12.051
– ident: e_1_2_11_55_1
  doi: 10.1111/j.2041-1294.2010.00026.x
– ident: e_1_2_11_17_1
  doi: 10.3390/s8106448
– ident: e_1_2_11_13_1
  doi: 10.1364/AO.496351
– ident: e_1_2_11_21_1
  doi: 10.1016/j.applthermaleng.2015.08.096
– ident: e_1_2_11_26_1
  doi: 10.3390/nano14141228
– ident: e_1_2_11_6_1
– ident: e_1_2_11_1_1
  doi: 10.1109/JSEN.2022.3226962
– ident: e_1_2_11_19_1
  doi: 10.1364/OE.22.026825
– ident: e_1_2_11_36_1
  doi: 10.1038/srep23620
– ident: e_1_2_11_32_1
  doi: 10.1038/s41377-021-00534-5
– ident: e_1_2_11_18_1
  doi: 10.1002/adom.202200379
– ident: e_1_2_11_34_1
  doi: 10.1038/nphoton.2012.182
– volume-title: Thermodynamic Optimization of ZrO2‐Containing Systems in the CaO‐MgO‐SiO2‐Al2O3‐ZrO2 System
  year: 2015
  ident: e_1_2_11_51_1
– ident: e_1_2_11_24_1
  doi: 10.3390/app11020600
– ident: e_1_2_11_11_1
  doi: 10.1364/OME.1.000998
– ident: e_1_2_11_35_1
  doi: 10.1111/ijag.12336
– ident: e_1_2_11_37_1
  doi: 10.1007/s00340-016-6337-8
– ident: e_1_2_11_53_1
  doi: 10.1016/j.mseb.2023.116790
– ident: e_1_2_11_29_1
  doi: 10.1111/jace.14570
– ident: e_1_2_11_45_1
  doi: 10.1186/s11671-015-0780-z
– ident: e_1_2_11_33_1
  doi: 10.1002/lpor.202301403
– ident: e_1_2_11_40_1
  doi: 10.4236/wjnse.2015.54014
– ident: e_1_2_11_42_1
  doi: 10.1016/j.pmatsci.2023.101226
– ident: e_1_2_11_52_1
  doi: 10.1134/S1087659621050175
– ident: e_1_2_11_4_1
  doi: 10.3390/s19040877
– ident: e_1_2_11_10_1
  doi: 10.1111/j.1551-2916.2007.01945.x
– ident: e_1_2_11_25_1
  doi: 10.1063/1.2185587
– ident: e_1_2_11_50_1
  doi: 10.1111/j.1551-2916.2005.00440.x
– ident: e_1_2_11_8_1
  doi: 10.3390/s18061791
– ident: e_1_2_11_56_1
  doi: 10.1111/j.0022-2720.2004.01302.x
– ident: e_1_2_11_44_1
  doi: 10.3390/catal9090768
– ident: e_1_2_11_23_1
  doi: 10.1364/OPTICA.2.000313
– ident: e_1_2_11_15_1
  doi: 10.1111/jace.17164
– ident: e_1_2_11_46_1
  doi: 10.1016/j.earscirev.2016.12.008
– ident: e_1_2_11_7_1
– ident: e_1_2_11_3_1
  doi: 10.1088/2515-7647/ab382f
– ident: e_1_2_11_30_1
  doi: 10.1016/j.jnoncrysol.2017.10.008
– ident: e_1_2_11_2_1
  doi: 10.3390/s17122909
– ident: e_1_2_11_38_1
  doi: 10.1016/j.optmat.2024.115294
– ident: e_1_2_11_39_1
  doi: 10.1002/pssa.202100023
– ident: e_1_2_11_27_1
  doi: 10.1364/OL.43.000062
– ident: e_1_2_11_28_1
  doi: 10.1364/OL.35.002810
– ident: e_1_2_11_20_1
  doi: 10.1364/OE.27.006201
SSID ssj0055556
Score 2.4149761
Snippet Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aircraft
Aircraft engines
Aluminosilicates
Aluminum oxide
Aluminum silicates
birefringence
Combustion chambers
Crystallization
femtosecond laser
glass
High temperature
Lamellar structure
Lasers
Nuclear reactors
Optical fibers
Optical measuring instruments
optical properties
Photonics
Silica glass
Silicon dioxide
Thermal stability
Thermal transformations
Zirconium dioxide
Title A New Approach Toward Extreme Thermal Stability of Femtosecond Laser Induced Modifications in Glasses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401086
https://www.proquest.com/docview/3163329338
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6UkxfxZ0SR9GDiabC1ZXRHYkBiRAmBhNvSdV1iRGbYSNS_3ve2McCLie60Hdptbd9732u-fo-QGyU7EiKZsaS2bUt4IgSTQmaOilwDeMRzNB5wHj65g6l4mLVnW6f4c32IcsMNLSPz12jgKkhaG9HQOeBTyO8gImGxIHDCSNhCVDQu9aPacGXHi6TLLUj17LVqo81au813o9IGam4D1izi9KtErb81J5q8Nldp0NRfP2Qc__MzR-SwgKO0m6-fY7JnFiekWkBTWhh-ckpMl4I7pN1CgZxOMrYt7X2kuL9IYbGBg59TgK4Z2faTxhHtm7c0TjDhDukjBMslxTohGvodxiEylPLNQvqyoPeI4U1yRqb93uRuYBUVGizNHeZakRMq4RnIsJkOeNSRWro6DBVTgSfBe0jUqzeOqyO4YdoWhnPHNZEQzObKVfycVBbxwlwQylXIPR54IaasKEJohBGibTyOVXoDVSO36xny33MhDj-XXGY-jp5fjl6N1NcT6BcGmfjwWs4B2nBZIyybiV968R9Hz-Py6fIvja7IAcNqwRnHu04q6XJlrgHCpEGD7DMxamSL9RsD1uiw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BeigXaEsRaSnsoRUnB3t346wPHCIgBEhohYKUm7teryVESFBs1MK_4q_wi5jxIzwuSEgc8Mk-eP2Y1zej2W8AfmrVUhjJrKOM6zoykDGaFHXm6MS3iEcCz9AG5_6x3z2Vh8PmcA5uq70wBT_ErOBGlpH7azJwKkhvPbCGjhCgYoKHIYmmBZV9lUf2-h9mben2wS6K-Bfnnb3BTtcpBws4RnjcdxIv1jKwmBhyE4mkpYzyTRxrrqNAodIrolm3nm8SPOHGlVYIz7eJlNwV2tcC152HDzRGnOj6d09mjFVNPPINTcoXDiaXbsUT6fKtp-_7NA4-gNvHEDmPcZ0luKv-TtHact64yqKGuXlGHPmuft8nWCwRN2sXJvIZ5uz4CyyV6JuVvi1dBttm6PFZuyRZZ4O8oZjt_c-ohMrQnjCGjRii87yf-JpNEtaxF9kkpZpCzHqIB6aMRqEYXLc_iakJq6iHsrMx26c0xaZf4fRNPnYFauPJ2K4CEzoWgYiCmLJy4lm00krZtIGgQcSRrsNmpRLhZcE1Ehas0jwkaYUzadVhrdKYsPQ5aYiPFQLRm1B14LnoX1gl7P35fTK7-vaamzbgY3fQ74W9g-Oj77DAaThy3tK-BrVsemV_IGLLovXcRhj8fWutugc4qkSM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qgnjxLdbnHhRPwWR3GzcHD0VbrVYtouAtbnY3IGgrpqL-K3-iM3m0ehIEc0oO2YTJPL6ZzH4DsKPVgcJI5jxlfN-TkbRoUtSZo9PQIR6JAkMbnC8uw9NbeXbXuKvBZ7UXpuCHGBXcyDJyf00G_mzT_TFp6CPiU8zvMCLRsKCyrfLcfbxh0pYddo7xC-9y3m7dHJ165VwBz4iAh14aWC0jh3khN4lID5RRobFWc51ECnVeEcu6C0KT4gk3vnRCBKFLpeS-0KEWuO4ETNEfRmoi47JX-f4GHvl-JhUKD3NLv6KJ9Pn-z_f9GQbH2PY7Qs5DXHseZktsypqFMi1AzfUXYa7Eqaz0AtkSuCZD38iaJR05u8lbb1nrfUjFRoaah97-kSGOzTtvP9ggZW33NBxklH1b1sXI-cJoaIjBdS8GltqVisohe-izEwL0LluG238R6wpM9gd9twpMaCsikUSW8ldiJHTSSdlwkaCRvYmuw14lvfi5YOWIC_5lHpOc45Gc67BRCTcurTOL8bFCIM4Rqg48F_gvq8Td3tX16GrtLzdtw3TvuB13O5fn6zDDaYpw3vu9AZPDl1e3idBmmGzl2sTg_r_V9wt70QIr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Approach+Toward+Extreme+Thermal+Stability+of+Femtosecond+Laser+Induced+Modifications+in+Glasses&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ktafi%2C+Imane&rft.au=Kong%2C+Jing&rft.au=Cavillon%2C+Maxime&rft.au=Poumellec%2C+Bertrand&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=3&rft_id=info:doi/10.1002%2Flpor.202401086&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon