A New Approach Toward Extreme Thermal Stability of Femtosecond Laser Induced Modifications in Glasses
Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over ref...
Saved in:
Published in | Laser & photonics reviews Vol. 19; no. 3 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al2O3‐40SiO2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding.
Femtosecond laser irradiation inside Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses can induce polarization‐controlled birefringent nanostructures, along with local precipitation of refractory nanocrystals like tetragonal ZrO2 or mullite. These structures yield a persisting positive index contrast with extraordinary thermal stability (>1600 °C), opening a route to the design of optical functions embedded in glass and operating under extreme environments. |
---|---|
AbstractList | Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al
2
O
3
‐SiO
2
and ZrO
2
‐Al
2
O
3
‐SiO
2
glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al
2
O
3
‐40SiO
2
(mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding. Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al2O3‐40SiO2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding. Femtosecond laser irradiation inside Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses can induce polarization‐controlled birefringent nanostructures, along with local precipitation of refractory nanocrystals like tetragonal ZrO2 or mullite. These structures yield a persisting positive index contrast with extraordinary thermal stability (>1600 °C), opening a route to the design of optical functions embedded in glass and operating under extreme environments. Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments including combustors, nuclear reactors, aircraft engines, or metal/ceramic manufacturing processes. While glass brings undeniable assets over refractory crystalline materials like shaping ability (e.g., optical fiber form), one key challenge is to prevent the erasure of induced transformations at high temperatures and for long periods. In this article, the role of glass composition and viscosity to achieve modifications stable at high temperatures is first reviewed, providing a comprehensive roadmap for engineers in optics and photonics. While silica appears to be the candidate of choice, it is revealed that binary aluminosilicates can compete and sometimes surpass it. The hypothesis is formulated and investigated that a hybrid glass‐crystalline nano‐structuring can imprint ultra‐stable modifications inside glass. Laser‐induced modifications in Al2O3‐SiO2 and ZrO2‐Al2O3‐SiO2 glasses reveal a partial crystallization, shaped into a lamellar structure and orientable with laser light polarization. These birefringent structures can withstand temperatures up to 1300 °C for 30 minutes. Even after erasure, a positive index contrast persists, up to 1650 °C for binary 60Al2O3‐40SiO2 (mol%). This is the first observation of this kind of persisting index contrast, paving the way to ultra‐stable glass‐based optical waveguiding. |
Author | Ktafi, Imane Yembele, Maureen Cavillon, Maxime Poumellec, Bertrand Kong, Jing Allix, Mathieu Valois, Renaud Peng, Gang‐Ding Lancry, Matthieu |
Author_xml | – sequence: 1 givenname: Imane surname: Ktafi fullname: Ktafi, Imane organization: Université Paris‐Saclay – sequence: 2 givenname: Jing surname: Kong fullname: Kong, Jing organization: University of New South Wales – sequence: 3 givenname: Maxime surname: Cavillon fullname: Cavillon, Maxime email: maxime.cavillon@universite-paris-saclay.fr organization: Université Paris‐Saclay – sequence: 4 givenname: Bertrand surname: Poumellec fullname: Poumellec, Bertrand organization: Université Paris‐Saclay – sequence: 5 givenname: Maureen surname: Yembele fullname: Yembele, Maureen organization: Université de Lorraine – sequence: 6 givenname: Renaud surname: Valois fullname: Valois, Renaud organization: Université d'Orléans – sequence: 7 givenname: Mathieu surname: Allix fullname: Allix, Mathieu organization: Université d'Orléans – sequence: 8 givenname: Gang‐Ding surname: Peng fullname: Peng, Gang‐Ding organization: University of New South Wales – sequence: 9 givenname: Matthieu orcidid: 0000-0003-2007-7438 surname: Lancry fullname: Lancry, Matthieu organization: Université Paris‐Saclay |
BookMark | eNqFkM1PAjEQxRuDiYBePTfxvNiPtXSPhACSrGIUz5vSTkPJ7nZtlyD_vUsweHQu8w6_N5P3BqhX-xoQuqdkRAlhj2Xjw4gRlhJKpLhCfSoFT6TMst5FS3KDBjHuCHnqRvQRTPArHPCkaYJXeovX_qCCwbPvNkAFeL2FUKkSf7Rq40rXHrG3eA5V6yNoXxucqwgBL2uz12DwizfOOq1a5-uIXY0XpYoR4i26tqqMcPe7h-hzPltPn5N8tVhOJ3miOWUisdSoNAOREaY33I6llkIbo5jaZJKTsUwlHwMV2naCaZIC51SATVNGuBKKD9HD-W6X5msPsS12fh_q7mXRgZyzjHPZUaMzpYOPMYAtmuAqFY4FJcWpyuJUZXGpsjNkZ8PBlXD8hy7yt9X7n_cHHu96CQ |
Cites_doi | 10.1007/s00339-020-04062-8 10.1007/BF00720421 10.1111/j.1151-2916.1999.tb02171.x 10.3390/mi11020131 10.1007/s00339-017-1507-z 10.1063/1.1137196 10.3390/s21041454 10.3390/s20030762 10.1039/D3NA00748K 10.1016/j.ceramint.2021.12.051 10.1111/j.2041-1294.2010.00026.x 10.3390/s8106448 10.1364/AO.496351 10.1016/j.applthermaleng.2015.08.096 10.3390/nano14141228 10.1109/JSEN.2022.3226962 10.1364/OE.22.026825 10.1038/srep23620 10.1038/s41377-021-00534-5 10.1002/adom.202200379 10.1038/nphoton.2012.182 10.3390/app11020600 10.1364/OME.1.000998 10.1111/ijag.12336 10.1007/s00340-016-6337-8 10.1016/j.mseb.2023.116790 10.1111/jace.14570 10.1186/s11671-015-0780-z 10.1002/lpor.202301403 10.4236/wjnse.2015.54014 10.1016/j.pmatsci.2023.101226 10.1134/S1087659621050175 10.3390/s19040877 10.1111/j.1551-2916.2007.01945.x 10.1063/1.2185587 10.1111/j.1551-2916.2005.00440.x 10.3390/s18061791 10.1111/j.0022-2720.2004.01302.x 10.3390/catal9090768 10.1364/OPTICA.2.000313 10.1111/jace.17164 10.1016/j.earscirev.2016.12.008 10.1088/2515-7647/ab382f 10.1016/j.jnoncrysol.2017.10.008 10.3390/s17122909 10.1016/j.optmat.2024.115294 10.1002/pssa.202100023 10.1364/OL.43.000062 10.1364/OL.35.002810 10.1364/OE.27.006201 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Laser & Photonics Reviews published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Laser & Photonics Reviews published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202401086 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202401086 LPOR202401086 |
Genre | article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche funderid: ANR‐22‐CE08‐0001‐01 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 LW6 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3126-f1da49e6902cb3f78c86cdda2ab9830784837e16cf4832c04e3316ef44203a6a3 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Tue Jul 22 18:41:10 EDT 2025 Tue Jul 01 04:32:48 EDT 2025 Wed Feb 05 10:03:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3126-f1da49e6902cb3f78c86cdda2ab9830784837e16cf4832c04e3316ef44203a6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2007-7438 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401086 |
PQID | 3163329338 |
PQPubID | 1016358 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3163329338 crossref_primary_10_1002_lpor_202401086 wiley_primary_10_1002_lpor_202401086_LPOR202401086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 21 2020; 20 2023; 6 2018; 124 2017; 43 1982; 53 2020; 126 2019; 19 2024; 142 2008; 8 2020; 11 2022; 22 1999; 82 2014; 22 2023; 62 2018; 9 2004; 214 2010; 1 2023; 297 2019; 27 2015; 91 2017; 165 2024; 150 2015; 2 2021; 47 2019; 9 2015; 5 2011; 1 2010; 35 2012 1985; 4 2010 2019; 1 2015; 10 2007; 90 2016; 122 2022; 48 2020; 103 2024; 14 2024; 18 2005; 88 2018; 18 2016; 6 2021; 10 2021; 11 2018; 479 2017; 17 2006; 88 2021; 218 2022; 12 2015 2014 2022; 10 2017; 100 2012; 6 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 Kwon S. Y. (e_1_2_11_51_1) 2015 e_1_2_11_56_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_1_1 Zamyatin D. A. (e_1_2_11_43_1) 2022; 12 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 10 start-page: 73 year: 2015 publication-title: Nanoscale Res. Lett. – volume: 53 start-page: 1456 year: 1982 publication-title: Rev. Sci. Instrum. – volume: 10 start-page: 93 year: 2021 publication-title: Light. Sci. Appl. – volume: 9 start-page: 768 year: 2019 publication-title: Catalysts – volume: 90 start-page: 3019 year: 2007 publication-title: J. Am. Ceram. Soc. – volume: 18 start-page: 1791 year: 2018 publication-title: Sensors – volume: 2 start-page: 313 year: 2015 publication-title: Optica – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – year: 2014 – volume: 100 start-page: 115 year: 2017 publication-title: J. Am. Ceram. Soc. – volume: 122 start-page: 66 year: 2016 publication-title: Appl. Phys. B Lasers Opt. – volume: 165 start-page: 185 year: 2017 publication-title: Earth‐Sci. Rev. – volume: 126 start-page: 876 year: 2020 publication-title: Appl. Phys. A – volume: 6 start-page: 489 year: 2023 publication-title: Nanoscale Adv. – volume: 91 start-page: 860 year: 2015 publication-title: Appl. Therm. Eng. – volume: 142 year: 2024 publication-title: Prog. Mater. Sci. – volume: 18 year: 2024 publication-title: Laser Photonics Rev. – volume: 22 start-page: 3 year: 2022 publication-title: Sensors – start-page: 3 year: 2010 end-page: 4 – volume: 1 start-page: 248 year: 2010 publication-title: Int. J. Appl. Glas. Sci. – year: 2015 – volume: 22 year: 2014 publication-title: Opt. Express – volume: 1 start-page: 998 year: 2011 publication-title: Opt. Mater. Express – volume: 20 start-page: 762 year: 2020 publication-title: Sensors – volume: 11 start-page: 131 year: 2020 publication-title: Micromachines – volume: 47 start-page: 417 year: 2021 publication-title: Glas. Phys. Chem. – volume: 150 year: 2024 publication-title: Opt. Mater. (Amst) – volume: 88 start-page: 2544 year: 2005 publication-title: J. Am. Ceram. Soc. – volume: 124 start-page: 82 year: 2018 publication-title: Appl. Phys. A Mater. Sci. Process – volume: 297 year: 2023 publication-title: Mater. Sci. Eng. B – volume: 35 start-page: 2810 year: 2010 publication-title: Opt. Lett. – volume: 88 start-page: 2 year: 2006 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 1454 year: 2021 publication-title: Sensors – volume: 14 start-page: 1228 year: 2024 publication-title: Nanomaterials – volume: 11 start-page: 600 year: 2021 publication-title: Appl. Sci. – volume: 8 start-page: 6448 year: 2008 publication-title: Sensors – volume: 218 year: 2021 publication-title: Phys. Status Solidi Appl. Mater. Sci. – volume: 19 start-page: 877 year: 2019 publication-title: Sensors – volume: 62 start-page: 6794 year: 2023 publication-title: Appl. Opt. – volume: 12 start-page: 969 year: 2022 publication-title: A Syst. Rev. Miner. – year: 2012 – volume: 5 start-page: 115 year: 2015 publication-title: World J. Nano Sci. Eng. – volume: 4 start-page: 1082 year: 1985 publication-title: J. Mater. Sci. Lett. – volume: 479 start-page: 49 year: 2018 publication-title: J. Non. Cryst. Solids – volume: 9 start-page: 447 year: 2018 publication-title: Int. J. Appl. Glas. Sci. – volume: 48 start-page: 8433 year: 2022 publication-title: Ceram. Int. – volume: 82 start-page: 2876 year: 1999 publication-title: J. Am. Ceram. Soc. – volume: 27 start-page: 6201 year: 2019 publication-title: Opt. Express – volume: 1 year: 2019 publication-title: J. Phys. Photonics – volume: 17 start-page: 2909 year: 2017 publication-title: Sensors – volume: 103 start-page: 4286 year: 2020 publication-title: J. Am. Ceram. Soc. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 43 start-page: 62 year: 2017 publication-title: Opt. Lett. – volume: 214 start-page: 62 year: 2004 publication-title: J. Microsc. – volume: 6 start-page: 627 year: 2012 publication-title: Nat. Photonics – ident: e_1_2_11_12_1 doi: 10.1007/s00339-020-04062-8 – ident: e_1_2_11_5_1 – ident: e_1_2_11_47_1 doi: 10.1007/BF00720421 – ident: e_1_2_11_16_1 – volume: 12 start-page: 969 year: 2022 ident: e_1_2_11_43_1 publication-title: A Syst. Rev. Miner. – ident: e_1_2_11_49_1 doi: 10.1111/j.1151-2916.1999.tb02171.x – ident: e_1_2_11_22_1 doi: 10.3390/mi11020131 – ident: e_1_2_11_31_1 doi: 10.1007/s00339-017-1507-z – ident: e_1_2_11_54_1 doi: 10.1063/1.1137196 – ident: e_1_2_11_9_1 doi: 10.3390/s21041454 – ident: e_1_2_11_14_1 doi: 10.3390/s20030762 – ident: e_1_2_11_41_1 doi: 10.1039/D3NA00748K – ident: e_1_2_11_48_1 doi: 10.1016/j.ceramint.2021.12.051 – ident: e_1_2_11_55_1 doi: 10.1111/j.2041-1294.2010.00026.x – ident: e_1_2_11_17_1 doi: 10.3390/s8106448 – ident: e_1_2_11_13_1 doi: 10.1364/AO.496351 – ident: e_1_2_11_21_1 doi: 10.1016/j.applthermaleng.2015.08.096 – ident: e_1_2_11_26_1 doi: 10.3390/nano14141228 – ident: e_1_2_11_6_1 – ident: e_1_2_11_1_1 doi: 10.1109/JSEN.2022.3226962 – ident: e_1_2_11_19_1 doi: 10.1364/OE.22.026825 – ident: e_1_2_11_36_1 doi: 10.1038/srep23620 – ident: e_1_2_11_32_1 doi: 10.1038/s41377-021-00534-5 – ident: e_1_2_11_18_1 doi: 10.1002/adom.202200379 – ident: e_1_2_11_34_1 doi: 10.1038/nphoton.2012.182 – volume-title: Thermodynamic Optimization of ZrO2‐Containing Systems in the CaO‐MgO‐SiO2‐Al2O3‐ZrO2 System year: 2015 ident: e_1_2_11_51_1 – ident: e_1_2_11_24_1 doi: 10.3390/app11020600 – ident: e_1_2_11_11_1 doi: 10.1364/OME.1.000998 – ident: e_1_2_11_35_1 doi: 10.1111/ijag.12336 – ident: e_1_2_11_37_1 doi: 10.1007/s00340-016-6337-8 – ident: e_1_2_11_53_1 doi: 10.1016/j.mseb.2023.116790 – ident: e_1_2_11_29_1 doi: 10.1111/jace.14570 – ident: e_1_2_11_45_1 doi: 10.1186/s11671-015-0780-z – ident: e_1_2_11_33_1 doi: 10.1002/lpor.202301403 – ident: e_1_2_11_40_1 doi: 10.4236/wjnse.2015.54014 – ident: e_1_2_11_42_1 doi: 10.1016/j.pmatsci.2023.101226 – ident: e_1_2_11_52_1 doi: 10.1134/S1087659621050175 – ident: e_1_2_11_4_1 doi: 10.3390/s19040877 – ident: e_1_2_11_10_1 doi: 10.1111/j.1551-2916.2007.01945.x – ident: e_1_2_11_25_1 doi: 10.1063/1.2185587 – ident: e_1_2_11_50_1 doi: 10.1111/j.1551-2916.2005.00440.x – ident: e_1_2_11_8_1 doi: 10.3390/s18061791 – ident: e_1_2_11_56_1 doi: 10.1111/j.0022-2720.2004.01302.x – ident: e_1_2_11_44_1 doi: 10.3390/catal9090768 – ident: e_1_2_11_23_1 doi: 10.1364/OPTICA.2.000313 – ident: e_1_2_11_15_1 doi: 10.1111/jace.17164 – ident: e_1_2_11_46_1 doi: 10.1016/j.earscirev.2016.12.008 – ident: e_1_2_11_7_1 – ident: e_1_2_11_3_1 doi: 10.1088/2515-7647/ab382f – ident: e_1_2_11_30_1 doi: 10.1016/j.jnoncrysol.2017.10.008 – ident: e_1_2_11_2_1 doi: 10.3390/s17122909 – ident: e_1_2_11_38_1 doi: 10.1016/j.optmat.2024.115294 – ident: e_1_2_11_39_1 doi: 10.1002/pssa.202100023 – ident: e_1_2_11_27_1 doi: 10.1364/OL.43.000062 – ident: e_1_2_11_28_1 doi: 10.1364/OL.35.002810 – ident: e_1_2_11_20_1 doi: 10.1364/OE.27.006201 |
SSID | ssj0055556 |
Score | 2.4149761 |
Snippet | Imprinting thermally stable transformations by femtosecond laser in glass would benefit the development of optical sensors dedicated to harsh environments... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aircraft Aircraft engines Aluminosilicates Aluminum oxide Aluminum silicates birefringence Combustion chambers Crystallization femtosecond laser glass High temperature Lamellar structure Lasers Nuclear reactors Optical fibers Optical measuring instruments optical properties Photonics Silica glass Silicon dioxide Thermal stability Thermal transformations Zirconium dioxide |
Title | A New Approach Toward Extreme Thermal Stability of Femtosecond Laser Induced Modifications in Glasses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401086 https://www.proquest.com/docview/3163329338 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6UkxfxZ0SR9GDiabC1ZXRHYkBiRAmBhNvSdV1iRGbYSNS_3ve2McCLie60Hdptbd9732u-fo-QGyU7EiKZsaS2bUt4IgSTQmaOilwDeMRzNB5wHj65g6l4mLVnW6f4c32IcsMNLSPz12jgKkhaG9HQOeBTyO8gImGxIHDCSNhCVDQu9aPacGXHi6TLLUj17LVqo81au813o9IGam4D1izi9KtErb81J5q8Nldp0NRfP2Qc__MzR-SwgKO0m6-fY7JnFiekWkBTWhh-ckpMl4I7pN1CgZxOMrYt7X2kuL9IYbGBg59TgK4Z2faTxhHtm7c0TjDhDukjBMslxTohGvodxiEylPLNQvqyoPeI4U1yRqb93uRuYBUVGizNHeZakRMq4RnIsJkOeNSRWro6DBVTgSfBe0jUqzeOqyO4YdoWhnPHNZEQzObKVfycVBbxwlwQylXIPR54IaasKEJohBGibTyOVXoDVSO36xny33MhDj-XXGY-jp5fjl6N1NcT6BcGmfjwWs4B2nBZIyybiV968R9Hz-Py6fIvja7IAcNqwRnHu04q6XJlrgHCpEGD7DMxamSL9RsD1uiw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BeigXaEsRaSnsoRUnB3t346wPHCIgBEhohYKUm7teryVESFBs1MK_4q_wi5jxIzwuSEgc8Mk-eP2Y1zej2W8AfmrVUhjJrKOM6zoykDGaFHXm6MS3iEcCz9AG5_6x3z2Vh8PmcA5uq70wBT_ErOBGlpH7azJwKkhvPbCGjhCgYoKHIYmmBZV9lUf2-h9mben2wS6K-Bfnnb3BTtcpBws4RnjcdxIv1jKwmBhyE4mkpYzyTRxrrqNAodIrolm3nm8SPOHGlVYIz7eJlNwV2tcC152HDzRGnOj6d09mjFVNPPINTcoXDiaXbsUT6fKtp-_7NA4-gNvHEDmPcZ0luKv-TtHact64yqKGuXlGHPmuft8nWCwRN2sXJvIZ5uz4CyyV6JuVvi1dBttm6PFZuyRZZ4O8oZjt_c-ohMrQnjCGjRii87yf-JpNEtaxF9kkpZpCzHqIB6aMRqEYXLc_iakJq6iHsrMx26c0xaZf4fRNPnYFauPJ2K4CEzoWgYiCmLJy4lm00krZtIGgQcSRrsNmpRLhZcE1Ehas0jwkaYUzadVhrdKYsPQ5aYiPFQLRm1B14LnoX1gl7P35fTK7-vaamzbgY3fQ74W9g-Oj77DAaThy3tK-BrVsemV_IGLLovXcRhj8fWutugc4qkSM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qgnjxLdbnHhRPwWR3GzcHD0VbrVYtouAtbnY3IGgrpqL-K3-iM3m0ehIEc0oO2YTJPL6ZzH4DsKPVgcJI5jxlfN-TkbRoUtSZo9PQIR6JAkMbnC8uw9NbeXbXuKvBZ7UXpuCHGBXcyDJyf00G_mzT_TFp6CPiU8zvMCLRsKCyrfLcfbxh0pYddo7xC-9y3m7dHJ165VwBz4iAh14aWC0jh3khN4lID5RRobFWc51ECnVeEcu6C0KT4gk3vnRCBKFLpeS-0KEWuO4ETNEfRmoi47JX-f4GHvl-JhUKD3NLv6KJ9Pn-z_f9GQbH2PY7Qs5DXHseZktsypqFMi1AzfUXYa7Eqaz0AtkSuCZD38iaJR05u8lbb1nrfUjFRoaah97-kSGOzTtvP9ggZW33NBxklH1b1sXI-cJoaIjBdS8GltqVisohe-izEwL0LluG238R6wpM9gd9twpMaCsikUSW8ldiJHTSSdlwkaCRvYmuw14lvfi5YOWIC_5lHpOc45Gc67BRCTcurTOL8bFCIM4Rqg48F_gvq8Td3tX16GrtLzdtw3TvuB13O5fn6zDDaYpw3vu9AZPDl1e3idBmmGzl2sTg_r_V9wt70QIr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Approach+Toward+Extreme+Thermal+Stability+of+Femtosecond+Laser+Induced+Modifications+in+Glasses&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ktafi%2C+Imane&rft.au=Kong%2C+Jing&rft.au=Cavillon%2C+Maxime&rft.au=Poumellec%2C+Bertrand&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=3&rft_id=info:doi/10.1002%2Flpor.202401086&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |