Effectiveness of joint species distribution models in the presence of imperfect detection

Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their interactions and dependencies. However, most models do not consider imperfect detection, which can significantly bias estimates. This is one of the first...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 12; no. 8; pp. 1458 - 1474
Main Authors Hogg, Stephanie Elizabeth, Wang, Yan, Stone, Lewi
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.08.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their interactions and dependencies. However, most models do not consider imperfect detection, which can significantly bias estimates. This is one of the first papers to account for imperfect detection when fitting data with JSDMs and to explore the complications that may arise. A multivariate probit JSDM that explicitly accounts for imperfect detection is proposed, and implemented using a Bayesian hierarchical approach. We investigate the performance of the JSDM in the presence of imperfect detection for a range of factors, including varied levels of detection and species occupancy, and varied numbers of survey sites and replications. To understand how effective this JSDM is in practice, we also compare results to those from a JSDM that does not explicitly model detection but instead makes use of ‘collapsed data’. A case study of owls and gliders in Victoria, Australia, is also illustrated. Using simulations, we found that the JSDMs explicitly accounting for detection can accurately estimate intrinsic correlation between species with enough survey sites and replications. Reducing the number of survey sites decreases the precision of estimates, while reducing the number of survey replications can lead to biased estimates. For low probabilities of detection, the model may require a large number of survey replications to remove bias from estimates. However, JSDMs not explicitly accounting for detection may have a limited ability to disentangle detection from occupancy, which substantially reduces their ability to accurately infer the species distribution spatially. Our case study showed positive correlation between Sooty Owls and Greater Gliders, despite a low number of survey replications. To avoid biased estimates of inter‐species correlations and species distributions, imperfect detection needs to be considered. However, for low probability of detection, the JSDMs explicitly accounting for detection is data hungry. Estimates from such models may still be subject to bias. To overcome the bias, researchers need to carefully design surveys and choose appropriate modelling approaches. The survey design should ensure sufficient survey replications for unbiased inferences on species inter‐dependencies and occupancy.
AbstractList Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their interactions and dependencies. However, most models do not consider imperfect detection, which can significantly bias estimates. This is one of the first papers to account for imperfect detection when fitting data with JSDMs and to explore the complications that may arise. A multivariate probit JSDM that explicitly accounts for imperfect detection is proposed, and implemented using a Bayesian hierarchical approach. We investigate the performance of the JSDM in the presence of imperfect detection for a range of factors, including varied levels of detection and species occupancy, and varied numbers of survey sites and replications. To understand how effective this JSDM is in practice, we also compare results to those from a JSDM that does not explicitly model detection but instead makes use of ‘collapsed data’. A case study of owls and gliders in Victoria, Australia, is also illustrated. Using simulations, we found that the JSDMs explicitly accounting for detection can accurately estimate intrinsic correlation between species with enough survey sites and replications. Reducing the number of survey sites decreases the precision of estimates, while reducing the number of survey replications can lead to biased estimates. For low probabilities of detection, the model may require a large number of survey replications to remove bias from estimates. However, JSDMs not explicitly accounting for detection may have a limited ability to disentangle detection from occupancy, which substantially reduces their ability to accurately infer the species distribution spatially. Our case study showed positive correlation between Sooty Owls and Greater Gliders, despite a low number of survey replications. To avoid biased estimates of inter‐species correlations and species distributions, imperfect detection needs to be considered. However, for low probability of detection, the JSDMs explicitly accounting for detection is data hungry. Estimates from such models may still be subject to bias. To overcome the bias, researchers need to carefully design surveys and choose appropriate modelling approaches. The survey design should ensure sufficient survey replications for unbiased inferences on species inter‐dependencies and occupancy.
Abstract Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their interactions and dependencies. However, most models do not consider imperfect detection, which can significantly bias estimates. This is one of the first papers to account for imperfect detection when fitting data with JSDMs and to explore the complications that may arise. A multivariate probit JSDM that explicitly accounts for imperfect detection is proposed, and implemented using a Bayesian hierarchical approach. We investigate the performance of the JSDM in the presence of imperfect detection for a range of factors, including varied levels of detection and species occupancy, and varied numbers of survey sites and replications. To understand how effective this JSDM is in practice, we also compare results to those from a JSDM that does not explicitly model detection but instead makes use of ‘collapsed data’. A case study of owls and gliders in Victoria, Australia, is also illustrated. Using simulations, we found that the JSDMs explicitly accounting for detection can accurately estimate intrinsic correlation between species with enough survey sites and replications. Reducing the number of survey sites decreases the precision of estimates, while reducing the number of survey replications can lead to biased estimates. For low probabilities of detection, the model may require a large number of survey replications to remove bias from estimates. However, JSDMs not explicitly accounting for detection may have a limited ability to disentangle detection from occupancy, which substantially reduces their ability to accurately infer the species distribution spatially. Our case study showed positive correlation between Sooty Owls and Greater Gliders, despite a low number of survey replications. To avoid biased estimates of inter‐species correlations and species distributions, imperfect detection needs to be considered. However, for low probability of detection, the JSDMs explicitly accounting for detection is data hungry. Estimates from such models may still be subject to bias. To overcome the bias, researchers need to carefully design surveys and choose appropriate modelling approaches. The survey design should ensure sufficient survey replications for unbiased inferences on species inter‐dependencies and occupancy.
Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their interactions and dependencies. However, most models do not consider imperfect detection, which can significantly bias estimates. This is one of the first papers to account for imperfect detection when fitting data with JSDMs and to explore the complications that may arise.A multivariate probit JSDM that explicitly accounts for imperfect detection is proposed, and implemented using a Bayesian hierarchical approach. We investigate the performance of the JSDM in the presence of imperfect detection for a range of factors, including varied levels of detection and species occupancy, and varied numbers of survey sites and replications. To understand how effective this JSDM is in practice, we also compare results to those from a JSDM that does not explicitly model detection but instead makes use of ‘collapsed data’. A case study of owls and gliders in Victoria, Australia, is also illustrated.Using simulations, we found that the JSDMs explicitly accounting for detection can accurately estimate intrinsic correlation between species with enough survey sites and replications. Reducing the number of survey sites decreases the precision of estimates, while reducing the number of survey replications can lead to biased estimates. For low probabilities of detection, the model may require a large number of survey replications to remove bias from estimates. However, JSDMs not explicitly accounting for detection may have a limited ability to disentangle detection from occupancy, which substantially reduces their ability to accurately infer the species distribution spatially. Our case study showed positive correlation between Sooty Owls and Greater Gliders, despite a low number of survey replications.To avoid biased estimates of inter‐species correlations and species distributions, imperfect detection needs to be considered. However, for low probability of detection, the JSDMs explicitly accounting for detection is data hungry. Estimates from such models may still be subject to bias. To overcome the bias, researchers need to carefully design surveys and choose appropriate modelling approaches. The survey design should ensure sufficient survey replications for unbiased inferences on species inter‐dependencies and occupancy.
Author Hogg, Stephanie Elizabeth
Stone, Lewi
Wang, Yan
Author_xml – sequence: 1
  givenname: Stephanie Elizabeth
  orcidid: 0000-0003-3139-8122
  surname: Hogg
  fullname: Hogg, Stephanie Elizabeth
  email: stephanie.hogg@rmit.edu.au
  organization: RMIT
– sequence: 2
  givenname: Yan
  orcidid: 0000-0003-1635-5554
  surname: Wang
  fullname: Wang, Yan
  organization: RMIT
– sequence: 3
  givenname: Lewi
  orcidid: 0000-0002-6465-579X
  surname: Stone
  fullname: Stone, Lewi
  organization: Tel Aviv University
BookMark eNqFkc9rFTEQx4NUsNaevQY8vzbJZvOSo5SnFipeLNRTyI-J5rEvWZM8pf-92W4rIohzmcnw_X6YzLxEJyknQOg1JRe0xyUjnG4YJXcXdBCUP0Onvzsnf9Qv0Hmte9JjkIowfoq-7EIA1-IPSFArzgHvc0wN1xlchIp9rK1Ee2wxJ3zIHqaKY8LtG-C5QIXkYDHFwwxlAWEPbeHl9Ao9D2aqcP6Yz9Dtu93nqw-bm0_vr6_e3mzcQBnfBAGCGrV14JW1ozKGyDEAB0GICkwEMMGOQ3BbxzwD0sVBKMmZtNJavx3O0PXK9dns9VziwZR7nU3UD41cvmpTWnQTaOet5Mp3qAic8_6yxBCrhBzlYJTqrDcray75-xFq0_t8LKmPr9k4biUnivGuGleVK7nWAkG72Mzy51ZMnDQlejmKXtaul7Xrh6N03-Vfvqdp_-0Qq-NnnOD-f3L9cbcbVuMvYq-gOg
CitedBy_id crossref_primary_10_1002_ecy_4137
crossref_primary_10_1111_ecog_07340
crossref_primary_10_1214_24_AOAS1888
crossref_primary_10_1111_2041_210X_14296
Cites_doi 10.1214/aos/1176349830
10.1890/04‐0906
10.1111/oik.05985
10.1007/978-1-4613-9655-0
10.1111/j.0021‐8790.2004.00828.x
10.1111/j.2041‐210X.2010.00017.x
10.1111/2041‐210X.12345
10.1111/j.1365‐2664.2005.01098.x
10.1111/2041‐210X.12359
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1371/journal.pone.0094323
10.1016/0006‐3207(94)00019‐M
10.1002/ecy.2754
10.1111/ddi.12078
10.1214/15‐AOAS813
10.1890/09-0850.1
10.1007/s12080‐018‐0389‐9
10.1111/geb.12216
10.1111/j.1467‐9574.2008.00387.x
10.1111/j.1365‐2664.2012.02171.x
10.1111/2041‐210X.12332
10.1002/sim.6631
10.1890/02‐5078
10.1214/06-BA117A
10.1890/10‐0173.1
10.1111/2041‐210X.12587
10.1890/02‐5166
10.1111/j.0006‐341X.2004.00142.x
10.1371/journal.pone.0099571
10.1016/j.tree.2019.08.006
10.1111/geb.12138
10.1198/016214505000000015
10.1093/biomet/85.2.347
10.1111/2041‐210X.12502
10.1111/2041‐210X.12180
10.1007/s13253‐010‐0053‐3
10.2193/0022-541X(2005)069[0905:EADWDI]2.0.CO;2
10.1016/S0304‐3800(02)00205‐3
10.1007/978-94-017-9014-7_26
ContentType Journal Article
Copyright 2021 British Ecological Society
Methods in Ecology and Evolution © 2021 British Ecological Society
Copyright_xml – notice: 2021 British Ecological Society
– notice: Methods in Ecology and Evolution © 2021 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOA
DOI 10.1111/2041-210X.13614
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef

Genetics Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 1474
ExternalDocumentID oai_doaj_org_article_cdb849d26f6f444db8b0a0b968583a99
10_1111_2041_210X_13614
MEE313614
Genre article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP150102472; DP190100613
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAYXX
CITATION
PHGZM
PHGZT
7QG
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
WIN
ID FETCH-LOGICAL-c3124-f6e61a97ced9bb59aa085fe4e6009f26feafb53fc7c2d2e061af698428b8bbd73
IEDL.DBID DOA
ISSN 2041-210X
IngestDate Wed Aug 27 00:37:34 EDT 2025
Wed Aug 13 11:02:51 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Tue Jul 01 03:19:44 EDT 2025
Wed Jan 22 16:28:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3124-f6e61a97ced9bb59aa085fe4e6009f26feafb53fc7c2d2e061af698428b8bbd73
Notes Handling Editor
Huijie Qiao
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6465-579X
0000-0003-1635-5554
0000-0003-3139-8122
OpenAccessLink https://doaj.org/article/cdb849d26f6f444db8b0a0b968583a99
PQID 2557840924
PQPubID 1016379
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_cdb849d26f6f444db8b0a0b968583a99
proquest_journals_2557840924
crossref_citationtrail_10_1111_2041_210X_13614
crossref_primary_10_1111_2041_210X_13614
wiley_primary_10_1111_2041_210X_13614_MEE313614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 34
2015; 6
1995; 71
2004; 60
2002; 157
2019; 12
1986; 14
2003; 13
2008
2005; 86
2005; 42
2020; 35
2006; 1
2019; 128
2002
1998; 85
2011; 16
2015; 9
2014; 23
2019; 100
2005; 69
2013; 19
2016; 7
2010; 20
2014; 5
2004; 73
2010; 1
1990
2005; 100
2002; 83
2004; 14
2016
2015
2012; 49
2013
2014; 9
2008; 62
2010; 91
e_1_2_8_28_1
Plummer M. (e_1_2_8_31_1) 2016
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
Kavanagh R. (e_1_2_8_20_1) 2002
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
R Core Team (e_1_2_8_34_1) 2015
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Lumsden L. F. (e_1_2_8_25_1) 2013
Royle J. A. (e_1_2_8_37_1) 2008
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
Kéry M. (e_1_2_8_22_1) 2016
e_1_2_8_30_1
References_xml – start-page: 175
  year: 2002
  end-page: 191
– volume: 1
  start-page: 515
  year: 2006
  end-page: 534
  article-title: Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper)
  publication-title: Bayesian Analysis
– volume: 14
  start-page: 703
  year: 2004
  end-page: 712
  article-title: Precision and bias of methods for estimating point survey detection probabilities
  publication-title: Ecological Applications
– volume: 85
  start-page: 347
  year: 1998
  end-page: 361
  article-title: Analysis of multivariate probit models
  publication-title: Biometrika
– volume: 19
  start-page: 996
  year: 2013
  end-page: 1007
  article-title: Species distribution modelling and imperfect detection: Comparing occupancy versus consensus methods
  publication-title: Diversity and Distributions
– volume: 14
  start-page: 1
  year: 1986
  end-page: 26
  article-title: On the consistency of bayes estimates
  publication-title: Ann Statist
– volume: 6
  start-page: 465
  year: 2015
  end-page: 473
  article-title: Generating realistic assemblages with a joint species distribution model
  publication-title: Methods in Ecology and Evolution
– volume: 20
  start-page: 1467
  year: 2010
  end-page: 1475
  article-title: A new parameterization for estimating co‐occurrence of interacting species
  publication-title: Ecological Applications
– volume: 9
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Ignoring imperfect detection in biological surveys is dangerous: A response to ‘fitting and interpreting occupancy models'
  publication-title: PLoS ONE
– volume: 42
  start-page: 1105
  year: 2005
  end-page: 1114
  article-title: Designing occupancy studies: General advice and allocating survey effort
  publication-title: Journal of Applied Ecology
– volume: 13
  start-page: 1790
  year: 2003
  end-page: 1801
  article-title: Improving precision and reducing bias in biological surveys: Estimating false‐negative error rates
  publication-title: Ecological Applications
– volume: 23
  start-page: 1472
  year: 2014
  end-page: 1484
  article-title: Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data
  publication-title: Global Ecology and Biogeography
– volume: 12
  start-page: 1
  year: 2019
  end-page: 16
  article-title: Understanding the connections between species distribution models for presence‐background data
  publication-title: Theoretical Ecology
– volume: 6
  start-page: 363
  year: 2015
  end-page: 365
  article-title: New opportunities at the interface between ecology and statistics
  publication-title: Methods in Ecology and Evolution
– volume: 69
  start-page: 905
  issue: 3
  year: 2005
  end-page: 917
  article-title: Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials
  publication-title: Journal of Wildlife Management
– volume: 71
  start-page: 41
  year: 1995
  end-page: 53
  article-title: Distribution of nocturnal forest birds and mammals in relation to the logging mosaic in south‐eastern New South Wales, Australia
  publication-title: Biological Conservation
– volume: 83
  start-page: 2248
  year: 2002
  end-page: 2255
  article-title: Estimating site occupancy rates when detection probabilities are less than one
  publication-title: Ecology
– volume: 91
  start-page: 2514
  year: 2010
  end-page: 2521
  article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions
  publication-title: Ecology
– volume: 9
  start-page: 866
  year: 2015
  end-page: 882
  article-title: Community level models, finite mixture models, penalized likelihood, regularization, species archetype models, variable selection
  publication-title: Annals of Applied Statistics
– volume: 7
  start-page: 1164
  year: 2016
  end-page: 1173
  article-title: A multispecies occupancy model for two or more interacting species
  publication-title: Methods in Ecology and Evolution
– volume: 86
  start-page: 2007
  year: 2005
  end-page: 2017
  article-title: Managing landscapes for conservation under uncertainty
  publication-title: Ecology
– year: 2016
– year: 1990
– volume: 16
  start-page: 301
  year: 2011
  end-page: 317
  article-title: Species occupancy modeling for detection data collected along a transect
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– start-page: 547
  year: 2015
  end-page: 586
– volume: 9
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat
  publication-title: PLoS ONE
– volume: 157
  start-page: 101
  year: 2002
  end-page: 118
  article-title: Spatial prediction of species distribution: An interface between ecological theory and statistical modelling
  publication-title: Ecological Modelling
– volume: 49
  start-page: 953
  year: 2012
  end-page: 959
  article-title: Improved detection of an alien invasive species through environmental dna barcoding: The example of the american bullfrog lithobates catesbeianus
  publication-title: Journal of Applied Ecology
– volume: 35
  start-page: 4083
  year: 2020
  end-page: 4104
  article-title: Data integration for large‐scale models of species distributions
  publication-title: Trends in Ecology & Evolution
– volume: 128
  start-page: 912
  year: 2019
  end-page: 928
  article-title: Moving beyond noninformative priors: Why and how to choose weakly informative priors in bayesian analyses
  publication-title: Oikos
– volume: 23
  start-page: 504
  year: 2014
  end-page: 515
  article-title: Imperfect detection impacts the performance of species distribution models
  publication-title: Global Ecology and Biogeography
– volume: 1
  start-page: 131
  year: 2010
  end-page: 139
  article-title: Design of occupancy studies with imperfect detection
  publication-title: Methods in Ecology and Evolution
– year: 2008
– volume: 60
  start-page: 108
  issue: 1
  year: 2004
  end-page: 115
  article-title: N‐mixture models for estimating population size from spatially replicated counts
  publication-title: Biometrics
– volume: 62
  start-page: 405
  year: 2008
  end-page: 424
  article-title: Bayesian estimation of log odds ratios from r × c and 2 × 2 × k contingency tables
  publication-title: Statistica Neerlandica
– volume: 6
  start-page: 627
  year: 2015
  end-page: 637
  article-title: Spatial factor analysis: A new tool for estimating joint species distributions and correlations in species range
  publication-title: Methods in Ecology and Evolution
– volume: 100
  year: 2019
  article-title: Joint species distribution models with species correlations and imperfect detection
  publication-title: Ecology
– volume: 5
  start-page: 397
  issue: 5
  year: 2014
  end-page: 406
  article-title: Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution model (JSDM)
  publication-title: Methods in Ecology and Evolution
– volume: 100
  start-page: 389
  year: 2005
  end-page: 398
  article-title: Estimating size and composition of biological communities by modeling the occurrence of species
  publication-title: Journal of the American Statistical Association
– year: 2015
– volume: 34
  start-page: 4083
  year: 2015
  end-page: 4104
  article-title: The choice of prior distribution for a covariance matrix in multivariate meta‐analysis: A simulation study
  publication-title: Statistics in Medicine
– year: 2013
– volume: 73
  start-page: 546
  year: 2004
  end-page: 555
  article-title: Investigating species co‐occurrence patterns when species are detected imperfectly
  publication-title: Journal of Animal Ecology
– volume: 7
  start-page: 428
  year: 2016
  end-page: 436
  article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models
  publication-title: Methods in Ecology and Evolution
– ident: e_1_2_8_8_1
  doi: 10.1214/aos/1176349830
– ident: e_1_2_8_3_1
  doi: 10.1890/04‐0906
– ident: e_1_2_8_24_1
  doi: 10.1111/oik.05985
– ident: e_1_2_8_40_1
  doi: 10.1007/978-1-4613-9655-0
– ident: e_1_2_8_26_1
  doi: 10.1111/j.0021‐8790.2004.00828.x
– volume-title: R: A language and environment for statistical computing
  year: 2015
  ident: e_1_2_8_34_1
– ident: e_1_2_8_15_1
  doi: 10.1111/j.2041‐210X.2010.00017.x
– ident: e_1_2_8_44_1
  doi: 10.1111/2041‐210X.12345
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1365‐2664.2005.01098.x
– ident: e_1_2_8_38_1
  doi: 10.1111/2041‐210X.12359
– ident: e_1_2_8_27_1
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– ident: e_1_2_8_10_1
  doi: 10.1371/journal.pone.0094323
– ident: e_1_2_8_21_1
  doi: 10.1016/0006‐3207(94)00019‐M
– volume-title: Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities
  year: 2008
  ident: e_1_2_8_37_1
– ident: e_1_2_8_39_1
  doi: 10.1002/ecy.2754
– ident: e_1_2_8_5_1
  doi: 10.1111/ddi.12078
– ident: e_1_2_8_17_1
  doi: 10.1214/15‐AOAS813
– ident: e_1_2_8_42_1
  doi: 10.1890/09-0850.1
– ident: e_1_2_8_43_1
  doi: 10.1007/s12080‐018‐0389‐9
– ident: e_1_2_8_9_1
  doi: 10.1111/geb.12216
– volume-title: Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS
  year: 2016
  ident: e_1_2_8_22_1
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1467‐9574.2008.00387.x
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1365‐2664.2012.02171.x
– ident: e_1_2_8_16_1
  doi: 10.1111/2041‐210X.12332
– ident: e_1_2_8_18_1
  doi: 10.1002/sim.6631
– start-page: 175
  volume-title: Ecology and conservation of owls
  year: 2002
  ident: e_1_2_8_20_1
– ident: e_1_2_8_41_1
  doi: 10.1890/02‐5078
– ident: e_1_2_8_12_1
  doi: 10.1214/06-BA117A
– ident: e_1_2_8_29_1
  doi: 10.1890/10‐0173.1
– ident: e_1_2_8_35_1
  doi: 10.1111/2041‐210X.12587
– ident: e_1_2_8_46_1
  doi: 10.1890/02‐5166
– ident: e_1_2_8_36_1
  doi: 10.1111/j.0006‐341X.2004.00142.x
– ident: e_1_2_8_13_1
  doi: 10.1371/journal.pone.0099571
– ident: e_1_2_8_19_1
  doi: 10.1016/j.tree.2019.08.006
– volume-title: rjags: Bayesian graphical models using MCMC
  year: 2016
  ident: e_1_2_8_31_1
– ident: e_1_2_8_23_1
  doi: 10.1111/geb.12138
– ident: e_1_2_8_11_1
  doi: 10.1198/016214505000000015
– ident: e_1_2_8_4_1
  doi: 10.1093/biomet/85.2.347
– ident: e_1_2_8_30_1
  doi: 10.1111/2041‐210X.12502
– ident: e_1_2_8_33_1
  doi: 10.1111/2041‐210X.12180
– ident: e_1_2_8_14_1
  doi: 10.1007/s13253‐010‐0053‐3
– volume-title: A new strategic approach to biodiversity management
  year: 2013
  ident: e_1_2_8_25_1
– ident: e_1_2_8_45_1
  doi: 10.2193/0022-541X(2005)069[0905:EADWDI]2.0.CO;2
– ident: e_1_2_8_2_1
  doi: 10.1016/S0304‐3800(02)00205‐3
– ident: e_1_2_8_32_1
  doi: 10.1007/978-94-017-9014-7_26
SSID ssj0000389024
Score 2.2992163
Snippet Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their interactions...
Abstract Joint species distribution models (JSDMs) are a recent development in biogeography and enable the spatial modelling of multiple species and their...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1458
SubjectTerms Bayesian analysis
Bias
Biogeography
Birds of prey
Case studies
detection probability
Estimates
Geographical distribution
imperfect detection
inter‐species correlation
joint species distribution model
Mathematical models
Modelling
multivariate probit
Occupancy
occupancy model
Polls & surveys
Species
Title Effectiveness of joint species distribution models in the presence of imperfect detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.13614
https://www.proquest.com/docview/2557840924
https://doaj.org/article/cdb849d26f6f444db8b0a0b968583a99
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7EnzidkoMHL3VdmqbNUaVjCPPkYJ5CfsJEuqHz4MW_3ffSbmwH2cVLaUvahi-ved8jL98j5EaHYHRa8iQVzCY802WiU2cTV-ReMy-d0LiiO3oWwzF_muSTtVJfmBPWyAM3wPWsMyWXjokgAuccrkyqUyNRNz3TMm7dA5-3FkzFOTjD9TPeavlg6g5LeT-B-GaCiV19vuGGolr_BsVcJ6rR0wwOyUFLEel907UjsuPrY7JXRXnp7xPy2ggOt7MUnQX6NpvWC4p7JiHspQ6lcNsqVjQWuvmk05oC0aPzuNfIenxoCnz5A19EnV_EfKz6lIwH1cvjMGkLJCQ2A7-cBOFFX8vCeieNyaUG1PPguQcWIwNA5nUweRZsYZljHly3DkKWEHEAisYV2RnZrWe1PyfUZ8xzgBZmu5SHwhrONFAnn5aGWyN4h9wt8VK2VQ_HIhbvahlFIMAKAVYR4A65XT0wb4Qz_m76gAOwaoaK1_EG2IFq7UBts4MO6S6HT7W_4aeCeKnACJbBN3pxSLf1RY2qKotnF__Rq0uyzzAJJmYMdsnu4uPLXwGLWZjraLBwHP1Uv6bq7eY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdQJwQXtPEhCh3zgQOXgOc4TnzsplYdtD01qHCx_DkVobRqu8P-e_wcN-qQENotifyc5L08-_ec599D6KPyXitSsYxwajKWqypTxJrMloVT1AnLFfzRnc35pGZfl8XyaC9Myw_RLbiBZ8TxGhwcFqSPvJwSdpmFiGUJqVpQy_oEsE3VQyfD7_XPultpAQo5EqvbdhKJ4wdSev7q5cH0FFn8H0DPYwAbZ6DxKXqRoCMetrY-Q09c8xI9HUXa6ftX6EdLRJxGL7z2-Nd61ewx7KUM4TC2QJGbqlvhWABnh1cNDgAQb-IeJONAaBVw9BY6wtbtY55W8xrV49HiepKlwgmZycN8nXnu-KUSpXFWaF0IFaxReMdcQDfCU-6d8rrIvSkNtdSFKV15LqoQiehKa1vmb1CvWTfuLcIup45VmoRRkDBfGs2oCpDKkUozoznro88HfUmTWMWhuMVveYguQMESFCyjgvvoUyewaQk1_t30CgzQNQMm7Hhhvb2VybGksbpiwoaX4p4xFs40UUQL4NXPlRB9NDiYTyb33MkQR5UQ2dJwjy_RpP97FjkbjfJ49O7REhfo2WQxm8rpzfzbe_ScQlZMTCEcoN5-e-fOA6zZ6w_pu_0DvanszQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqRkW9IFqoGmiLDz1wWXC9Xu_6WNpEfYsDQYWL5WcVhDZREg78e2YcZ9UgVRW33ZVnHzMe-xvv-BtCjk2M1rBGFExyV4jSNIVh3hW-roLhQXlp8I_u7Z28GImr-2qVTYh7YZb8EN2CG3pGGq_Rwac-PnJyzsRJAQHLPWZqYSnrHnLlQcfunX4b_Rh1Cy3IIMdScdtOIlP8YEbPP3dZm50Sif8a8nyMX9MENHxFXmbkSE-Xpt4hG6HdJVuDxDr95zX5vuQhzoMXnUT6czJuFxS3UkI0TD0y5ObiVjTVv5nTcUsB_9Fp2oLkAgqNAUbP8EbUh0VK02rfkNFw8PXsosh1EwpXwnRdRBnkiVG1C15ZWykDxqhiEAHAjYpcxmCircroasc9DzCjmyhVA4GIbaz1dblHNttJG_YJDSUPorEMBkEmYu2s4AYQVWCNFc5K0ScfV_rSLpOKY22LX3oVXKCCNSpYJwX3yYdOYLrk03i66Wc0QNcMibDThcnsQWe_0s7bRigPHyWjEALOLDPMKqTVL41SfXKwMp_O3jnXEEbVGNhyeManZNLn3kXfDgZlOnr73xLvyYsv50N9c3l3_Y5sc8yJSQmEB2RzMfsdDgHULOxR7rZ_AUxT6_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+joint+species+distribution+models+in+the+presence+of+imperfect+detection&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Hogg%2C+Stephanie+Elizabeth&rft.au=Wang%2C+Yan&rft.au=Stone%2C+Lewi&rft.date=2021-08-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=12&rft.issue=8&rft.spage=1458&rft.epage=1474&rft_id=info:doi/10.1111%2F2041-210X.13614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_2041_210X_13614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon