Sono‐Piezo‐Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions
The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, curren...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 27 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation.
A novel sono‐piezo‐photocatalytic strategy enables the conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) under ambient conditions, addressing the limitations of conventional methods that are high‐temperature and energy‐intensive. By using an advanced graphene oxide/sodium bismuth titanate heterostructure catalyst, this work achieved outstanding production rates of C2 hydrocarbons under the irradiation of ultrasound and light. This work highlights the critical role of the catalyst in improving overall catalytic efficiency by enhancing charge separation, reducing energy barriers, and delivering optimized catalytic pathways. |
---|---|
AbstractList | The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation.
A novel sono‐piezo‐photocatalytic strategy enables the conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) under ambient conditions, addressing the limitations of conventional methods that are high‐temperature and energy‐intensive. By using an advanced graphene oxide/sodium bismuth titanate heterostructure catalyst, this work achieved outstanding production rates of C2 hydrocarbons under the irradiation of ultrasound and light. This work highlights the critical role of the catalyst in improving overall catalytic efficiency by enhancing charge separation, reducing energy barriers, and delivering optimized catalytic pathways. The catalytic conversion of bioethanol to ethylene (C 2 H 4 ) and acetylene (C 2 H 2 ) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C 2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C 2 H 4 and C 2 H 2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C 2 H 4 (22.0 kcal mol −1 ) and C 2 H 2 (48.0 kcal mol −1 ) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation. The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation. |
Author | Mofarah, Sajjad S. Lin, Hsun‐Yen Zhou, Shujie Sorrell, Charles C. Ma, Hongyang Gunawan, Maichael Hart, Judy N. Liu, Yun Jiang, Yue Zhang, Jiajun Ji, Dali Koshy, Pramod Lockrey, Mark Zhuo, Fenglin Wu, Jyh Ming Ashokkumar, Muthupandian Lu, Teng Huang, Suchen Zheng, Xiaoran Ren, Hangjuan Huang, Yu‐Chun Wang, Danyang |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-1915-657X surname: Jiang fullname: Jiang, Yue email: yue.jiang2@unsw.edu.au organization: UNSW Sydney – sequence: 2 givenname: Jiajun surname: Zhang fullname: Zhang, Jiajun organization: UNSW Sydney – sequence: 3 givenname: Hongyang surname: Ma fullname: Ma, Hongyang organization: UNSW Sydney – sequence: 4 givenname: Shujie surname: Zhou fullname: Zhou, Shujie organization: UNSW Sydney – sequence: 5 givenname: Hsun‐Yen surname: Lin fullname: Lin, Hsun‐Yen organization: National Tsing Hua University – sequence: 6 givenname: Sajjad S. surname: Mofarah fullname: Mofarah, Sajjad S. organization: UNSW Sydney – sequence: 7 givenname: Mark surname: Lockrey fullname: Lockrey, Mark organization: UNSW Sydney – sequence: 8 givenname: Teng surname: Lu fullname: Lu, Teng organization: The Australian National University – sequence: 9 givenname: Hangjuan surname: Ren fullname: Ren, Hangjuan organization: Monash University – sequence: 10 givenname: Xiaoran surname: Zheng fullname: Zheng, Xiaoran organization: UNSW Sydney – sequence: 11 givenname: Maichael surname: Gunawan fullname: Gunawan, Maichael organization: UNSW Sydney – sequence: 12 givenname: Suchen surname: Huang fullname: Huang, Suchen organization: UNSW Sydney – sequence: 13 givenname: Yu‐Chun surname: Huang fullname: Huang, Yu‐Chun organization: UNSW Sydney – sequence: 14 givenname: Fenglin surname: Zhuo fullname: Zhuo, Fenglin organization: UNSW Sydney – sequence: 15 givenname: Dali surname: Ji fullname: Ji, Dali organization: UNSW Sydney – sequence: 16 givenname: Judy N. surname: Hart fullname: Hart, Judy N. organization: UNSW Sydney – sequence: 17 givenname: Yun surname: Liu fullname: Liu, Yun organization: The Australian National University – sequence: 18 givenname: Jyh Ming surname: Wu fullname: Wu, Jyh Ming organization: National Tsing Hua University – sequence: 19 givenname: Muthupandian surname: Ashokkumar fullname: Ashokkumar, Muthupandian organization: The University of Melbourne – sequence: 20 givenname: Danyang surname: Wang fullname: Wang, Danyang organization: UNSW Sydney – sequence: 21 givenname: Pramod surname: Koshy fullname: Koshy, Pramod email: koshy@unsw.edu.au organization: UNSW Sydney – sequence: 22 givenname: Charles C. surname: Sorrell fullname: Sorrell, Charles C. email: c.sorrell@unsw.edu.au organization: UNSW Sydney |
BookMark | eNqFkM1Kw0AUhQepYFvduh5wnTo_aZJZxtqqUFFQwV2cZu6QlGSmZqZIXPkIPqNPYmqkLl2dey_fuQfOCA2MNYDQKSUTSgg7l0rXE0ZYyKZxEh6gIY1oFHDCksF-ps9HaOTcmhAaxzwcopcHa-zXx-d9Ce8_WlhvXWt8Aa502Go890VbgQEsjcJpDr7fdGNrfFFa8IU0tsJbo6DBab0qwXg8s0aVvrTGHaNDLSsHJ786Rk-L-ePsOljeXd3M0mWQc8rCIOKCC8W0jOKE6jDqrpRHU8JzTQgwJUVOw3yliQTIlUwixnQCSmhOIkGp4mN01v_dNPZ1C85na7ttTBeZccYSkYgO66hJT-WNda4BnW2aspZNm1GS7VrMdi1m-xY7g-gNb2UF7T90ll4ubv-83yUseyg |
Cites_doi | 10.1098/rsta.1999.0326 10.1103/PhysRevLett.102.084302 10.1063/1.2408420 10.1002/jcc.22885 10.1007/s11244-012-9771-9 10.1002/adma.200901920 10.1063/1.477923 10.1002/cben.201600025 10.1016/j.apcatb.2024.123836 10.1038/s41467-018-04824-2 10.1103/PhysRevLett.77.3865 10.1016/j.renene.2017.11.019 10.1002/adfm.202418427 10.1038/s41929-020-00504-x 10.1002/jcc.21224 10.1038/s41929-021-00640-y 10.1021/am503396r 10.1016/j.jaap.2006.10.012 10.1007/s12274-024-6518-4 10.1016/j.apcatb.2020.118926 10.1063/1.3382344 10.1038/s41560-024-01541-7 10.1063/1.2770708 10.1090/S0025-5718-1970-0274029-X 10.1007/s10562-005-8698-1 10.1016/j.ijhydene.2020.02.159 10.1016/j.apcatb.2019.118583 10.1063/1.480097 10.1016/S0921-5107(02)00458-0 10.1016/j.apsusc.2019.145145 10.1021/ja050804k 10.1134/S2070050422030023 10.1002/adfm.202207105 10.1063/5.0007045 10.1016/j.ultsonch.2004.06.007 10.1080/00268979709482119 10.1016/j.apcatb.2023.122765 10.1016/j.nanoen.2022.107619 10.1002/adfm.202110026 10.1038/s41598-018-25194-1 10.1103/PhysRevB.57.1505 10.1021/acsami.1c24686 10.1016/j.carbon.2012.03.039 10.1093/comjnl/13.3.317 10.1016/j.apcata.2014.12.047 10.1016/j.micromeso.2008.04.004 10.1063/1.1329672 10.1063/5.0216272 10.1090/S0025-5718-1965-0198670-6 10.1039/D4CS00869C 10.1021/ja00278a055 10.1016/j.matlet.2011.12.059 10.1016/j.jcat.2015.06.005 10.1016/j.mtcomm.2022.103691 10.1016/j.jiec.2021.08.026 10.1021/acssuschemeng.2c06573 10.1007/978-3-031-31497-1_14 10.1063/1.1543154 10.1016/j.rser.2023.114044 10.1016/j.nanoen.2022.107919 10.1126/science.1220712 10.1016/j.jeurceramsoc.2021.07.048 10.1021/ie401157c 10.1016/j.ccr.2015.12.009 10.1515/revce-2019-0026 10.1021/jp0618734 10.1021/jp061441t 10.1090/S0025-5718-1970-0258249-6 10.1002/ange.202110429 10.1016/j.nanoen.2023.108830 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202425784 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202425784 ADFM202425784 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Australian Traiblazer for Recycling and Clean Energy – fundername: Industry Funding from VECOR Technologies Pty. Ltd |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3124-63939d2fa6781f46c31136503cf00e2da9c14cbf0aeecda8622f8ed9f306911d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 11:11:29 EDT 2025 Thu Jul 10 07:26:28 EDT 2025 Thu Jul 03 09:30:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3124-63939d2fa6781f46c31136503cf00e2da9c14cbf0aeecda8622f8ed9f306911d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1915-657X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202425784 |
PQID | 3228989911 |
PQPubID | 2045204 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3228989911 crossref_primary_10_1002_adfm_202425784 wiley_primary_10_1002_adfm_202425784_ADFM202425784 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 134 1970; 6 2003; 118 2017; 4 2023; 37 2024; 348 2024; 189 2024 2012; 55 2007; 79 1965; 19 2003; 99 1996; 77 2015; 493 2012; 71 2010; 22 2018; 9 1986; 108 2018; 8 2020; 3 1997; 92 2023; 333 2024; 9 2005; 105 2013; 52 2016; 315 2008; 116 2022; 31 2020; 45 2022; 32 2021; 41 2014; 6 2012; 337 2022; 38 1998; 57 1970; 24 2007; 126 2021; 4 2023; 11 2007; 127 2000; 113 2021; 104 2006; 110 2015; 329 2020; 265 1993 2025; 54 2024; 17 2012; 33 2020; 507 1970; 13 2024; 161 2012; 50 2009; 30 2023 2020; 152 2018; 118 2020; 271 2005; 127 2010; 132 2023; 116 1999; 110 2022; 14 2009; 102 1999; 111 1999; 357 2022; 104 2005; 12 2022; 102 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Samajdar S. (e_1_2_9_34_1) 2023; 37 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 Huheey J. (e_1_2_9_48_1) 1993 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Broyden C. G. (e_1_2_9_61_1) 1970; 6 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 31 year: 2022 publication-title: Mater. Today Commun. – volume: 22 start-page: 103 year: 2010 publication-title: Adv. Mater. – volume: 19 start-page: 577 year: 1965 publication-title: Mathematics of computation – volume: 104 start-page: 272 year: 2021 publication-title: Journal of industrial engineering chemistry – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 71 start-page: 137 year: 2012 publication-title: Mater. Lett. – volume: 13 start-page: 317 year: 1970 publication-title: The computer journal – volume: 24 start-page: 23 year: 1970 publication-title: Mathematics of computation – volume: 11 start-page: 3370 year: 2023 publication-title: ACS Sustainable Chemistry Engineering – volume: 110 year: 2006 publication-title: J. Phys. Chem. B. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 55 start-page: 84 year: 2012 publication-title: Top. Catal. – volume: 79 start-page: 244 year: 2007 publication-title: Journal of analytical applied pyrolysis – volume: 126 year: 2007 publication-title: J. Chem. Phys. – volume: 4 start-page: 75 year: 2017 publication-title: ChemBioEng Rev. – volume: 337 start-page: 1203 year: 2012 publication-title: Science – volume: 110 start-page: 9779 year: 2006 publication-title: J. Phys. Chem. B. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 647 year: 1970 publication-title: Mathematics of computation – volume: 348 year: 2024 publication-title: Applied Catalysis B: Environment Energy – volume: 507 year: 2020 publication-title: Appl. Surf. Sci. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 12 start-page: 325 year: 2005 publication-title: Ultrason. Sonochem. – volume: 8 start-page: 6849 year: 2018 publication-title: Sci. Rep. – volume: 37 year: 2023 publication-title: Energy – volume: 127 start-page: 5326 year: 2005 publication-title: J. Am. Chem. Soc. – start-page: 475 year: 2023 end-page: 498 – volume: 99 start-page: 147 year: 2003 publication-title: Mater. Sci. Eng.: B. – volume: 52 start-page: 9505 year: 2013 publication-title: Industrial Engineering Chemistry Research – volume: 9 start-page: 2584 year: 2018 publication-title: Nat. Commun. – volume: 38 start-page: 185 year: 2022 publication-title: Reviews in Chemical Engineering – volume: 118 start-page: 4365 year: 2003 publication-title: J. Chem. Phys. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 6 year: 2014 publication-title: ACS applied materials interfaces – volume: 113 start-page: 9901 year: 2000 publication-title: J. Chem. Phys. – volume: 3 start-page: 804 year: 2020 publication-title: Nat. Catal. – volume: 102 year: 2022 publication-title: Nano Energy – volume: 14 year: 2022 publication-title: ACS Applied Materials Interfaces – volume: 271 year: 2020 publication-title: Appl. Catal., B. – volume: 111 start-page: 7010 year: 1999 publication-title: J. Chem. Phys. – volume: 315 start-page: 1 year: 2016 publication-title: Coord. Chem. Rev. – volume: 118 start-page: 257 year: 2018 publication-title: Renewable Energy – volume: 116 year: 2023 publication-title: Nano Energy – volume: 41 start-page: 7005 year: 2021 publication-title: J. Eur. Ceram. Soc. – volume: 17 start-page: 5040 year: 2024 publication-title: Nano Res. – volume: 116 start-page: 210 year: 2008 publication-title: Microporous Mesoporous Materials – volume: 92 start-page: 477 year: 1997 publication-title: Mol. Phys. – volume: 57 start-page: 1505 year: 1998 publication-title: Phys. Rev. B. – volume: 108 start-page: 5641 year: 1986 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 2810 year: 1999 publication-title: J. Chem. Phys. – start-page: 326 year: 1993 publication-title: Inorg. Chem. – volume: 105 start-page: 249 year: 2005 publication-title: Catal. Lett. – volume: 161 year: 2024 publication-title: J. Chem. Phys. – volume: 127 year: 2007 publication-title: J. Chem. Phys. – volume: 30 start-page: 2157 year: 2009 publication-title: J. Comput. Chem. – volume: 493 start-page: 77 year: 2015 publication-title: Appl. Catal., A. – year: 2024 publication-title: Adv. Funct. Mater. – volume: 333 year: 2023 publication-title: Appl. Catal., B. – volume: 6 start-page: 76 year: 1970 publication-title: J. Appl. Math. – volume: 357 start-page: 251 year: 1999 publication-title: Physical and E. Sciences – volume: 54 start-page: 524 year: 2025 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 251 year: 2022 publication-title: Catalysis in Industry – volume: 9 start-page: 750 year: 2024 publication-title: Nat. Energy – volume: 50 start-page: 3666 year: 2012 publication-title: Carbon – volume: 104 year: 2022 publication-title: Nano Energy – volume: 189 year: 2024 publication-title: Renewable Sustainable Energy Reviews – volume: 329 start-page: 355 year: 2015 publication-title: J. Catal. – volume: 45 year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 565 year: 2021 publication-title: Nat. Catal. – volume: 134 year: 2022 publication-title: Angew. Chem. – volume: 265 year: 2020 publication-title: Appl. Catal., B – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_9_23_1 doi: 10.1098/rsta.1999.0326 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevLett.102.084302 – ident: e_1_2_9_72_1 doi: 10.1063/1.2408420 – ident: e_1_2_9_67_1 doi: 10.1002/jcc.22885 – ident: e_1_2_9_7_1 doi: 10.1007/s11244-012-9771-9 – ident: e_1_2_9_43_1 doi: 10.1002/adma.200901920 – ident: e_1_2_9_66_1 doi: 10.1063/1.477923 – ident: e_1_2_9_5_1 doi: 10.1002/cben.201600025 – ident: e_1_2_9_45_1 doi: 10.1016/j.apcatb.2024.123836 – ident: e_1_2_9_49_1 doi: 10.1038/s41467-018-04824-2 – ident: e_1_2_9_55_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_9_9_1 doi: 10.1016/j.renene.2017.11.019 – ident: e_1_2_9_28_1 doi: 10.1002/adfm.202418427 – ident: e_1_2_9_13_1 doi: 10.1038/s41929-020-00504-x – start-page: 326 year: 1993 ident: e_1_2_9_48_1 publication-title: Inorg. Chem. – ident: e_1_2_9_74_1 doi: 10.1002/jcc.21224 – ident: e_1_2_9_12_1 doi: 10.1038/s41929-021-00640-y – ident: e_1_2_9_36_1 doi: 10.1021/am503396r – ident: e_1_2_9_47_1 doi: 10.1016/j.jaap.2006.10.012 – ident: e_1_2_9_41_1 doi: 10.1007/s12274-024-6518-4 – ident: e_1_2_9_8_1 doi: 10.1016/j.apcatb.2020.118926 – ident: e_1_2_9_60_1 doi: 10.1063/1.3382344 – volume: 37 year: 2023 ident: e_1_2_9_34_1 publication-title: Energy – ident: e_1_2_9_14_1 doi: 10.1038/s41560-024-01541-7 – ident: e_1_2_9_58_1 doi: 10.1063/1.2770708 – ident: e_1_2_9_64_1 doi: 10.1090/S0025-5718-1970-0274029-X – ident: e_1_2_9_51_1 doi: 10.1007/s10562-005-8698-1 – ident: e_1_2_9_30_1 doi: 10.1016/j.ijhydene.2020.02.159 – ident: e_1_2_9_42_1 doi: 10.1016/j.apcatb.2019.118583 – ident: e_1_2_9_71_1 doi: 10.1063/1.480097 – ident: e_1_2_9_54_1 doi: 10.1016/S0921-5107(02)00458-0 – ident: e_1_2_9_44_1 doi: 10.1016/j.apsusc.2019.145145 – ident: e_1_2_9_22_1 doi: 10.1021/ja050804k – ident: e_1_2_9_4_1 doi: 10.1134/S2070050422030023 – ident: e_1_2_9_20_1 doi: 10.1002/adfm.202207105 – ident: e_1_2_9_56_1 doi: 10.1063/5.0007045 – ident: e_1_2_9_24_1 doi: 10.1016/j.ultsonch.2004.06.007 – ident: e_1_2_9_53_1 doi: 10.1002/cben.201600025 – ident: e_1_2_9_57_1 doi: 10.1080/00268979709482119 – ident: e_1_2_9_10_1 doi: 10.1016/j.apcatb.2023.122765 – ident: e_1_2_9_39_1 doi: 10.1016/j.nanoen.2022.107619 – ident: e_1_2_9_31_1 doi: 10.1002/adfm.202110026 – ident: e_1_2_9_33_1 doi: 10.1038/s41598-018-25194-1 – ident: e_1_2_9_59_1 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_2_9_69_1 doi: 10.1021/acsami.1c24686 – ident: e_1_2_9_35_1 doi: 10.1016/j.carbon.2012.03.039 – volume: 6 start-page: 76 year: 1970 ident: e_1_2_9_61_1 publication-title: J. Appl. Math. – ident: e_1_2_9_62_1 doi: 10.1093/comjnl/13.3.317 – ident: e_1_2_9_6_1 doi: 10.1016/j.apcata.2014.12.047 – ident: e_1_2_9_52_1 doi: 10.1016/j.micromeso.2008.04.004 – ident: e_1_2_9_70_1 doi: 10.1063/1.1329672 – ident: e_1_2_9_68_1 doi: 10.1063/5.0216272 – ident: e_1_2_9_65_1 doi: 10.1090/S0025-5718-1965-0198670-6 – ident: e_1_2_9_15_1 doi: 10.1039/D4CS00869C – ident: e_1_2_9_16_1 doi: 10.1021/ja00278a055 – ident: e_1_2_9_37_1 doi: 10.1016/j.matlet.2011.12.059 – ident: e_1_2_9_40_1 doi: 10.1016/j.jcat.2015.06.005 – ident: e_1_2_9_2_1 doi: 10.1016/j.mtcomm.2022.103691 – ident: e_1_2_9_11_1 doi: 10.1016/j.jiec.2021.08.026 – ident: e_1_2_9_27_1 doi: 10.1021/acssuschemeng.2c06573 – ident: e_1_2_9_19_1 doi: 10.1007/978-3-031-31497-1_14 – ident: e_1_2_9_73_1 doi: 10.1063/1.1543154 – ident: e_1_2_9_3_1 doi: 10.1016/j.rser.2023.114044 – ident: e_1_2_9_38_1 doi: 10.1016/j.nanoen.2022.107919 – ident: e_1_2_9_50_1 doi: 10.1126/science.1220712 – ident: e_1_2_9_32_1 doi: 10.1016/j.jeurceramsoc.2021.07.048 – ident: e_1_2_9_46_1 doi: 10.1021/ie401157c – ident: e_1_2_9_29_1 doi: 10.1016/j.ccr.2015.12.009 – ident: e_1_2_9_1_1 doi: 10.1515/revce-2019-0026 – ident: e_1_2_9_17_1 doi: 10.1021/jp0618734 – ident: e_1_2_9_18_1 doi: 10.1021/jp061441t – ident: e_1_2_9_63_1 doi: 10.1090/S0025-5718-1970-0258249-6 – ident: e_1_2_9_21_1 doi: 10.1002/ange.202110429 – ident: e_1_2_9_26_1 doi: 10.1016/j.nanoen.2023.108830 |
SSID | ssj0017734 |
Score | 2.490351 |
Snippet | The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial... The catalytic conversion of bioethanol to ethylene (C 2 H 4 ) and acetylene (C 2 H 2 ) offers a transformative approach to sustainable production of two... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Acetylene ambient‐condition catalysis bioethanol conversion Biofuels Bismuth titanate C2 hydrocarbons (ethylene, acetylene) Catalytic converters Ethylene ferroelectric/graphene oxide hybrid materials Graphene Heterostructures High temperature Organic compounds Photocatalysis Photosynthesis Pressure Room temperature sono‐piezo‐photocatalysis |
Title | Sono‐Piezo‐Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202425784 https://www.proquest.com/docview/3228989911 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgJziwIwql8gGJU2jspK1zLKVVhVRUsUi9Ba-iAmJEwoGe-AS-kS_Bk3TlggSnyJGcZeyZebZn3iB0wiTRMqozj3MReKFzaR4zQeApQRvGwQnN8nJA_atG7y68HNaHC1n8BT_EbMMNNCO316DgXKS1OWkoVwYyyXPIzIAQFAK2ABVdz_ijSLNZHCs3CAR4keGUtdGnteXuy15pDjUXAWvucbqbiE-_tQg0eTx7y8SZHP-gcfzPz2yhjQkcxa1i_myjFZ3soPUFksJddH9jE_v18TkY6XF-fbCZTd8ThxzTUYqtwR032M55acwThVtSZ0ULMlfw-chq2J23TxjS1V5x61lACiZuWzgsh0m_h-66ndt2z5vUZfBk4OCA50BNEClquHN0xIQNdxdk7wfS-L6mikeShFIYn2stFXdrJmqYVpFxyxNnW1Wwj0qJTfQBws1AGRopB_MYDxVjwifCl0w1iSF1wetldDodl_iloN-IC6JlGoPM4pnMyqgyHbZ4ooZp7KwVlMd0Ly0jmsv_l6fErYtuf9Y6_EunI7RGoUZwHtJbQaXs9U0fO-CSiSpapeGgmk_Rb_1m6K8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6V9AAcoLzUUB4-VOppYe3dJN5jeEQpEFQVkLgtfqpRyxqR5UBO_Qn9jf0leLzZ8LggwWnllbwPz4znsz3zDcBXrqhRWYtHQsgkSr1Li7hNkkhL1rYeThgeygENTtv9i_ToslVHE2IuTMUPMd1wQ8sI8zUaOG5I7z6yhgptMZU8YGaezsBHLOsdVlU_pwxStNOpDpbbFEO86GXN2xiz3ef9n_ulR7D5FLIGn9NbBFl_bRVq8nvnrpQ7avyCyPFdv_MJFiaIlHQrFVqCD6ZYhvknPIUrcHXmCvf_778fQzMO11-udKP7woPH0XBEnCWHXt7efxkiCk26ypRVC5NXyN7QGdygd38IZqzdku61xCxMsu_wvBz1fhUueofn-_1oUpohUolHBJHHNUmmmRXe11Gbtv1djJeLE2Xj2DAtMkVTJW0sjFFa-GUTs9zozPoVip9edbIGjcIV5jOQTqIty7RHelykmnMZUxkrrjvU0pYUrSZ8qwWT31QMHHnFtcxyHLN8OmZN2Kjllk8scZT7CQsrZPqXNoEFAbzylLx70BtMW-tv6bQNs_3zwUl-8v30-AvMMSwZHCJ8N6BR3t6ZTY9jSrkVNPUBDTzr8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKRA7aeocC21VliLEIvUWvIoKiCsaDnDiE_hGvgQ76QYXJDhFjuQs9izP9swbgD0qsBJxmXqM8cALrUvzqA4CT3ISaQsnFM3LAbUuouZteNout8ey-At-iOGGm9OM3F47Be9KfTgiDWVSu0zyHDLTcBKmw8inTq5rV0MCKVypFOfKEXYRXrg9oG30yeH3_t_d0ghrjiPW3OU0FoANPraINHk4eMn4gXj7weP4n79ZhPk-HkXVQoCWYEKlyzA3xlK4AnfXJjWf7x-XHfWWX-9NZnqvqYWOvU4PGY3qdrat91KIpRJVhcqKlktdQUcdo9z2vHlELl_tGVWfuMvBRMfGnZY7qV-F20b95rjp9QszeCKweMCzqCaIJdHMejqsw8jeddFyfiC07ysiWSxwKLj2mVJCMrtoIpoqGWu7PrHGVQZrMJWaVK0DqgRSk1hanEdZKCnlPua-oLKCNS5zVi7B_mBekm7Bv5EUTMskcWOWDMesBFuDaUv6ethLrLly9THtS0tA8vH_5SlJtdZoDVsbf-m0CzOXtUZyfnJxtgmzxNULzsN7t2Aqe35R2xbEZHwnl9Mvddbqqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sono%E2%80%90Piezo%E2%80%90Photosynthesis+of+Ethylene+and+Acetylene+from+Bioethanol+under+Ambient+Conditions&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%2C+Yue&rft.au=Zhang%2C+Jiajun&rft.au=Ma%2C+Hongyang&rft.au=Zhou%2C+Shujie&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202425784&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |