Sono‐Piezo‐Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions

The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, curren...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 27
Main Authors Jiang, Yue, Zhang, Jiajun, Ma, Hongyang, Zhou, Shujie, Lin, Hsun‐Yen, Mofarah, Sajjad S., Lockrey, Mark, Lu, Teng, Ren, Hangjuan, Zheng, Xiaoran, Gunawan, Maichael, Huang, Suchen, Huang, Yu‐Chun, Zhuo, Fenglin, Ji, Dali, Hart, Judy N., Liu, Yun, Wu, Jyh Ming, Ashokkumar, Muthupandian, Wang, Danyang, Koshy, Pramod, Sorrell, Charles C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation. A novel sono‐piezo‐photocatalytic strategy enables the conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) under ambient conditions, addressing the limitations of conventional methods that are high‐temperature and energy‐intensive. By using an advanced graphene oxide/sodium bismuth titanate heterostructure catalyst, this work achieved outstanding production rates of C2 hydrocarbons under the irradiation of ultrasound and light. This work highlights the critical role of the catalyst in improving overall catalytic efficiency by enhancing charge separation, reducing energy barriers, and delivering optimized catalytic pathways.
AbstractList The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation. A novel sono‐piezo‐photocatalytic strategy enables the conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) under ambient conditions, addressing the limitations of conventional methods that are high‐temperature and energy‐intensive. By using an advanced graphene oxide/sodium bismuth titanate heterostructure catalyst, this work achieved outstanding production rates of C2 hydrocarbons under the irradiation of ultrasound and light. This work highlights the critical role of the catalyst in improving overall catalytic efficiency by enhancing charge separation, reducing energy barriers, and delivering optimized catalytic pathways.
The catalytic conversion of bioethanol to ethylene (C 2 H 4 ) and acetylene (C 2 H 2 ) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C 2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C 2 H 4 and C 2 H 2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C 2 H 4 (22.0 kcal mol −1 ) and C 2 H 2 (48.0 kcal mol −1 ) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation.
The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy‐ and carbon‐intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low‐energy, bioethanol‐conversion strategy operating at room temperature and ambient pressure using sono‐piezo‐photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core‐shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo‐photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono‐piezo‐photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation.
Author Mofarah, Sajjad S.
Lin, Hsun‐Yen
Zhou, Shujie
Sorrell, Charles C.
Ma, Hongyang
Gunawan, Maichael
Hart, Judy N.
Liu, Yun
Jiang, Yue
Zhang, Jiajun
Ji, Dali
Koshy, Pramod
Lockrey, Mark
Zhuo, Fenglin
Wu, Jyh Ming
Ashokkumar, Muthupandian
Lu, Teng
Huang, Suchen
Zheng, Xiaoran
Ren, Hangjuan
Huang, Yu‐Chun
Wang, Danyang
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-1915-657X
  surname: Jiang
  fullname: Jiang, Yue
  email: yue.jiang2@unsw.edu.au
  organization: UNSW Sydney
– sequence: 2
  givenname: Jiajun
  surname: Zhang
  fullname: Zhang, Jiajun
  organization: UNSW Sydney
– sequence: 3
  givenname: Hongyang
  surname: Ma
  fullname: Ma, Hongyang
  organization: UNSW Sydney
– sequence: 4
  givenname: Shujie
  surname: Zhou
  fullname: Zhou, Shujie
  organization: UNSW Sydney
– sequence: 5
  givenname: Hsun‐Yen
  surname: Lin
  fullname: Lin, Hsun‐Yen
  organization: National Tsing Hua University
– sequence: 6
  givenname: Sajjad S.
  surname: Mofarah
  fullname: Mofarah, Sajjad S.
  organization: UNSW Sydney
– sequence: 7
  givenname: Mark
  surname: Lockrey
  fullname: Lockrey, Mark
  organization: UNSW Sydney
– sequence: 8
  givenname: Teng
  surname: Lu
  fullname: Lu, Teng
  organization: The Australian National University
– sequence: 9
  givenname: Hangjuan
  surname: Ren
  fullname: Ren, Hangjuan
  organization: Monash University
– sequence: 10
  givenname: Xiaoran
  surname: Zheng
  fullname: Zheng, Xiaoran
  organization: UNSW Sydney
– sequence: 11
  givenname: Maichael
  surname: Gunawan
  fullname: Gunawan, Maichael
  organization: UNSW Sydney
– sequence: 12
  givenname: Suchen
  surname: Huang
  fullname: Huang, Suchen
  organization: UNSW Sydney
– sequence: 13
  givenname: Yu‐Chun
  surname: Huang
  fullname: Huang, Yu‐Chun
  organization: UNSW Sydney
– sequence: 14
  givenname: Fenglin
  surname: Zhuo
  fullname: Zhuo, Fenglin
  organization: UNSW Sydney
– sequence: 15
  givenname: Dali
  surname: Ji
  fullname: Ji, Dali
  organization: UNSW Sydney
– sequence: 16
  givenname: Judy N.
  surname: Hart
  fullname: Hart, Judy N.
  organization: UNSW Sydney
– sequence: 17
  givenname: Yun
  surname: Liu
  fullname: Liu, Yun
  organization: The Australian National University
– sequence: 18
  givenname: Jyh Ming
  surname: Wu
  fullname: Wu, Jyh Ming
  organization: National Tsing Hua University
– sequence: 19
  givenname: Muthupandian
  surname: Ashokkumar
  fullname: Ashokkumar, Muthupandian
  organization: The University of Melbourne
– sequence: 20
  givenname: Danyang
  surname: Wang
  fullname: Wang, Danyang
  organization: UNSW Sydney
– sequence: 21
  givenname: Pramod
  surname: Koshy
  fullname: Koshy, Pramod
  email: koshy@unsw.edu.au
  organization: UNSW Sydney
– sequence: 22
  givenname: Charles C.
  surname: Sorrell
  fullname: Sorrell, Charles C.
  email: c.sorrell@unsw.edu.au
  organization: UNSW Sydney
BookMark eNqFkM1Kw0AUhQepYFvduh5wnTo_aZJZxtqqUFFQwV2cZu6QlGSmZqZIXPkIPqNPYmqkLl2dey_fuQfOCA2MNYDQKSUTSgg7l0rXE0ZYyKZxEh6gIY1oFHDCksF-ps9HaOTcmhAaxzwcopcHa-zXx-d9Ce8_WlhvXWt8Aa502Go890VbgQEsjcJpDr7fdGNrfFFa8IU0tsJbo6DBab0qwXg8s0aVvrTGHaNDLSsHJ786Rk-L-ePsOljeXd3M0mWQc8rCIOKCC8W0jOKE6jDqrpRHU8JzTQgwJUVOw3yliQTIlUwixnQCSmhOIkGp4mN01v_dNPZ1C85na7ttTBeZccYSkYgO66hJT-WNda4BnW2aspZNm1GS7VrMdi1m-xY7g-gNb2UF7T90ll4ubv-83yUseyg
Cites_doi 10.1098/rsta.1999.0326
10.1103/PhysRevLett.102.084302
10.1063/1.2408420
10.1002/jcc.22885
10.1007/s11244-012-9771-9
10.1002/adma.200901920
10.1063/1.477923
10.1002/cben.201600025
10.1016/j.apcatb.2024.123836
10.1038/s41467-018-04824-2
10.1103/PhysRevLett.77.3865
10.1016/j.renene.2017.11.019
10.1002/adfm.202418427
10.1038/s41929-020-00504-x
10.1002/jcc.21224
10.1038/s41929-021-00640-y
10.1021/am503396r
10.1016/j.jaap.2006.10.012
10.1007/s12274-024-6518-4
10.1016/j.apcatb.2020.118926
10.1063/1.3382344
10.1038/s41560-024-01541-7
10.1063/1.2770708
10.1090/S0025-5718-1970-0274029-X
10.1007/s10562-005-8698-1
10.1016/j.ijhydene.2020.02.159
10.1016/j.apcatb.2019.118583
10.1063/1.480097
10.1016/S0921-5107(02)00458-0
10.1016/j.apsusc.2019.145145
10.1021/ja050804k
10.1134/S2070050422030023
10.1002/adfm.202207105
10.1063/5.0007045
10.1016/j.ultsonch.2004.06.007
10.1080/00268979709482119
10.1016/j.apcatb.2023.122765
10.1016/j.nanoen.2022.107619
10.1002/adfm.202110026
10.1038/s41598-018-25194-1
10.1103/PhysRevB.57.1505
10.1021/acsami.1c24686
10.1016/j.carbon.2012.03.039
10.1093/comjnl/13.3.317
10.1016/j.apcata.2014.12.047
10.1016/j.micromeso.2008.04.004
10.1063/1.1329672
10.1063/5.0216272
10.1090/S0025-5718-1965-0198670-6
10.1039/D4CS00869C
10.1021/ja00278a055
10.1016/j.matlet.2011.12.059
10.1016/j.jcat.2015.06.005
10.1016/j.mtcomm.2022.103691
10.1016/j.jiec.2021.08.026
10.1021/acssuschemeng.2c06573
10.1007/978-3-031-31497-1_14
10.1063/1.1543154
10.1016/j.rser.2023.114044
10.1016/j.nanoen.2022.107919
10.1126/science.1220712
10.1016/j.jeurceramsoc.2021.07.048
10.1021/ie401157c
10.1016/j.ccr.2015.12.009
10.1515/revce-2019-0026
10.1021/jp0618734
10.1021/jp061441t
10.1090/S0025-5718-1970-0258249-6
10.1002/ange.202110429
10.1016/j.nanoen.2023.108830
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202425784
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202425784
ADFM202425784
Genre researchArticle
GrantInformation_xml – fundername: Australian Traiblazer for Recycling and Clean Energy
– fundername: Industry Funding from VECOR Technologies Pty. Ltd
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3124-63939d2fa6781f46c31136503cf00e2da9c14cbf0aeecda8622f8ed9f306911d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 11:11:29 EDT 2025
Thu Jul 10 07:26:28 EDT 2025
Thu Jul 03 09:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3124-63939d2fa6781f46c31136503cf00e2da9c14cbf0aeecda8622f8ed9f306911d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1915-657X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202425784
PQID 3228989911
PQPubID 2045204
PageCount 16
ParticipantIDs proquest_journals_3228989911
crossref_primary_10_1002_adfm_202425784
wiley_primary_10_1002_adfm_202425784_ADFM202425784
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 134
1970; 6
2003; 118
2017; 4
2023; 37
2024; 348
2024; 189
2024
2012; 55
2007; 79
1965; 19
2003; 99
1996; 77
2015; 493
2012; 71
2010; 22
2018; 9
1986; 108
2018; 8
2020; 3
1997; 92
2023; 333
2024; 9
2005; 105
2013; 52
2016; 315
2008; 116
2022; 31
2020; 45
2022; 32
2021; 41
2014; 6
2012; 337
2022; 38
1998; 57
1970; 24
2007; 126
2021; 4
2023; 11
2007; 127
2000; 113
2021; 104
2006; 110
2015; 329
2020; 265
1993
2025; 54
2024; 17
2012; 33
2020; 507
1970; 13
2024; 161
2012; 50
2009; 30
2023
2020; 152
2018; 118
2020; 271
2005; 127
2010; 132
2023; 116
1999; 110
2022; 14
2009; 102
1999; 111
1999; 357
2022; 104
2005; 12
2022; 102
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Samajdar S. (e_1_2_9_34_1) 2023; 37
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
Huheey J. (e_1_2_9_48_1) 1993
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Broyden C. G. (e_1_2_9_61_1) 1970; 6
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 31
  year: 2022
  publication-title: Mater. Today Commun.
– volume: 22
  start-page: 103
  year: 2010
  publication-title: Adv. Mater.
– volume: 19
  start-page: 577
  year: 1965
  publication-title: Mathematics of computation
– volume: 104
  start-page: 272
  year: 2021
  publication-title: Journal of industrial engineering chemistry
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 71
  start-page: 137
  year: 2012
  publication-title: Mater. Lett.
– volume: 13
  start-page: 317
  year: 1970
  publication-title: The computer journal
– volume: 24
  start-page: 23
  year: 1970
  publication-title: Mathematics of computation
– volume: 11
  start-page: 3370
  year: 2023
  publication-title: ACS Sustainable Chemistry Engineering
– volume: 110
  year: 2006
  publication-title: J. Phys. Chem. B.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 84
  year: 2012
  publication-title: Top. Catal.
– volume: 79
  start-page: 244
  year: 2007
  publication-title: Journal of analytical applied pyrolysis
– volume: 126
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 75
  year: 2017
  publication-title: ChemBioEng Rev.
– volume: 337
  start-page: 1203
  year: 2012
  publication-title: Science
– volume: 110
  start-page: 9779
  year: 2006
  publication-title: J. Phys. Chem. B.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 647
  year: 1970
  publication-title: Mathematics of computation
– volume: 348
  year: 2024
  publication-title: Applied Catalysis B: Environment Energy
– volume: 507
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 325
  year: 2005
  publication-title: Ultrason. Sonochem.
– volume: 8
  start-page: 6849
  year: 2018
  publication-title: Sci. Rep.
– volume: 37
  year: 2023
  publication-title: Energy
– volume: 127
  start-page: 5326
  year: 2005
  publication-title: J. Am. Chem. Soc.
– start-page: 475
  year: 2023
  end-page: 498
– volume: 99
  start-page: 147
  year: 2003
  publication-title: Mater. Sci. Eng.: B.
– volume: 52
  start-page: 9505
  year: 2013
  publication-title: Industrial Engineering Chemistry Research
– volume: 9
  start-page: 2584
  year: 2018
  publication-title: Nat. Commun.
– volume: 38
  start-page: 185
  year: 2022
  publication-title: Reviews in Chemical Engineering
– volume: 118
  start-page: 4365
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 6
  year: 2014
  publication-title: ACS applied materials interfaces
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 804
  year: 2020
  publication-title: Nat. Catal.
– volume: 102
  year: 2022
  publication-title: Nano Energy
– volume: 14
  year: 2022
  publication-title: ACS Applied Materials Interfaces
– volume: 271
  year: 2020
  publication-title: Appl. Catal., B.
– volume: 111
  start-page: 7010
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 315
  start-page: 1
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 118
  start-page: 257
  year: 2018
  publication-title: Renewable Energy
– volume: 116
  year: 2023
  publication-title: Nano Energy
– volume: 41
  start-page: 7005
  year: 2021
  publication-title: J. Eur. Ceram. Soc.
– volume: 17
  start-page: 5040
  year: 2024
  publication-title: Nano Res.
– volume: 116
  start-page: 210
  year: 2008
  publication-title: Microporous Mesoporous Materials
– volume: 92
  start-page: 477
  year: 1997
  publication-title: Mol. Phys.
– volume: 57
  start-page: 1505
  year: 1998
  publication-title: Phys. Rev. B.
– volume: 108
  start-page: 5641
  year: 1986
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 2810
  year: 1999
  publication-title: J. Chem. Phys.
– start-page: 326
  year: 1993
  publication-title: Inorg. Chem.
– volume: 105
  start-page: 249
  year: 2005
  publication-title: Catal. Lett.
– volume: 161
  year: 2024
  publication-title: J. Chem. Phys.
– volume: 127
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 2157
  year: 2009
  publication-title: J. Comput. Chem.
– volume: 493
  start-page: 77
  year: 2015
  publication-title: Appl. Catal., A.
– year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 333
  year: 2023
  publication-title: Appl. Catal., B.
– volume: 6
  start-page: 76
  year: 1970
  publication-title: J. Appl. Math.
– volume: 357
  start-page: 251
  year: 1999
  publication-title: Physical and E. Sciences
– volume: 54
  start-page: 524
  year: 2025
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 251
  year: 2022
  publication-title: Catalysis in Industry
– volume: 9
  start-page: 750
  year: 2024
  publication-title: Nat. Energy
– volume: 50
  start-page: 3666
  year: 2012
  publication-title: Carbon
– volume: 104
  year: 2022
  publication-title: Nano Energy
– volume: 189
  year: 2024
  publication-title: Renewable Sustainable Energy Reviews
– volume: 329
  start-page: 355
  year: 2015
  publication-title: J. Catal.
– volume: 45
  year: 2020
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 565
  year: 2021
  publication-title: Nat. Catal.
– volume: 134
  year: 2022
  publication-title: Angew. Chem.
– volume: 265
  year: 2020
  publication-title: Appl. Catal., B
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_9_23_1
  doi: 10.1098/rsta.1999.0326
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevLett.102.084302
– ident: e_1_2_9_72_1
  doi: 10.1063/1.2408420
– ident: e_1_2_9_67_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_9_7_1
  doi: 10.1007/s11244-012-9771-9
– ident: e_1_2_9_43_1
  doi: 10.1002/adma.200901920
– ident: e_1_2_9_66_1
  doi: 10.1063/1.477923
– ident: e_1_2_9_5_1
  doi: 10.1002/cben.201600025
– ident: e_1_2_9_45_1
  doi: 10.1016/j.apcatb.2024.123836
– ident: e_1_2_9_49_1
  doi: 10.1038/s41467-018-04824-2
– ident: e_1_2_9_55_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_9_9_1
  doi: 10.1016/j.renene.2017.11.019
– ident: e_1_2_9_28_1
  doi: 10.1002/adfm.202418427
– ident: e_1_2_9_13_1
  doi: 10.1038/s41929-020-00504-x
– start-page: 326
  year: 1993
  ident: e_1_2_9_48_1
  publication-title: Inorg. Chem.
– ident: e_1_2_9_74_1
  doi: 10.1002/jcc.21224
– ident: e_1_2_9_12_1
  doi: 10.1038/s41929-021-00640-y
– ident: e_1_2_9_36_1
  doi: 10.1021/am503396r
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jaap.2006.10.012
– ident: e_1_2_9_41_1
  doi: 10.1007/s12274-024-6518-4
– ident: e_1_2_9_8_1
  doi: 10.1016/j.apcatb.2020.118926
– ident: e_1_2_9_60_1
  doi: 10.1063/1.3382344
– volume: 37
  year: 2023
  ident: e_1_2_9_34_1
  publication-title: Energy
– ident: e_1_2_9_14_1
  doi: 10.1038/s41560-024-01541-7
– ident: e_1_2_9_58_1
  doi: 10.1063/1.2770708
– ident: e_1_2_9_64_1
  doi: 10.1090/S0025-5718-1970-0274029-X
– ident: e_1_2_9_51_1
  doi: 10.1007/s10562-005-8698-1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ijhydene.2020.02.159
– ident: e_1_2_9_42_1
  doi: 10.1016/j.apcatb.2019.118583
– ident: e_1_2_9_71_1
  doi: 10.1063/1.480097
– ident: e_1_2_9_54_1
  doi: 10.1016/S0921-5107(02)00458-0
– ident: e_1_2_9_44_1
  doi: 10.1016/j.apsusc.2019.145145
– ident: e_1_2_9_22_1
  doi: 10.1021/ja050804k
– ident: e_1_2_9_4_1
  doi: 10.1134/S2070050422030023
– ident: e_1_2_9_20_1
  doi: 10.1002/adfm.202207105
– ident: e_1_2_9_56_1
  doi: 10.1063/5.0007045
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ultsonch.2004.06.007
– ident: e_1_2_9_53_1
  doi: 10.1002/cben.201600025
– ident: e_1_2_9_57_1
  doi: 10.1080/00268979709482119
– ident: e_1_2_9_10_1
  doi: 10.1016/j.apcatb.2023.122765
– ident: e_1_2_9_39_1
  doi: 10.1016/j.nanoen.2022.107619
– ident: e_1_2_9_31_1
  doi: 10.1002/adfm.202110026
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-018-25194-1
– ident: e_1_2_9_59_1
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_2_9_69_1
  doi: 10.1021/acsami.1c24686
– ident: e_1_2_9_35_1
  doi: 10.1016/j.carbon.2012.03.039
– volume: 6
  start-page: 76
  year: 1970
  ident: e_1_2_9_61_1
  publication-title: J. Appl. Math.
– ident: e_1_2_9_62_1
  doi: 10.1093/comjnl/13.3.317
– ident: e_1_2_9_6_1
  doi: 10.1016/j.apcata.2014.12.047
– ident: e_1_2_9_52_1
  doi: 10.1016/j.micromeso.2008.04.004
– ident: e_1_2_9_70_1
  doi: 10.1063/1.1329672
– ident: e_1_2_9_68_1
  doi: 10.1063/5.0216272
– ident: e_1_2_9_65_1
  doi: 10.1090/S0025-5718-1965-0198670-6
– ident: e_1_2_9_15_1
  doi: 10.1039/D4CS00869C
– ident: e_1_2_9_16_1
  doi: 10.1021/ja00278a055
– ident: e_1_2_9_37_1
  doi: 10.1016/j.matlet.2011.12.059
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jcat.2015.06.005
– ident: e_1_2_9_2_1
  doi: 10.1016/j.mtcomm.2022.103691
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jiec.2021.08.026
– ident: e_1_2_9_27_1
  doi: 10.1021/acssuschemeng.2c06573
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-031-31497-1_14
– ident: e_1_2_9_73_1
  doi: 10.1063/1.1543154
– ident: e_1_2_9_3_1
  doi: 10.1016/j.rser.2023.114044
– ident: e_1_2_9_38_1
  doi: 10.1016/j.nanoen.2022.107919
– ident: e_1_2_9_50_1
  doi: 10.1126/science.1220712
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jeurceramsoc.2021.07.048
– ident: e_1_2_9_46_1
  doi: 10.1021/ie401157c
– ident: e_1_2_9_29_1
  doi: 10.1016/j.ccr.2015.12.009
– ident: e_1_2_9_1_1
  doi: 10.1515/revce-2019-0026
– ident: e_1_2_9_17_1
  doi: 10.1021/jp0618734
– ident: e_1_2_9_18_1
  doi: 10.1021/jp061441t
– ident: e_1_2_9_63_1
  doi: 10.1090/S0025-5718-1970-0258249-6
– ident: e_1_2_9_21_1
  doi: 10.1002/ange.202110429
– ident: e_1_2_9_26_1
  doi: 10.1016/j.nanoen.2023.108830
SSID ssj0017734
Score 2.490351
Snippet The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial...
The catalytic conversion of bioethanol to ethylene (C 2 H 4 ) and acetylene (C 2 H 2 ) offers a transformative approach to sustainable production of two...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Acetylene
ambient‐condition catalysis
bioethanol conversion
Biofuels
Bismuth titanate
C2 hydrocarbons (ethylene, acetylene)
Catalytic converters
Ethylene
ferroelectric/graphene oxide hybrid materials
Graphene
Heterostructures
High temperature
Organic compounds
Photocatalysis
Photosynthesis
Pressure
Room temperature
sono‐piezo‐photocatalysis
Title Sono‐Piezo‐Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202425784
https://www.proquest.com/docview/3228989911
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgJziwIwql8gGJU2jspK1zLKVVhVRUsUi9Ba-iAmJEwoGe-AS-kS_Bk3TlggSnyJGcZeyZebZn3iB0wiTRMqozj3MReKFzaR4zQeApQRvGwQnN8nJA_atG7y68HNaHC1n8BT_EbMMNNCO316DgXKS1OWkoVwYyyXPIzIAQFAK2ABVdz_ijSLNZHCs3CAR4keGUtdGnteXuy15pDjUXAWvucbqbiE-_tQg0eTx7y8SZHP-gcfzPz2yhjQkcxa1i_myjFZ3soPUFksJddH9jE_v18TkY6XF-fbCZTd8ThxzTUYqtwR032M55acwThVtSZ0ULMlfw-chq2J23TxjS1V5x61lACiZuWzgsh0m_h-66ndt2z5vUZfBk4OCA50BNEClquHN0xIQNdxdk7wfS-L6mikeShFIYn2stFXdrJmqYVpFxyxNnW1Wwj0qJTfQBws1AGRopB_MYDxVjwifCl0w1iSF1wetldDodl_iloN-IC6JlGoPM4pnMyqgyHbZ4ooZp7KwVlMd0Ly0jmsv_l6fErYtuf9Y6_EunI7RGoUZwHtJbQaXs9U0fO-CSiSpapeGgmk_Rb_1m6K8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6V9AAcoLzUUB4-VOppYe3dJN5jeEQpEFQVkLgtfqpRyxqR5UBO_Qn9jf0leLzZ8LggwWnllbwPz4znsz3zDcBXrqhRWYtHQsgkSr1Li7hNkkhL1rYeThgeygENTtv9i_ToslVHE2IuTMUPMd1wQ8sI8zUaOG5I7z6yhgptMZU8YGaezsBHLOsdVlU_pwxStNOpDpbbFEO86GXN2xiz3ef9n_ulR7D5FLIGn9NbBFl_bRVq8nvnrpQ7avyCyPFdv_MJFiaIlHQrFVqCD6ZYhvknPIUrcHXmCvf_778fQzMO11-udKP7woPH0XBEnCWHXt7efxkiCk26ypRVC5NXyN7QGdygd38IZqzdku61xCxMsu_wvBz1fhUueofn-_1oUpohUolHBJHHNUmmmRXe11Gbtv1djJeLE2Xj2DAtMkVTJW0sjFFa-GUTs9zozPoVip9edbIGjcIV5jOQTqIty7RHelykmnMZUxkrrjvU0pYUrSZ8qwWT31QMHHnFtcxyHLN8OmZN2Kjllk8scZT7CQsrZPqXNoEFAbzylLx70BtMW-tv6bQNs_3zwUl-8v30-AvMMSwZHCJ8N6BR3t6ZTY9jSrkVNPUBDTzr8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKRA7aeocC21VliLEIvUWvIoKiCsaDnDiE_hGvgQ76QYXJDhFjuQs9izP9swbgD0qsBJxmXqM8cALrUvzqA4CT3ISaQsnFM3LAbUuouZteNout8ey-At-iOGGm9OM3F47Be9KfTgiDWVSu0zyHDLTcBKmw8inTq5rV0MCKVypFOfKEXYRXrg9oG30yeH3_t_d0ghrjiPW3OU0FoANPraINHk4eMn4gXj7weP4n79ZhPk-HkXVQoCWYEKlyzA3xlK4AnfXJjWf7x-XHfWWX-9NZnqvqYWOvU4PGY3qdrat91KIpRJVhcqKlktdQUcdo9z2vHlELl_tGVWfuMvBRMfGnZY7qV-F20b95rjp9QszeCKweMCzqCaIJdHMejqsw8jeddFyfiC07ysiWSxwKLj2mVJCMrtoIpoqGWu7PrHGVQZrMJWaVK0DqgRSk1hanEdZKCnlPua-oLKCNS5zVi7B_mBekm7Bv5EUTMskcWOWDMesBFuDaUv6ethLrLly9THtS0tA8vH_5SlJtdZoDVsbf-m0CzOXtUZyfnJxtgmzxNULzsN7t2Aqe35R2xbEZHwnl9Mvddbqqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sono%E2%80%90Piezo%E2%80%90Photosynthesis+of+Ethylene+and+Acetylene+from+Bioethanol+under+Ambient+Conditions&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%2C+Yue&rft.au=Zhang%2C+Jiajun&rft.au=Ma%2C+Hongyang&rft.au=Zhou%2C+Shujie&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202425784&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon