Gravitational Waves from Generalized Newtonian Sources

I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering state...

Full description

Saved in:
Bibliographic Details
Published inFortschritte der Physik Vol. 67; no. 3
Main Author Holten, J. W.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation. The author reviews the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation are derived.
AbstractList I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation. The author reviews the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation are derived.
I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation.
I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation. The author reviews the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r 3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation are derived.
Author Holten, J. W.
Author_xml – sequence: 1
  givenname: J. W.
  surname: Holten
  fullname: Holten, J. W.
  email: vholten@lorentz.leidenuniv.nl
  organization: Leiden University
BookMark eNqFkE1LAzEQhoNUsK1ePS943jqZ7GaToxRdhWKLH3gM2W0CW7abmmxb6q83paJHTzOH5xneeUdk0LnOEHJNYUIB8Hbj3WaCQAUACHZGhjRHmjJZiAEZAtA8FQjigoxCWEUEqaRDwkuvd02v-8Z1uk0-9M6ExHq3TkrTGa_b5sssk2ez713X6C55dVtfm3BJzq1ug7n6mWPy_nD_Nn1MZ_PyaXo3S2tGkaVUswKZlcBklVWysFBZXhuOWOWWcSEyjmAyFFxmos6QFxLB2mJZ0VzHlY3JzelufO5za0KvVjFATBoUUlFwiTkTkZqcqNq7ELyxauObtfYHRUEdu1HHbtRvN1GQJ2HftObwD60WL_PFn_sNdbRolw
Cites_doi 10.1103/PhysRevLett.116.061102
10.1103/PhysRev.131.435
10.1103/PhysRevLett.119.141101
10.1143/PTP.121.843
10.1103/PhysRevD.94.104015
10.1103/PhysRevLett.116.221101
10.1016/0375-9601(81)90567-3
10.1103/PhysRev.136.B1224
10.12942/lrr-2014-2
10.1088/0264-9381/32/1/015012
10.1103/PhysRevLett.119.161101
10.1103/PhysRevD.71.104003
10.1086/167917
10.1088/0264-9381/28/22/225022
10.1103/PhysRevD.55.2124
ContentType Journal Article
Copyright 2019 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved
Copyright_xml – notice: 2019 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved
DBID 24P
AAYXX
CITATION
DOI 10.1002/prop.201800083
DatabaseName Wiley Online Library Journals (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3978
EndPage n/a
ExternalDocumentID 10_1002_prop_201800083
PROP201800083
Genre reviewArticle
GrantInformation_xml – fundername: VSNU Vereniging van Universiteiten
  funderid: Leiden University Funds
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNW
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c3123-1a3723f9039b4b97f0bf6ce622b5f36884620e4286948c4267920ff7db15a9203
IEDL.DBID DR2
ISSN 0015-8208
IngestDate Fri Jul 25 12:17:02 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
Wed Jan 22 16:59:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3123-1a3723f9039b4b97f0bf6ce622b5f36884620e4286948c4267920ff7db15a9203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.201800083
PQID 2187692538
PQPubID 866401
PageCount 15
ParticipantIDs proquest_journals_2187692538
crossref_primary_10_1002_prop_201800083
wiley_primary_10_1002_prop_201800083_PROP201800083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Fortschritte der Physik
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 119
1963; 131
1997; 55
1989; 345
2015; 32
2009; 121
2008
1687
2016; 94
2016; 116
2005; 71
1970
2014; 17
1918; I
2011; 28
1981; 87
1964; 136
e_1_2_16_14_1
Misner C. W. (e_1_2_16_16_1) 1970
e_1_2_16_13_1
e_1_2_16_12_1
e_1_2_16_18_1
e_1_2_16_2_1
Einstein A. (e_1_2_16_15_1) 1918
e_1_2_16_11_1
e_1_2_16_10_1
e_1_2_16_21_1
e_1_2_16_20_1
e_1_2_16_8_1
e_1_2_16_7_1
e_1_2_16_9_1
e_1_2_16_4_1
e_1_2_16_3_1
e_1_2_16_6_1
e_1_2_16_5_1
Newton I. (e_1_2_16_19_1) 1687
Maggiore M. (e_1_2_16_17_1) 2008
References_xml – volume: 116
  start-page: 061102
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 32
  start-page: 015012
  year: 2015
  publication-title: Class. Quantum Grav.
– volume: 136
  start-page: 1224
  year: 1964
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 221101
  year: 2016
  publication-title: Phys. Rev. Lett.
– year: 1687
– volume: 28
  start-page: 225022
  year: 2011
  publication-title: Class. Quantum Grav.
– volume: 17
  start-page: 2
  year: 2014
  publication-title: Living Rev. Relativity
– year: 2008
– volume: 131
  start-page: 435
  year: 1963
  publication-title: Phys. Rev.
– volume: 121
  start-page: 843
  year: 2009
  publication-title: Prog. Theor Phys.
– volume: I
  start-page: 154
  year: 1918
  publication-title: Sitzungsber. K. Preuss. Akad. Wiss.
– volume: 119
  start-page: 141101
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 345
  start-page: 434
  year: 1989
  publication-title: Astrophys. J.
– year: 1970
– volume: 119
  start-page: 161101
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 2124
  year: 1997
  publication-title: Phys. Rev. D
– volume: 87
  start-page: 81
  year: 1981
  publication-title: Phys. Lett. A
– volume: 94
  start-page: 104015
  year: 2016
  publication-title: Phys. Rev. D
– volume: 71
  start-page: 084001
  year: 2005
  publication-title: Phys. Rev. D
– ident: e_1_2_16_3_1
  doi: 10.1103/PhysRevLett.116.061102
– ident: e_1_2_16_21_1
  doi: 10.1103/PhysRev.131.435
– ident: e_1_2_16_6_1
– ident: e_1_2_16_4_1
  doi: 10.1103/PhysRevLett.119.141101
– ident: e_1_2_16_10_1
  doi: 10.1143/PTP.121.843
– ident: e_1_2_16_20_1
  doi: 10.1103/PhysRevD.94.104015
– ident: e_1_2_16_13_1
  doi: 10.1103/PhysRevLett.116.221101
– ident: e_1_2_16_14_1
  doi: 10.1016/0375-9601(81)90567-3
– ident: e_1_2_16_18_1
  doi: 10.1103/PhysRev.136.B1224
– ident: e_1_2_16_7_1
  doi: 10.12942/lrr-2014-2
– ident: e_1_2_16_12_1
  doi: 10.1088/0264-9381/32/1/015012
– start-page: 154
  year: 1918
  ident: e_1_2_16_15_1
  publication-title: Sitzungsber. K. Preuss. Akad. Wiss.
– volume-title: Principia Mathematica
  year: 1687
  ident: e_1_2_16_19_1
– ident: e_1_2_16_5_1
  doi: 10.1103/PhysRevLett.119.161101
– volume-title: Gravitation
  year: 1970
  ident: e_1_2_16_16_1
– volume-title: Gravitational Waves
  year: 2008
  ident: e_1_2_16_17_1
– ident: e_1_2_16_9_1
  doi: 10.1103/PhysRevD.71.104003
– ident: e_1_2_16_2_1
  doi: 10.1086/167917
– ident: e_1_2_16_11_1
  doi: 10.1088/0264-9381/28/22/225022
– ident: e_1_2_16_8_1
  doi: 10.1103/PhysRevD.55.2124
SSID ssj0002191
Score 2.1739662
SecondaryResourceType review_article
Snippet I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Approximation
Conservation laws
Energy conservation
Gravitation theory
gravitational capture
Gravitational waves
Mathematical analysis
precessing orbits
Quadrupoles
Title Gravitational Waves from Generalized Newtonian Sources
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.201800083
https://www.proquest.com/docview/2187692538
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46ELz4W5zO0YPgKVubpElzFHEOQR3T4W4lSRMQYcq67bC_3pe2--VF0FtamtK-vve9r-17XxC6Eo7KjGiGZWIyzIBQY02dwVZzGSmpiRS-d_jxiXcH7GEYD9e6-Et9iOUHNx8ZBV77AFc6b69EQwFgvN5klBQ0AkDYF2x5VtRf6UdBOJZL5kUxhlSXLFQbQ9LenL6ZlVZUc52wFhmns4_U4lrLQpOP1nSiW2b-Q8bxPzdzgPYqOhrclP5ziLbs6AjtFGWhJj9G_H6sZpWKNxz2pmY2D3xHSlDJVb_PbRYAUAKDBD8LXopfAfkJGnTuXm-7uFppARsKqQtHigpCnQyp1ExL4ULtuLGcEB07yhMgKSS08KbCJUsMJHUhSeicyHQUKxjSU1QbfY7sGQoU7DaZEYmWlgF70aGNmADcsDqL4iyuo-uFpdOvUlAjLaWTSeqtkC6tUEeNxYNIq8DKU2AkgksCMF1HpLDoL2dJe_3n3nLr_C-TLtAujGVZedZAtcl4ai-Bikx0E20T1msWTvcNNpfVyA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BEYKFN6JQIAMSU9rETuJ4REAp0JaqtIItih1bQkgF9TX013POo6UsSLAlVhwll3t8du6-A7hgmvKECM_moUxsDwG1LaiWthIBd2MuCGemdrjVDhp97-HVL7IJTS1Mxg8x33AzlpH6a2PgZkO6tmANRQ9jCCfdMMURq7Bm2nob-vyb7oJBCg0ya5rn-jYGu7DgbXRIbXn-clxagM3vkDWNOfVtEMXTZqkm79XJWFTl7AeR479eZwe2ckRqXWUqtAsrarAH62lmqBztQ3A3jKc5kTde9hJP1cgyRSlWzlj9NlOJhb4SQSSqmvWc_g0YHUC_ftu7bth5swVbUoxethtTRqjmDuXCE5xpR-hAqoAQ4WsahIhTiKNwsRJwL5QY1xknjtYsEa4f4yE9hNLgY6COwIpxWCaShYIrDwGMcJTrMXQdSiSun_hluCxEHX1mnBpRxp5MIiOFaC6FMlSKLxHltjWKEJSwgBP01GUgqUh_uUvU6T515mfHf5l0DhuNXqsZNe_bjyewieM8S0SrQGk8nKhTRCZjcZbq3heiJdkN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagCMSCOEWhQAYkJquJ49jxiIBSrhIBFWxWfEkspWpKB349z0l6TUhsiRVn-PKOL_Z7nxE65y4WhiiKRaoNpkCosYqdxlYxEeVCEcF97_BTj3X79P4j-Vjo4q_0IWYLbt4zynjtHXxoXHsuGgoBxutNRmlJI1bRmt_x80VdhGazWAz-WJ2ZFyUYcl06lW0MSXt5_nJamnPNRcZappzONtqquWJwWX3cHbRiB7tovazZ1MUeYrejfFJLbMNj7_nEFoFvFwlqLenPH2sCiGJA78AIgtdynb7YR_3OzdtVF9fHIGAdQ17BUR5zEjsRxkJRJbgLlWPaMkJU4mKWAoMgoYXfCCZoqiHjckFC57hRUZLDZXyAGoOvgT1EQQ7D2mieKmEpUAsV2ohycGqrTJSYpIkupijIYaV2IStdYyI9XnKGVxO1piDJ2uoLCXSBM0EghjYRKYH74y0ye3nOZndH_5l0hjay6458vOs9HKNNGBZVhVgLNcajb3sClGGsTkur-AXLibY_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+Waves+from+Generalized+Newtonian+Sources&rft.jtitle=Fortschritte+der+Physik&rft.au=van+Holten%2C+J.+W.&rft.date=2019-03-01&rft.issn=0015-8208&rft.eissn=1521-3978&rft.volume=67&rft.issue=3&rft_id=info:doi/10.1002%2Fprop.201800083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_prop_201800083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-8208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-8208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-8208&client=summon