Gravitational Waves from Generalized Newtonian Sources
I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering state...
Saved in:
Published in | Fortschritte der Physik Vol. 67; no. 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation.
The author reviews the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation are derived. |
---|---|
AbstractList | I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation.
The author reviews the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation are derived. I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation. I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results I derive the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation. The author reviews the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and momentum keeping track of the gravitational‐wave flux are presented. The theory is applied to two‐body systems in bound and scattering states subject to newtonian gravity generalized to include a 1/r 3 force allowing for orbital precession. The evolution of the orbits is studied in the adiabatic approximation. From these results the conditions for capture of two bodies to form a bound state by the emission of gravitational radiation are derived. |
Author | Holten, J. W. |
Author_xml | – sequence: 1 givenname: J. W. surname: Holten fullname: Holten, J. W. email: vholten@lorentz.leidenuniv.nl organization: Leiden University |
BookMark | eNqFkE1LAzEQhoNUsK1ePS943jqZ7GaToxRdhWKLH3gM2W0CW7abmmxb6q83paJHTzOH5xneeUdk0LnOEHJNYUIB8Hbj3WaCQAUACHZGhjRHmjJZiAEZAtA8FQjigoxCWEUEqaRDwkuvd02v-8Z1uk0-9M6ExHq3TkrTGa_b5sssk2ez713X6C55dVtfm3BJzq1ug7n6mWPy_nD_Nn1MZ_PyaXo3S2tGkaVUswKZlcBklVWysFBZXhuOWOWWcSEyjmAyFFxmos6QFxLB2mJZ0VzHlY3JzelufO5za0KvVjFATBoUUlFwiTkTkZqcqNq7ELyxauObtfYHRUEdu1HHbtRvN1GQJ2HftObwD60WL_PFn_sNdbRolw |
Cites_doi | 10.1103/PhysRevLett.116.061102 10.1103/PhysRev.131.435 10.1103/PhysRevLett.119.141101 10.1143/PTP.121.843 10.1103/PhysRevD.94.104015 10.1103/PhysRevLett.116.221101 10.1016/0375-9601(81)90567-3 10.1103/PhysRev.136.B1224 10.12942/lrr-2014-2 10.1088/0264-9381/32/1/015012 10.1103/PhysRevLett.119.161101 10.1103/PhysRevD.71.104003 10.1086/167917 10.1088/0264-9381/28/22/225022 10.1103/PhysRevD.55.2124 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved |
Copyright_xml | – notice: 2019 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/prop.201800083 |
DatabaseName | Wiley Online Library Journals (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3978 |
EndPage | n/a |
ExternalDocumentID | 10_1002_prop_201800083 PROP201800083 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: VSNU Vereniging van Universiteiten funderid: Leiden University Funds |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GYQRN H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M6R MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNW ROL RWI RX1 SAMSI SUPJJ TN5 TUS UB1 UPT W8V W99 WBKPD WGJPS WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3123-1a3723f9039b4b97f0bf6ce622b5f36884620e4286948c4267920ff7db15a9203 |
IEDL.DBID | DR2 |
ISSN | 0015-8208 |
IngestDate | Fri Jul 25 12:17:02 EDT 2025 Tue Jul 01 01:03:24 EDT 2025 Wed Jan 22 16:59:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3123-1a3723f9039b4b97f0bf6ce622b5f36884620e4286948c4267920ff7db15a9203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.201800083 |
PQID | 2187692538 |
PQPubID | 866401 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2187692538 crossref_primary_10_1002_prop_201800083 wiley_primary_10_1002_prop_201800083_PROP201800083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Fortschritte der Physik |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 119 1963; 131 1997; 55 1989; 345 2015; 32 2009; 121 2008 1687 2016; 94 2016; 116 2005; 71 1970 2014; 17 1918; I 2011; 28 1981; 87 1964; 136 e_1_2_16_14_1 Misner C. W. (e_1_2_16_16_1) 1970 e_1_2_16_13_1 e_1_2_16_12_1 e_1_2_16_18_1 e_1_2_16_2_1 Einstein A. (e_1_2_16_15_1) 1918 e_1_2_16_11_1 e_1_2_16_10_1 e_1_2_16_21_1 e_1_2_16_20_1 e_1_2_16_8_1 e_1_2_16_7_1 e_1_2_16_9_1 e_1_2_16_4_1 e_1_2_16_3_1 e_1_2_16_6_1 e_1_2_16_5_1 Newton I. (e_1_2_16_19_1) 1687 Maggiore M. (e_1_2_16_17_1) 2008 |
References_xml | – volume: 116 start-page: 061102 year: 2016 publication-title: Phys. Rev. Lett. – volume: 32 start-page: 015012 year: 2015 publication-title: Class. Quantum Grav. – volume: 136 start-page: 1224 year: 1964 publication-title: Phys. Rev. B – volume: 116 start-page: 221101 year: 2016 publication-title: Phys. Rev. Lett. – year: 1687 – volume: 28 start-page: 225022 year: 2011 publication-title: Class. Quantum Grav. – volume: 17 start-page: 2 year: 2014 publication-title: Living Rev. Relativity – year: 2008 – volume: 131 start-page: 435 year: 1963 publication-title: Phys. Rev. – volume: 121 start-page: 843 year: 2009 publication-title: Prog. Theor Phys. – volume: I start-page: 154 year: 1918 publication-title: Sitzungsber. K. Preuss. Akad. Wiss. – volume: 119 start-page: 141101 year: 2017 publication-title: Phys. Rev. Lett. – volume: 345 start-page: 434 year: 1989 publication-title: Astrophys. J. – year: 1970 – volume: 119 start-page: 161101 year: 2017 publication-title: Phys. Rev. Lett. – volume: 55 start-page: 2124 year: 1997 publication-title: Phys. Rev. D – volume: 87 start-page: 81 year: 1981 publication-title: Phys. Lett. A – volume: 94 start-page: 104015 year: 2016 publication-title: Phys. Rev. D – volume: 71 start-page: 084001 year: 2005 publication-title: Phys. Rev. D – ident: e_1_2_16_3_1 doi: 10.1103/PhysRevLett.116.061102 – ident: e_1_2_16_21_1 doi: 10.1103/PhysRev.131.435 – ident: e_1_2_16_6_1 – ident: e_1_2_16_4_1 doi: 10.1103/PhysRevLett.119.141101 – ident: e_1_2_16_10_1 doi: 10.1143/PTP.121.843 – ident: e_1_2_16_20_1 doi: 10.1103/PhysRevD.94.104015 – ident: e_1_2_16_13_1 doi: 10.1103/PhysRevLett.116.221101 – ident: e_1_2_16_14_1 doi: 10.1016/0375-9601(81)90567-3 – ident: e_1_2_16_18_1 doi: 10.1103/PhysRev.136.B1224 – ident: e_1_2_16_7_1 doi: 10.12942/lrr-2014-2 – ident: e_1_2_16_12_1 doi: 10.1088/0264-9381/32/1/015012 – start-page: 154 year: 1918 ident: e_1_2_16_15_1 publication-title: Sitzungsber. K. Preuss. Akad. Wiss. – volume-title: Principia Mathematica year: 1687 ident: e_1_2_16_19_1 – ident: e_1_2_16_5_1 doi: 10.1103/PhysRevLett.119.161101 – volume-title: Gravitation year: 1970 ident: e_1_2_16_16_1 – volume-title: Gravitational Waves year: 2008 ident: e_1_2_16_17_1 – ident: e_1_2_16_9_1 doi: 10.1103/PhysRevD.71.104003 – ident: e_1_2_16_2_1 doi: 10.1086/167917 – ident: e_1_2_16_11_1 doi: 10.1088/0264-9381/28/22/225022 – ident: e_1_2_16_8_1 doi: 10.1103/PhysRevD.55.2124 |
SSID | ssj0002191 |
Score | 2.1739662 |
SecondaryResourceType | review_article |
Snippet | I review the elementary theory of gravitational waves on a Minkowski background and the quadrupole approximation. The modified conservation laws for energy and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Approximation Conservation laws Energy conservation Gravitation theory gravitational capture Gravitational waves Mathematical analysis precessing orbits Quadrupoles |
Title | Gravitational Waves from Generalized Newtonian Sources |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.201800083 https://www.proquest.com/docview/2187692538 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46ELz4W5zO0YPgKVubpElzFHEOQR3T4W4lSRMQYcq67bC_3pe2--VF0FtamtK-vve9r-17XxC6Eo7KjGiGZWIyzIBQY02dwVZzGSmpiRS-d_jxiXcH7GEYD9e6-Et9iOUHNx8ZBV77AFc6b69EQwFgvN5klBQ0AkDYF2x5VtRf6UdBOJZL5kUxhlSXLFQbQ9LenL6ZlVZUc52wFhmns4_U4lrLQpOP1nSiW2b-Q8bxPzdzgPYqOhrclP5ziLbs6AjtFGWhJj9G_H6sZpWKNxz2pmY2D3xHSlDJVb_PbRYAUAKDBD8LXopfAfkJGnTuXm-7uFppARsKqQtHigpCnQyp1ExL4ULtuLGcEB07yhMgKSS08KbCJUsMJHUhSeicyHQUKxjSU1QbfY7sGQoU7DaZEYmWlgF70aGNmADcsDqL4iyuo-uFpdOvUlAjLaWTSeqtkC6tUEeNxYNIq8DKU2AkgksCMF1HpLDoL2dJe_3n3nLr_C-TLtAujGVZedZAtcl4ai-Bikx0E20T1msWTvcNNpfVyA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BEYKFN6JQIAMSU9rETuJ4REAp0JaqtIItih1bQkgF9TX013POo6UsSLAlVhwll3t8du6-A7hgmvKECM_moUxsDwG1LaiWthIBd2MuCGemdrjVDhp97-HVL7IJTS1Mxg8x33AzlpH6a2PgZkO6tmANRQ9jCCfdMMURq7Bm2nob-vyb7oJBCg0ya5rn-jYGu7DgbXRIbXn-clxagM3vkDWNOfVtEMXTZqkm79XJWFTl7AeR479eZwe2ckRqXWUqtAsrarAH62lmqBztQ3A3jKc5kTde9hJP1cgyRSlWzlj9NlOJhb4SQSSqmvWc_g0YHUC_ftu7bth5swVbUoxethtTRqjmDuXCE5xpR-hAqoAQ4WsahIhTiKNwsRJwL5QY1xknjtYsEa4f4yE9hNLgY6COwIpxWCaShYIrDwGMcJTrMXQdSiSun_hluCxEHX1mnBpRxp5MIiOFaC6FMlSKLxHltjWKEJSwgBP01GUgqUh_uUvU6T515mfHf5l0DhuNXqsZNe_bjyewieM8S0SrQGk8nKhTRCZjcZbq3heiJdkN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagCMSCOEWhQAYkJquJ49jxiIBSrhIBFWxWfEkspWpKB349z0l6TUhsiRVn-PKOL_Z7nxE65y4WhiiKRaoNpkCosYqdxlYxEeVCEcF97_BTj3X79P4j-Vjo4q_0IWYLbt4zynjtHXxoXHsuGgoBxutNRmlJI1bRmt_x80VdhGazWAz-WJ2ZFyUYcl06lW0MSXt5_nJamnPNRcZappzONtqquWJwWX3cHbRiB7tovazZ1MUeYrejfFJLbMNj7_nEFoFvFwlqLenPH2sCiGJA78AIgtdynb7YR_3OzdtVF9fHIGAdQ17BUR5zEjsRxkJRJbgLlWPaMkJU4mKWAoMgoYXfCCZoqiHjckFC57hRUZLDZXyAGoOvgT1EQQ7D2mieKmEpUAsV2ohycGqrTJSYpIkupijIYaV2IStdYyI9XnKGVxO1piDJ2uoLCXSBM0EghjYRKYH74y0ye3nOZndH_5l0hjay6458vOs9HKNNGBZVhVgLNcajb3sClGGsTkur-AXLibY_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+Waves+from+Generalized+Newtonian+Sources&rft.jtitle=Fortschritte+der+Physik&rft.au=van+Holten%2C+J.+W.&rft.date=2019-03-01&rft.issn=0015-8208&rft.eissn=1521-3978&rft.volume=67&rft.issue=3&rft_id=info:doi/10.1002%2Fprop.201800083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_prop_201800083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-8208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-8208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-8208&client=summon |