Structure–Property Relationships of Solution‐Processable Diarylethene‐Based Main‐Chain Photochromic Polymers
A series of alternating copolymers of a dithienylethene with di‐n‐alkyl‐fluorene (P1–P3), di‐n‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5), and 4,8‐bis(3,5‐dioctyl‐2‐thienyl)‐1,5‐dithia‐s‐indacene (P6) are designed, synthesized, and characterized. All of the polymers are soluble in common orga...
Saved in:
Published in | Macromolecular chemistry and physics Vol. 225; no. 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of alternating copolymers of a dithienylethene with di‐n‐alkyl‐fluorene (P1–P3), di‐n‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5), and 4,8‐bis(3,5‐dioctyl‐2‐thienyl)‐1,5‐dithia‐s‐indacene (P6) are designed, synthesized, and characterized. All of the polymers are soluble in common organic solvents such as chloroform, dichloromethane, toluene, and tetrahydrofuran. The side‐chain length affected the solubility of the polymer, molecular weight, and the glass transition temperature. Solutions of P1–P6 show photochromism with high quantum yields of 6‐π electrocyclization (41–87%) and cycloreversion (0.4–1.1%). These polymers also formed uniform thin films and the rates of solid state photoisomerization are measured relative to P4, which has the highest cyclization and cycloreversion rates. The color of the photochromic polymer is tuned according to the comonomer and the maximum absorption wavelength ranged from 569 to 675 nm in the closed isomeric form. All the polymers are thermally stable and show no signs of photodegradation after being exposed to UV‐light for 120 min in air. Based on these promising results, these polymers may be useful for multifunctional organic electronic devices.
A series of main‐chain dithienylethene‐based photochromic polymers are presented. These novel polymers form uniform thin‐films by spin‐coating. These films maintain their reversible photoswitching characteristics, are fatigue resistant and are color tunable by changing the comonomer. It is anticipated that this class of materials will be useful in light controlled organic microelectronic devices. |
---|---|
AbstractList | A series of alternating copolymers of a dithienylethene with di‐n‐alkyl‐fluorene (P1–P3), di‐n‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5), and 4,8‐bis(3,5‐dioctyl‐2‐thienyl)‐1,5‐dithia‐s‐indacene (P6) are designed, synthesized, and characterized. All of the polymers are soluble in common organic solvents such as chloroform, dichloromethane, toluene, and tetrahydrofuran. The side‐chain length affected the solubility of the polymer, molecular weight, and the glass transition temperature. Solutions of P1–P6 show photochromism with high quantum yields of 6‐π electrocyclization (41–87%) and cycloreversion (0.4–1.1%). These polymers also formed uniform thin films and the rates of solid state photoisomerization are measured relative to P4, which has the highest cyclization and cycloreversion rates. The color of the photochromic polymer is tuned according to the comonomer and the maximum absorption wavelength ranged from 569 to 675 nm in the closed isomeric form. All the polymers are thermally stable and show no signs of photodegradation after being exposed to UV‐light for 120 min in air. Based on these promising results, these polymers may be useful for multifunctional organic electronic devices.
A series of main‐chain dithienylethene‐based photochromic polymers are presented. These novel polymers form uniform thin‐films by spin‐coating. These films maintain their reversible photoswitching characteristics, are fatigue resistant and are color tunable by changing the comonomer. It is anticipated that this class of materials will be useful in light controlled organic microelectronic devices. Abstract A series of alternating copolymers of a dithienylethene with di‐ n ‐alkyl‐fluorene (P1–P3), di‐ n ‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5), and 4,8‐bis(3,5‐dioctyl‐2‐thienyl)‐1,5‐dithia‐ s ‐indacene (P6) are designed, synthesized, and characterized. All of the polymers are soluble in common organic solvents such as chloroform, dichloromethane, toluene, and tetrahydrofuran. The side‐chain length affected the solubility of the polymer, molecular weight, and the glass transition temperature. Solutions of P1–P6 show photochromism with high quantum yields of 6‐π electrocyclization (41–87%) and cycloreversion (0.4–1.1%). These polymers also formed uniform thin films and the rates of solid state photoisomerization are measured relative to P4, which has the highest cyclization and cycloreversion rates. The color of the photochromic polymer is tuned according to the comonomer and the maximum absorption wavelength ranged from 569 to 675 nm in the closed isomeric form. All the polymers are thermally stable and show no signs of photodegradation after being exposed to UV‐light for 120 min in air. Based on these promising results, these polymers may be useful for multifunctional organic electronic devices. A series of alternating copolymers of a dithienylethene with di‐n‐alkyl‐fluorene (P1–P3), di‐n‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5), and 4,8‐bis(3,5‐dioctyl‐2‐thienyl)‐1,5‐dithia‐s‐indacene (P6) are designed, synthesized, and characterized. All of the polymers are soluble in common organic solvents such as chloroform, dichloromethane, toluene, and tetrahydrofuran. The side‐chain length affected the solubility of the polymer, molecular weight, and the glass transition temperature. Solutions of P1–P6 show photochromism with high quantum yields of 6‐π electrocyclization (41–87%) and cycloreversion (0.4–1.1%). These polymers also formed uniform thin films and the rates of solid state photoisomerization are measured relative to P4, which has the highest cyclization and cycloreversion rates. The color of the photochromic polymer is tuned according to the comonomer and the maximum absorption wavelength ranged from 569 to 675 nm in the closed isomeric form. All the polymers are thermally stable and show no signs of photodegradation after being exposed to UV‐light for 120 min in air. Based on these promising results, these polymers may be useful for multifunctional organic electronic devices. |
Author | Marshall, David Vamvounis, George Sonar, Prashant Gwebu, Sandile Philippa, Bronson |
Author_xml | – sequence: 1 givenname: Sandile orcidid: 0009-0004-2894-8247 surname: Gwebu fullname: Gwebu, Sandile organization: James Cook University – sequence: 2 givenname: David surname: Marshall fullname: Marshall, David organization: Queensland University of Technology – sequence: 3 givenname: Prashant orcidid: 0000-0002-1119-4897 surname: Sonar fullname: Sonar, Prashant organization: Queensland University of Technology – sequence: 4 givenname: Bronson orcidid: 0000-0002-5736-0336 surname: Philippa fullname: Philippa, Bronson organization: James Cook University – sequence: 5 givenname: George orcidid: 0000-0001-5906-4285 surname: Vamvounis fullname: Vamvounis, George email: george.vamvounis@jcu.edu.au organization: James Cook University |
BookMark | eNqFkM9Og0AQxjemJrbVq2cSz62zuwXKseLfpEZi9UyWZQg0wOIuxHDrIzTxDfskLqnRo6eZTH7fzHzfhIxqVSMhlxTmFIBdV0I2cwaMA1CPnpAxdRmd8YC7I9sDYzPKXXZGJsZsAWAJgT8m7abVnWw7jYfdV6RVg7rtnVcsRVuo2uRFYxyVORtVdsPgsNtbSKIxIinRuS2E7ktsc6ytfn8jDKbOsygGLsxtdaJctUrmWlWFdCJV9hVqc05OM1EavPipU_J-f_cWPs7WLw9P4Wo9k5za110vlYmQlMICWZqmLHMxXfoBp670PJBJIIMkEyxYgGBc4hKtyQx8D6Wf8tTjU3J13Nto9dGhaeOt6nRtT8YcfPCCBWW-peZHSmpljMYsbnRRWWMxhXhINh6SjX-TtYLgKPgsSuz_oePnVRj9ab8BIOiFlg |
Cites_doi | 10.1021/ja039445o 10.1039/c1py00304f 10.1039/C4TA02820A 10.1038/ncomms7330 10.1039/c3tc30130c 10.1038/nchem.1384 10.1002/(SICI)1521-4095(199903)11:4<292::AID-ADMA292>3.0.CO;2-V 10.1134/S1560090409090036 10.1021/ma048733h 10.1039/b517175j 10.1002/adma.201202186 10.1002/(SICI)1097-4628(19980919)69:12<2451::AID-APP16>3.0.CO;2-# 10.1016/j.orgel.2018.10.020 10.1002/pol.20200069 10.1063/1.1366365 10.1139/v95-234 10.1021/ma061814o 10.1021/jp205818h 10.1039/b9pp00037b 10.1039/D0RA04508J 10.1021/jp037131h 10.1021/ja993181h 10.1039/C9GC00617F 10.1071/CH19336 10.1021/ma0211939 10.1021/jp0115648 10.1002/adma.200306375 10.1002/chem.201803473 10.1021/ma300888j 10.1016/j.saa.2014.04.131 10.1021/am402833k 10.1039/C9TC01273G 10.1039/D1TC04237H 10.1246/cl.170673 10.1039/D1PY01184G 10.1039/C5CS00137D 10.1021/acs.jpcc.5b01733 10.1016/j.tet.2010.10.050 10.1039/c39920000206 10.1002/ejoc.201402774 10.1039/C7CP02818K 10.1016/j.jphotochem.2019.112341 10.1016/j.tet.2005.04.044 10.1039/c1py00119a 10.1002/adfm.201907507 10.1016/j.jlumin.2019.01.031 10.1002/adfm.200304295 10.1007/s10043-997-0655-3 10.1021/jo050710t 10.1021/jp108982x 10.1039/C1JM14872A 10.1039/C5RA01141H 10.1021/ma801633m 10.1039/D2CP01240E 10.1002/chem.200305447 10.1021/cr500249p 10.1038/ncomms5666 10.1246/bcsj.73.2389 10.1021/cr100320w 10.1063/5.0044177 10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F 10.1016/j.tet.2017.09.049 10.1002/adfm.200700414 10.1021/acs.macromol.5b01252 10.1038/s41467-019-13796-w 10.1021/acs.chemrev.6b00498 10.1021/jo020114o 10.1246/cl.1999.905 10.1021/acsami.0c12735 10.1039/c1py00167a 10.1002/pi.2467 10.1063/1.2942400 10.1039/C39870000466 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Macromolecular Chemistry and Physics published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Macromolecular Chemistry and Physics published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/macp.202300161 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library Free Content CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3935 |
EndPage | n/a |
ExternalDocumentID | 10_1002_macp_202300161 MACP202300161 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP1095404; DP210103006 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3121-56dcbac1104e2ddd2f5ed879315c660cb9c9bfa2940a23ce8e022f076ec7d3d63 |
IEDL.DBID | DR2 |
ISSN | 1022-1352 |
IngestDate | Thu Oct 10 17:55:14 EDT 2024 Fri Aug 23 05:01:12 EDT 2024 Sat Aug 24 00:57:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3121-56dcbac1104e2ddd2f5ed879315c660cb9c9bfa2940a23ce8e022f076ec7d3d63 |
ORCID | 0009-0004-2894-8247 0000-0002-1119-4897 0000-0001-5906-4285 0000-0002-5736-0336 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202300161 |
PQID | 3070694127 |
PQPubID | 2034252 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3070694127 crossref_primary_10_1002_macp_202300161 wiley_primary_10_1002_macp_202300161_MACP202300161 |
PublicationCentury | 2000 |
PublicationDate | June 2024 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular chemistry and physics |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 1995; 73 2004; 126 2013; 25 2013; 1 2009; 42 2006; 39 2017; 46 2022; 24 2020; 58 2020; 12 2019; 208 2020; 11 2008; 103 2020; 10 2005; 61 2013; 5 1997; 4 2014; 131 2011; 111 2017; 73 2010; 66 2015; 48 2014; 5 2009; 51 2014; 2 2019; 64 2019; 21 2004; 37 2015; 44 2002; 106 1987 1999; 11 2005; 70 2016; 116 2000; 122 2021; 154 1998; 10 2012; 22 2019; 7 2015; 6 2015; 5 2011; 2 2019; 72 2008; 18 1999; 28 2006; 16 2003; 36 2000; 73 2008; 57 1992 2004; 108 2014; 114 1998; 69 2018; 24 2004; 10 2021; 12 2020; 30 2004; 16 2004; 14 2002; 67 2020; 390 2009; 8 2017; 19 2015; 119 2014 2022; 10 2001; 78 2012; 4 2012; 45 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 48 start-page: 6369 year: 2015 publication-title: Macromolecules – volume: 115 year: 2011 publication-title: J. Phys. Chem. A – volume: 119 start-page: 9142 year: 2015 publication-title: J. Phys. Chem. C – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – start-page: 466 year: 1987 publication-title: J. Chem. Soc. Chem. Commun. – volume: 21 start-page: 2164 year: 2019 publication-title: Green Chem. – volume: 5 start-page: 9726 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 10 start-page: 93 year: 1998 publication-title: Adv. Mater. – volume: 115 start-page: 3106 year: 2011 publication-title: J. Phys. Chem. C – volume: 36 start-page: 298 year: 2003 publication-title: Macromolecules – volume: 24 year: 2018 publication-title: Chem. – A Eur. J. – volume: 66 start-page: 9641 year: 2010 publication-title: Tetrahedron – volume: 108 start-page: 8689 year: 2004 publication-title: J. Phys. Chem. B – volume: 2 start-page: 1678 year: 2011 publication-title: Polym. Chem. – volume: 10 year: 2020 publication-title: RSC Adv. – volume: 7 start-page: 6889 year: 2019 publication-title: J. Mater. Chem. C – volume: 126 start-page: 7041 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 716 year: 2009 publication-title: Macromolecules – volume: 45 start-page: 5418 year: 2012 publication-title: Macromolecules – volume: 11 start-page: 292 year: 1999 publication-title: Adv. Mater. – volume: 6 start-page: 6330 year: 2015 publication-title: Nat. Commun. – volume: 67 start-page: 4574 year: 2002 publication-title: J. Org. Chem. – volume: 4 start-page: 675 year: 2012 publication-title: Nat. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 3719 year: 2015 publication-title: Chem. Soc. Rev. – volume: 208 start-page: 509 year: 2019 publication-title: J. Lumin. – volume: 61 start-page: 6623 year: 2005 publication-title: Tetrahedron – volume: 10 start-page: 1162 year: 2022 publication-title: J. Mater. Chem. C – volume: 73 start-page: 6479 year: 2017 publication-title: Tetrahedron – start-page: 7165 year: 2014 publication-title: Eur. J. Org. Chem. – volume: 37 start-page: 8897 year: 2004 publication-title: Macromolecules – volume: 2 start-page: 2435 year: 2011 publication-title: Polym. Chem. – volume: 2 start-page: 2699 year: 2011 publication-title: Polym. Chem. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 25 start-page: 469 year: 2013 publication-title: Adv. Mater. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 390 year: 2020 publication-title: J. Photochem. Photobiol. A Chem. – volume: 16 start-page: 1384 year: 2006 publication-title: J. Mater. Chem. – volume: 39 start-page: 9157 year: 2006 publication-title: Macromolecules – volume: 16 start-page: 716 year: 2004 publication-title: Adv. Mater. – volume: 1 start-page: 3012 year: 2013 publication-title: J. Mater. Chem. C – start-page: 206 year: 1992 publication-title: J. Chem. Soc. Chem. Commun. – volume: 4 start-page: 655 year: 1997 publication-title: Opt. Rev. – volume: 22 start-page: 4261 year: 2012 publication-title: J. Mater. Chem. – volume: 10 start-page: 360 year: 2004 publication-title: Chem. – A Eur. J. – volume: 69 start-page: 2451 year: 1998 publication-title: J. Appl. Polym. Sci. – volume: 58 start-page: 1299 year: 2020 publication-title: J. Polym. Sci. – volume: 154 year: 2021 publication-title: J. Chem. Phys. – volume: 18 start-page: 302 year: 2008 publication-title: Adv. Funct. Mater. – volume: 78 start-page: 2282 year: 2001 publication-title: Appl. Phys. Lett. – volume: 24 year: 2022 publication-title: Phys. Chem. Chem. Phys. – volume: 70 start-page: 8291 year: 2005 publication-title: J. Org. Chem. – volume: 131 start-page: 235 year: 2014 publication-title: Spectrochim. Acta, Part A – volume: 12 start-page: 7065 year: 2021 publication-title: Polym. Chem. – volume: 106 start-page: 209 year: 2002 publication-title: J. Phys. Chem. A – volume: 11 start-page: 4 year: 2020 publication-title: Nat. Commun. – volume: 19 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 4666 year: 2014 publication-title: Nat. Commun. – volume: 46 start-page: 1564 year: 2017 publication-title: Chem. Lett. – volume: 51 start-page: 335 year: 2009 publication-title: Polym. Sci., Ser. B – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 73 start-page: 1893 year: 1995 publication-title: Can. J. Chem. – volume: 14 start-page: 1129 year: 2004 publication-title: Adv. Funct. Mater. – volume: 72 start-page: 874 year: 2019 publication-title: Aust. J. Chem. – volume: 8 start-page: 1734 year: 2009 publication-title: Photochem. Photobiol. Sci. – volume: 28 start-page: 905 year: 1999 publication-title: Chem. Lett. – volume: 122 start-page: 4871 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1235 year: 2008 publication-title: Polym. Int. – volume: 103 year: 2008 publication-title: J. Appl. Phys. – volume: 73 start-page: 2389 year: 2000 publication-title: Bull. Chem. Soc. Jpn. – volume: 111 start-page: 1493 year: 2011 publication-title: Chem. Rev. – volume: 64 start-page: 205 year: 2019 publication-title: Org. Electron. – ident: e_1_2_8_57_1 doi: 10.1021/ja039445o – ident: e_1_2_8_32_1 doi: 10.1039/c1py00304f – ident: e_1_2_8_41_1 doi: 10.1039/C4TA02820A – ident: e_1_2_8_63_1 doi: 10.1038/ncomms7330 – ident: e_1_2_8_18_1 doi: 10.1039/c3tc30130c – ident: e_1_2_8_2_1 doi: 10.1038/nchem.1384 – ident: e_1_2_8_31_1 doi: 10.1002/(SICI)1521-4095(199903)11:4<292::AID-ADMA292>3.0.CO;2-V – ident: e_1_2_8_33_1 doi: 10.1134/S1560090409090036 – ident: e_1_2_8_62_1 doi: 10.1021/ma048733h – ident: e_1_2_8_28_1 doi: 10.1039/b517175j – ident: e_1_2_8_65_1 doi: 10.1002/adma.201202186 – ident: e_1_2_8_73_1 doi: 10.1002/(SICI)1097-4628(19980919)69:12<2451::AID-APP16>3.0.CO;2-# – ident: e_1_2_8_3_1 doi: 10.1016/j.orgel.2018.10.020 – ident: e_1_2_8_52_1 doi: 10.1002/pol.20200069 – ident: e_1_2_8_15_1 doi: 10.1063/1.1366365 – ident: e_1_2_8_72_1 doi: 10.1139/v95-234 – ident: e_1_2_8_56_1 doi: 10.1021/ma061814o – ident: e_1_2_8_68_1 doi: 10.1021/jp205818h – ident: e_1_2_8_36_1 doi: 10.1039/b9pp00037b – ident: e_1_2_8_6_1 doi: 10.1039/D0RA04508J – ident: e_1_2_8_70_1 doi: 10.1021/jp037131h – ident: e_1_2_8_35_1 doi: 10.1021/ja993181h – ident: e_1_2_8_43_1 doi: 10.1039/C9GC00617F – ident: e_1_2_8_47_1 doi: 10.1071/CH19336 – ident: e_1_2_8_24_1 doi: 10.1021/ma0211939 – ident: e_1_2_8_16_1 doi: 10.1021/jp0115648 – ident: e_1_2_8_61_1 doi: 10.1002/adma.200306375 – ident: e_1_2_8_40_1 doi: 10.1002/chem.201803473 – ident: e_1_2_8_39_1 doi: 10.1021/ma300888j – ident: e_1_2_8_54_1 doi: 10.1016/j.saa.2014.04.131 – ident: e_1_2_8_19_1 doi: 10.1021/am402833k – ident: e_1_2_8_7_1 doi: 10.1039/C9TC01273G – ident: e_1_2_8_55_1 doi: 10.1039/D1TC04237H – ident: e_1_2_8_34_1 doi: 10.1246/cl.170673 – ident: e_1_2_8_45_1 doi: 10.1039/D1PY01184G – ident: e_1_2_8_44_1 doi: 10.1039/C5CS00137D – ident: e_1_2_8_64_1 doi: 10.1021/acs.jpcc.5b01733 – ident: e_1_2_8_49_1 doi: 10.1016/j.tet.2010.10.050 – ident: e_1_2_8_13_1 doi: 10.1039/c39920000206 – ident: e_1_2_8_53_1 doi: 10.1002/ejoc.201402774 – ident: e_1_2_8_17_1 doi: 10.1039/C7CP02818K – ident: e_1_2_8_23_1 doi: 10.1016/j.jphotochem.2019.112341 – ident: e_1_2_8_12_1 doi: 10.1016/j.tet.2005.04.044 – ident: e_1_2_8_50_1 doi: 10.1039/c1py00119a – ident: e_1_2_8_1_1 doi: 10.1002/adfm.201907507 – ident: e_1_2_8_46_1 doi: 10.1016/j.jlumin.2019.01.031 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.200304295 – ident: e_1_2_8_14_1 doi: 10.1007/s10043-997-0655-3 – ident: e_1_2_8_30_1 doi: 10.1021/jo050710t – ident: e_1_2_8_20_1 doi: 10.1021/jp108982x – ident: e_1_2_8_21_1 doi: 10.1039/C1JM14872A – ident: e_1_2_8_48_1 doi: 10.1039/C5RA01141H – ident: e_1_2_8_58_1 doi: 10.1021/ma801633m – ident: e_1_2_8_69_1 doi: 10.1039/D2CP01240E – ident: e_1_2_8_51_1 doi: 10.1002/chem.200305447 – ident: e_1_2_8_9_1 doi: 10.1021/cr500249p – ident: e_1_2_8_71_1 doi: 10.1038/ncomms5666 – ident: e_1_2_8_67_1 doi: 10.1246/bcsj.73.2389 – ident: e_1_2_8_38_1 doi: 10.1021/cr100320w – ident: e_1_2_8_22_1 doi: 10.1063/5.0044177 – ident: e_1_2_8_25_1 doi: 10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F – ident: e_1_2_8_10_1 doi: 10.1016/j.tet.2017.09.049 – ident: e_1_2_8_4_1 doi: 10.1002/adfm.200700414 – ident: e_1_2_8_42_1 doi: 10.1021/acs.macromol.5b01252 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-019-13796-w – ident: e_1_2_8_37_1 doi: 10.1021/acs.chemrev.6b00498 – ident: e_1_2_8_11_1 doi: 10.1021/jo020114o – ident: e_1_2_8_27_1 doi: 10.1246/cl.1999.905 – ident: e_1_2_8_5_1 doi: 10.1021/acsami.0c12735 – ident: e_1_2_8_29_1 doi: 10.1039/c1py00167a – ident: e_1_2_8_60_1 doi: 10.1002/pi.2467 – ident: e_1_2_8_66_1 doi: 10.1063/1.2942400 – ident: e_1_2_8_26_1 doi: 10.1039/C39870000466 |
SSID | ssj0008097 |
Score | 2.4635413 |
Snippet | A series of alternating copolymers of a dithienylethene with di‐n‐alkyl‐fluorene (P1–P3), di‐n‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5), and... Abstract A series of alternating copolymers of a dithienylethene with di‐ n ‐alkyl‐fluorene (P1–P3), di‐ n ‐hexylphenylene (P4), 9‐heptadecanylcarbazole (P5),... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Chloroform Copolymers diarylethenes Dichloromethane Glass transition temperature organic electronics photochromes Photochromism Photodegradation Polymers Tetrahydrofuran Thermal stability Thin films Toluene |
Title | Structure–Property Relationships of Solution‐Processable Diarylethene‐Based Main‐Chain Photochromic Polymers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202300161 https://www.proquest.com/docview/3070694127 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60F734FqtV9iB4ik02j02OtSoiVIIP8Bb2FVrURtp4qKf-hIL_sL_EmaRp1YugpySQDZudnZmP2ZlvCDkGoxdxPwos5gF881JHWpGxpSVd7kpllOQaT3Q7N8HVg3f96D9-qeIv-SHmATfUjMJeo4ILOWwuSENfhEK-SYDQiFrACDsux5yu89sFf1Rol91VMGXdAahRsTbarPl9-HevtICaXwFr4XEu14mo5lommjydvuXyVL3_oHH8z89skLUZHKWtcv9skiXT3yIr7aoL3DbJ7wqC2beBmY4_YozcD_IRnafQdXuvQ5qltIquTceTWekBlmTR8x5M6RlrivswfnIGLlPTjujhe-0uXGnczfJMdQdYHE3j7HmEcfQd8nB5cd--smadGizlOsyx_EArKRRACc8wrTVLfaNDUH3HV0FgKxmpSKaCRZ4tmKtMaEAiqc0Do7h2deDuklo_65s9QkMemtA3wuYKwIWDdGngMoMwNIJpJ0rr5KSSVPJaEnIkJfUyS3AVk_kq1kmjEmQyU8xhgiYOa3cZrxNWSOSXrySdVjueP-3_ZdABWYV7r0wwa5AayM0cApTJ5RFZZl58VGzaT5aB8ZA |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsNADLVYDnBhR5R1DkicAslkP0ILKktRxSJxizJL1IrSVCUc4MQnVOIP-yXYSdMCFyQ4RYniaDIej5889jPAPm56oe-GnsEdhG9OYgkj1KYwhO3bQmopfEUnuo1rr37vXDy4ZTYh1cIU_BDjgBtZRr5fk4FTQPpowhr6FEsinEQMTbBlGmbR5m1qYlC7mTBIBWbRX4WS1i0EGyVvo8mPvst_90sTsPkVsuY-52wRRDnaItXk8fAlE4fy7QeR479-ZwkWRoiUHRdLaBmmdHcF5qplI7hVyG5zjtmXvh6-fzQpeN_PXtk4i67V7j2zNGFlgG34PhhVH1BVFqu1cUwdKivuovzgBL2mYo24Te9VW3hlzVaapbLVp_po1kw7rxRKX4P7s9O7at0YNWswpG1xy3A9JUUsEU04miuleOJqFaD1W670PFOKUIYiiXnomDG3pQ40qiQxfU9LX9nKs9dhppt29QawwA904OrY9CXiC4sY09BrekGgY66sMKnAQamqqFdwckQF-zKPaBaj8SxWYLvUZDSyzeeIdjkq3-V-BXiukl--EjWOq83x3eZfhPZgrn7XuIquzq8vt2AenztFvtk2zKAO9Q4im0zs5mv3E-4e9NM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ74SNSLb2O16h5MPKGwwAJHbW181RC1SW-EfZA2amkqHvTkTzDxH_aXuAOlVS8meiIQhiw7OztfZme-AdjXm17guQEzqKPhm5NY3AiUyQ1uezYXSnBP4olu85qdtZyLttv-UsVf8EOMA25oGfl-jQbel8nRhDT0MRbIN6khNKKWaZh1mG1iUlf9ZkIg5ZtFexXMWbc01ihpG0169F3-u1uaYM2viDV3OY0liMvBFpkm94fPGT8Urz94HP_zN8uwOMKj5LhYQCswpXqrMF8r28CtQXabM8w-D9Tw7SPE0P0geyHjHLpOt_9E0oSU4bXh2_uo9gBrski9q4f0gEXFPS3_fqJ9piTNuIvv1Tr6SsJOmqWiM8DqaBKmDy8YSF-HVuP0rnZmjFo1GMK2qGW4TAoeC40lHEWllDRxlfS17VuuYMwUPBABT2IaOGZMbaF8pTWSmB5TwpO2ZPYGzPTSntoE4nu-8l0Vm57Q6MJCvjTtM5nvq5hKK0gqcFBqKuoXjBxRwb1MI5zFaDyLFaiWioxGlvkU4R6HxbvUqwDNNfLLV6LmcS0c3239RWgP5sJ6I7o6v77chgX92CmSzaowo1WodjSsyfhuvnI_ASSx84I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93Property+Relationships+of+Solution%E2%80%90Processable+Diarylethene%E2%80%90Based+Main%E2%80%90Chain+Photochromic+Polymers&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Gwebu%2C+Sandile&rft.au=Marshall%2C+David&rft.au=Sonar%2C+Prashant&rft.au=Philippa%2C+Bronson&rft.date=2024-06-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=225&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmacp.202300161&rft.externalDBID=10.1002%252Fmacp.202300161&rft.externalDocID=MACP202300161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |