Aqueous Zinc Metal Batteries with Anode Stabilized by Plasma Treatment
Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma tr...
Saved in:
Published in | Energy technology (Weinheim, Germany) Vol. 12; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1.
A simple yet efficient plasma surface treatment process is developed for dendrite‐suppressed Zn deposition. The as‐formed surface ZnF2 layer can significantly decrease the Zn self‐diffusion energy barrier by more than 10 times (0.02 vs 0.25 eV). As a result, the Zn‐based full cells exhibit greatly improved electrochemical performance. |
---|---|
AbstractList | Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1.
A simple yet efficient plasma surface treatment process is developed for dendrite‐suppressed Zn deposition. The as‐formed surface ZnF2 layer can significantly decrease the Zn self‐diffusion energy barrier by more than 10 times (0.02 vs 0.25 eV). As a result, the Zn‐based full cells exhibit greatly improved electrochemical performance. Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1. Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF 2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF 2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V 2 O 5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V 2 O 5 ), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g −1 at 2000 mA g −1 , along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g −1 . |
Author | Ming, Fangwang Mohammed, Omar F. Alshareef, Ayman H. |
Author_xml | – sequence: 1 givenname: Fangwang surname: Ming fullname: Ming, Fangwang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Ayman H. surname: Alshareef fullname: Alshareef, Ayman H. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Omar F. orcidid: 0000-0001-8500-1130 surname: Mohammed fullname: Mohammed, Omar F. email: omar.abdelsaboor@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BookMark | eNqFkD1PwzAQhi1UJErpymyJOeX8ETsZS1U-pPIhkYnFcpOzSJUmxXZVlV9PqqIyMt0Nz3Pv6b0kg7ZrkZBrBhMGwG-xjTjhwAUwCXBGhpzlMpE8V4PTnmUXZBzCCgAYpCIFMST3068tdttAP-q2pM8YbUPvbIzoawx0V8dPOm27Cul7tMu6qb-xoss9fWtsWFtaeLRx3WdfkXNnm4Dj3zkixf28mD0mi9eHp9l0kZSCcUiEVhmTyKpKpcpJxzPrVCUr5tISM1YyV6aIecqZlalgKpdcYeU009op7cSI3BzPbnzX_x2iWXVb3_aJRoDQXGmhdU9NjlTpuxA8OrPx9dr6vWFgDm2ZQ1vm1FYv5EdhVze4_4c285di_uf-AMWSbqk |
Cites_doi | 10.1002/adma.200500663 10.1002/anie.202000162 10.1021/jacs.0c11753 10.1002/adma.202001113 10.31635/ccschem.020.202000325 10.5040/9798216959151 10.1002/aenm.202100608 10.3390/en15238966 10.1002/cey2.67 10.1126/sciadv.abe0219 10.1039/c0nr00246a 10.1016/j.jechem.2019.03.014 10.1021/acs.chemmater.6b00232 10.1002/adfm.201803329 10.1021/acs.nanolett.6b03803 10.1016/j.nanoen.2019.05.059 10.1002/adfm.202001263 10.1002/adma.201703725 10.1016/j.electacta.2014.12.145 10.1002/eom2.12035 10.1016/j.jpowsour.2017.03.069 10.1002/ente.202100490 10.1016/j.jpowsour.2015.02.114 10.1002/ente.202000348 10.1002/adma.202003021 10.1016/j.nanoen.2017.04.007 10.1002/adma.202007388 10.1039/C9EE00956F 10.1039/C6TA10204B 10.1002/aenm.201801090 10.1021/acsami.9b11243 10.1002/aenm.201801804 10.1002/aenm.201000010 10.1002/aenm.201904215 10.1016/j.nanoen.2020.104523 10.1016/j.mser.2018.10.002 10.1002/adfm.201909832 10.1002/admi.201800848 10.1002/anie.202008634 10.1016/j.ensm.2022.04.006 10.1002/adfm.202000599 10.1021/acsenergylett.1c01249 10.1039/C8EE01991F 10.1002/anie.202001844 10.1021/acsenergylett.0c02684 10.1002/adfm.201908528 10.1002/ange.201707093 10.1002/anie.201904174 10.1016/j.cej.2020.128096 10.1002/adsu.201800111 10.1002/adma.201705850 10.1002/adma.202007406 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Energy Technology published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Energy Technology published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1002/ente.202301400 |
DatabaseName | Wiley Online Library Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2194-4296 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ente_202301400 ENTE202301400 |
Genre | article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 50Y 8-1 AAESR AAHQN AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BFHJK BMXJE BRXPI D-B DCZOG EBS EDH EJD G-S GODZA HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c3120-376814e1dd656f4f28af6d4d1f5ce81c1fc5ee9521a453169426edf7177f67f3 |
IEDL.DBID | 24P |
ISSN | 2194-4288 |
IngestDate | Sat Jul 26 02:22:13 EDT 2025 Tue Jul 01 04:10:49 EDT 2025 Sun Jul 06 04:45:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3120-376814e1dd656f4f28af6d4d1f5ce81c1fc5ee9521a453169426edf7177f67f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8500-1130 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202301400 |
PQID | 3037267377 |
PQPubID | 2034361 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3037267377 crossref_primary_10_1002_ente_202301400 wiley_primary_10_1002_ente_202301400_ENTE202301400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Energy technology (Weinheim, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2020 2017 2019; 8 129 37 2021 2020 2020 2020 2021 2018 2020 2020 2020 2020 2021 2022; 417 59 30 32 143 8 30 10 59 30 7 50 2018 2021; 5 9 2019 2019 2018 2020 2020; 58 135 11 2 2 2020 2019 2021; 70 62 11 2022; 15 2021 2021 2021; 33 33 6 2003 2018 2019 2020; 30 12 32 2011 2018 2015 2017 2015 2005 2016; 1 28 283 350 155 17 28 2020 2019; 59 11 2010; 2 2019 2021; 3 6 2018 2018 2020 2016 2017 2021; 8 30 30 16 35 3 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_3_5 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_11_6 e_1_2_7_11_5 e_1_2_7_15_1 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_9_3 e_1_2_7_8_10 e_1_2_7_8_12 e_1_2_7_8_11 Myers R. (e_1_2_7_2_1) 2003 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_4_7 e_1_2_7_8_3 e_1_2_7_4_6 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_16_3 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_8_7 e_1_2_7_8_6 e_1_2_7_8_5 e_1_2_7_8_4 e_1_2_7_8_9 e_1_2_7_8_8 |
References_xml | – volume: 15 start-page: 8966 year: 2022 publication-title: Energies – volume: 30 12 32 start-page: 1703725 2273 2001113 year: 2018 2019 2020 publication-title: Adv. Mater. Energy Environ. Sci. Adv. Mater. – volume: 5 9 start-page: 1800848 2100490 year: 2018 2021 publication-title: Adv. Mater. Interfaces Energy Technol. – volume: 58 135 11 2 2 start-page: 7823 58 3075 540 e12035 year: 2019 2019 2018 2020 2020 publication-title: Angew. Chem., Int. Ed. Mater. Sci. Eng., R Energy Environ. Sci. Carbon Energy EcoMat – volume: 1 28 283 350 155 17 28 start-page: 34 1803329 358 109 61 2753 4536 year: 2011 2018 2015 2017 2015 2005 2016 publication-title: Adv. Energy Mater. Adv. Funct. Mater. J. Power Sources J. Power Sources Electrochim. Acta Adv. Mater. Chem. Mater. – year: 2003 – volume: 70 62 11 start-page: 104523 550 2100608 year: 2020 2019 2021 publication-title: Nano Energy Nano Energy Adv. Energy Mater. – volume: 8 30 30 16 35 3 start-page: 1801804 1705850 1909832 7718 331 1553 year: 2018 2018 2020 2016 2017 2021 publication-title: Adv. Energy Mater. Adv. Mater. Adv. Funct. Mater. Nano Lett. Nano Energy CCS Chem. – volume: 3 6 start-page: 1800111 1015 year: 2019 2021 publication-title: Adv. Sustainable Syst. ACS Energy Lett. – volume: 8 129 37 start-page: 2000348 14395 197 year: 2020 2017 2019 publication-title: Energy Technol. Angew. Chem. J. Energy Chem. – volume: 33 33 6 start-page: 2007406 2007388 3063 year: 2021 2021 2021 publication-title: Adv. Mater. Adv. Mater. ACS Energy Lett. – volume: 2 start-page: 2131 year: 2010 publication-title: Nanoscale – volume: 5 start-page: 3483 year: 2017 publication-title: J. Mater. Chem. A – volume: 59 11 start-page: 13180 32046 year: 2020 2019 publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces – volume: 417 59 30 32 143 8 30 10 59 30 7 50 start-page: 128096 19292 1908528 2003021 3143 1801090 2000599 1904215 9377 2001263 eabe0219 435 year: 2021 2020 2020 2020 2021 2018 2020 2020 2020 2020 2021 2022 publication-title: Chem. Eng. J. Angew. Chem., Int. Ed. Adv. Funct. Mater. Adv. Mater. J. Am. Chem. Soc. Adv. Energy Mater. Adv. Funct. Mater. Adv. Energy Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Sci. Adv. Energy Storage Mater. – ident: e_1_2_7_4_6 doi: 10.1002/adma.200500663 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202000162 – ident: e_1_2_7_8_5 doi: 10.1021/jacs.0c11753 – ident: e_1_2_7_16_3 doi: 10.1002/adma.202001113 – ident: e_1_2_7_11_6 doi: 10.31635/ccschem.020.202000325 – volume-title: The Basics of Chemistry year: 2003 ident: e_1_2_7_2_1 doi: 10.5040/9798216959151 – ident: e_1_2_7_5_3 doi: 10.1002/aenm.202100608 – ident: e_1_2_7_15_1 doi: 10.3390/en15238966 – ident: e_1_2_7_3_4 doi: 10.1002/cey2.67 – ident: e_1_2_7_8_11 doi: 10.1126/sciadv.abe0219 – ident: e_1_2_7_14_1 doi: 10.1039/c0nr00246a – ident: e_1_2_7_9_3 doi: 10.1016/j.jechem.2019.03.014 – ident: e_1_2_7_4_7 doi: 10.1021/acs.chemmater.6b00232 – ident: e_1_2_7_4_2 doi: 10.1002/adfm.201803329 – ident: e_1_2_7_11_4 doi: 10.1021/acs.nanolett.6b03803 – ident: e_1_2_7_5_2 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_7_8_10 doi: 10.1002/adfm.202001263 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201703725 – ident: e_1_2_7_4_5 doi: 10.1016/j.electacta.2014.12.145 – ident: e_1_2_7_3_5 doi: 10.1002/eom2.12035 – ident: e_1_2_7_4_4 doi: 10.1016/j.jpowsour.2017.03.069 – ident: e_1_2_7_7_2 doi: 10.1002/ente.202100490 – ident: e_1_2_7_4_3 doi: 10.1016/j.jpowsour.2015.02.114 – ident: e_1_2_7_9_1 doi: 10.1002/ente.202000348 – ident: e_1_2_7_8_4 doi: 10.1002/adma.202003021 – ident: e_1_2_7_11_5 doi: 10.1016/j.nanoen.2017.04.007 – ident: e_1_2_7_10_2 doi: 10.1002/adma.202007388 – ident: e_1_2_7_16_2 doi: 10.1039/C9EE00956F – ident: e_1_2_7_13_1 doi: 10.1039/C6TA10204B – ident: e_1_2_7_8_6 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_6_2 doi: 10.1021/acsami.9b11243 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201801804 – ident: e_1_2_7_4_1 doi: 10.1002/aenm.201000010 – ident: e_1_2_7_8_8 doi: 10.1002/aenm.201904215 – ident: e_1_2_7_5_1 doi: 10.1016/j.nanoen.2020.104523 – ident: e_1_2_7_3_2 doi: 10.1016/j.mser.2018.10.002 – ident: e_1_2_7_11_3 doi: 10.1002/adfm.201909832 – ident: e_1_2_7_7_1 doi: 10.1002/admi.201800848 – ident: e_1_2_7_8_2 doi: 10.1002/anie.202008634 – ident: e_1_2_7_8_12 doi: 10.1016/j.ensm.2022.04.006 – ident: e_1_2_7_8_7 doi: 10.1002/adfm.202000599 – ident: e_1_2_7_10_3 doi: 10.1021/acsenergylett.1c01249 – ident: e_1_2_7_3_3 doi: 10.1039/C8EE01991F – ident: e_1_2_7_8_9 doi: 10.1002/anie.202001844 – ident: e_1_2_7_12_2 doi: 10.1021/acsenergylett.0c02684 – ident: e_1_2_7_8_3 doi: 10.1002/adfm.201908528 – ident: e_1_2_7_9_2 doi: 10.1002/ange.201707093 – ident: e_1_2_7_3_1 doi: 10.1002/anie.201904174 – ident: e_1_2_7_8_1 doi: 10.1016/j.cej.2020.128096 – ident: e_1_2_7_12_1 doi: 10.1002/adsu.201800111 – ident: e_1_2_7_11_2 doi: 10.1002/adma.201705850 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202007406 |
SSID | ssj0001053503 |
Score | 2.266606 |
Snippet | Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Anodes Aqueous electrolytes aqueous Zn metal batteries Batteries Dendrites Density functional theory Diffusion barriers Heavy metals Plasma plasma treatment Polyanilines Vanadium pentoxide Zinc zinc fluoride Zinc fluorides zinc metal anode |
Title | Aqueous Zinc Metal Batteries with Anode Stabilized by Plasma Treatment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202301400 https://www.proquest.com/docview/3037267377 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLZQu8CAeIpCqW5AYgrNXS6vsYJWFaJVJYJUsUTJ3VliIFS0DPDr8eXRx4TElgzx4MTn73PszwA3qBX6MbqOq7UgguK7ThRj6HDkkYsauSqHwibTYPwiH-f-fGuKv9KHWBfcbGSU57UN8Cxf9jeioVay8s4u_7YcgUh7287XWvV8IWebKouVLynXI1NkSoewdtQoN7qiv2tiNzNt4OY2aC2zzugIDmu4yAbV-z2GPVOcwMGWiOApjAZkgfg7e30rFJsYQtOsUs0kEsxsnZURx9eGEa60nbA_RrP8m80INr9nLGkazc8gGQ2T-7FTb0dwlMft2DMRBS4N15ogGUoUUYaBlpqjr0zEFUflGxNTes4kBVoQUy42Gom-hRiE6J1Dq_gozAWwTEXSGPKAl0vp6zijtB-p0BOh_UnDZQduG8eki0oDI63UjkVqXZiuXdiBbuO3tI6FZUpJMhR2HU7YAVH68g8r6XCaDNd3l_956Ar26bpuselCa_X5Za4JPazyXvmB9KA9eJg8Pf8Cyhy7Og |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hMgAD4ikKBTwgMYXGjhM7Y4VaFWirDkFCLFbqh8RAQFAG-PWc8-hjQmJMpNzwJZf7vtP5O4ArZ7SLUxcGoTEMBUocBjJ1IqCOytAZR3V5KGw8SYaP_P4pbqYJ_VmYyh9i0XDzmVH-r32C-4Z0d-ka6j0rb_z2by8SULVv8oQJn5uMT5dtFu9fUu5HxtTkAZJt2Vg3hqy7HmK9NC355iprLcvOYA92a75IetUL3ocNWxzAzoqL4CEMehgBBTx5fik0GVuk06SyzUQVTHyjlaDIN5YgsfSjsD_WkNk3mSJvfs1J1kyaH0E26Ge3w6BejxDoiPpzz6gUKLfUGORkjjsmc5cYbqiLtZVUU6dja1OszznHTEtSLMbWONRvwiXCRcfQKt4KewIk15JbiwhEM85jk-ZY96UWEcJJE0F5G64bYNR7ZYKhKrtjpjyEagFhGzoNbqpOhk-FVVIwvw9HtIGVWP4RRfUnWX9xdfqfhy5ha5iNR2p0N3k4g228X8_bdKA1__iy50gl5rOL8mP5BRljvRI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kguhBfGK16h4ET7HZZPM6Fm2oj5YeIhQvS7q7Ax6MRetBf72zefRxEjwmkDlMMpnvm535BuAKtcIgQddxtfaIoASuEycYORx57KJGrsqhsOEoHDyLh0kwWZnir_QhFgU3Gxnl_9oG-ExjdykaaiUrb-zyb8sRiLRvlid-VttZjJdVFitfUq5HpsgUDmHtuFFudL3uuon1zLSEm6ugtcw66R7s1nCR9ar3uw8bpjiAnRURwUNIe2SB-Dt7eS0UGxpC06xSzSQSzGydlRHH14YRrrSdsD9Gs-k3GxNsfstZ1jSaH0GW9rPbgVNvR3CUz-3YMxEFLgzXmiAZCvTiHEMtNMdAmZgrjiowJqH0nAsKtDChXGw0En2LMIzQP4ZW8V6YE2C5ioUx5AF_KkSgk5zSfqwi34vsIQ0XbbhuHCNnlQaGrNSOPWldKBcubEOn8ZusY-FTUpKMPLsOJ2qDV_ryDyuyP8r6i6vT_zx0CVvju1Q-3Y8ez2CbbtfdNh1ozT--zDkBifn0ovxWfgEwKLxE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueous+Zinc+Metal+Batteries+with+Anode+Stabilized+by+Plasma+Treatment&rft.jtitle=Energy+technology+%28Weinheim%2C+Germany%29&rft.au=Fangwang+Ming&rft.au=Alshareef%2C+Ayman+H&rft.au=Mohammed%2C+Omar+F&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2194-4288&rft.eissn=2194-4296&rft.volume=12&rft.issue=4&rft_id=info:doi/10.1002%2Fente.202301400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-4288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-4288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-4288&client=summon |