Aqueous Zinc Metal Batteries with Anode Stabilized by Plasma Treatment

Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma tr...

Full description

Saved in:
Bibliographic Details
Published inEnergy technology (Weinheim, Germany) Vol. 12; no. 4
Main Authors Ming, Fangwang, Alshareef, Ayman H., Mohammed, Omar F.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1. A simple yet efficient plasma surface treatment process is developed for dendrite‐suppressed Zn deposition. The as‐formed surface ZnF2 layer can significantly decrease the Zn self‐diffusion energy barrier by more than 10 times (0.02 vs 0.25 eV). As a result, the Zn‐based full cells exhibit greatly improved electrochemical performance.
AbstractList Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1. A simple yet efficient plasma surface treatment process is developed for dendrite‐suppressed Zn deposition. The as‐formed surface ZnF2 layer can significantly decrease the Zn self‐diffusion energy barrier by more than 10 times (0.02 vs 0.25 eV). As a result, the Zn‐based full cells exhibit greatly improved electrochemical performance.
Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1.
Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF 2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF 2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V 2 O 5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V 2 O 5 ), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g −1 at 2000 mA g −1 , along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g −1 .
Author Ming, Fangwang
Mohammed, Omar F.
Alshareef, Ayman H.
Author_xml – sequence: 1
  givenname: Fangwang
  surname: Ming
  fullname: Ming, Fangwang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Ayman H.
  surname: Alshareef
  fullname: Alshareef, Ayman H.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Omar F.
  orcidid: 0000-0001-8500-1130
  surname: Mohammed
  fullname: Mohammed, Omar F.
  email: omar.abdelsaboor@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNqFkD1PwzAQhi1UJErpymyJOeX8ETsZS1U-pPIhkYnFcpOzSJUmxXZVlV9PqqIyMt0Nz3Pv6b0kg7ZrkZBrBhMGwG-xjTjhwAUwCXBGhpzlMpE8V4PTnmUXZBzCCgAYpCIFMST3068tdttAP-q2pM8YbUPvbIzoawx0V8dPOm27Cul7tMu6qb-xoss9fWtsWFtaeLRx3WdfkXNnm4Dj3zkixf28mD0mi9eHp9l0kZSCcUiEVhmTyKpKpcpJxzPrVCUr5tISM1YyV6aIecqZlalgKpdcYeU009op7cSI3BzPbnzX_x2iWXVb3_aJRoDQXGmhdU9NjlTpuxA8OrPx9dr6vWFgDm2ZQ1vm1FYv5EdhVze4_4c285di_uf-AMWSbqk
Cites_doi 10.1002/adma.200500663
10.1002/anie.202000162
10.1021/jacs.0c11753
10.1002/adma.202001113
10.31635/ccschem.020.202000325
10.5040/9798216959151
10.1002/aenm.202100608
10.3390/en15238966
10.1002/cey2.67
10.1126/sciadv.abe0219
10.1039/c0nr00246a
10.1016/j.jechem.2019.03.014
10.1021/acs.chemmater.6b00232
10.1002/adfm.201803329
10.1021/acs.nanolett.6b03803
10.1016/j.nanoen.2019.05.059
10.1002/adfm.202001263
10.1002/adma.201703725
10.1016/j.electacta.2014.12.145
10.1002/eom2.12035
10.1016/j.jpowsour.2017.03.069
10.1002/ente.202100490
10.1016/j.jpowsour.2015.02.114
10.1002/ente.202000348
10.1002/adma.202003021
10.1016/j.nanoen.2017.04.007
10.1002/adma.202007388
10.1039/C9EE00956F
10.1039/C6TA10204B
10.1002/aenm.201801090
10.1021/acsami.9b11243
10.1002/aenm.201801804
10.1002/aenm.201000010
10.1002/aenm.201904215
10.1016/j.nanoen.2020.104523
10.1016/j.mser.2018.10.002
10.1002/adfm.201909832
10.1002/admi.201800848
10.1002/anie.202008634
10.1016/j.ensm.2022.04.006
10.1002/adfm.202000599
10.1021/acsenergylett.1c01249
10.1039/C8EE01991F
10.1002/anie.202001844
10.1021/acsenergylett.0c02684
10.1002/adfm.201908528
10.1002/ange.201707093
10.1002/anie.201904174
10.1016/j.cej.2020.128096
10.1002/adsu.201800111
10.1002/adma.201705850
10.1002/adma.202007406
ContentType Journal Article
Copyright 2024 The Authors. Energy Technology published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Energy Technology published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/ente.202301400
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2194-4296
EndPage n/a
ExternalDocumentID 10_1002_ente_202301400
ENTE202301400
Genre article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID 05W
0R~
1OC
24P
31~
33P
50Y
8-1
AAESR
AAHQN
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
EBS
EDH
EJD
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3120-376814e1dd656f4f28af6d4d1f5ce81c1fc5ee9521a453169426edf7177f67f3
IEDL.DBID 24P
ISSN 2194-4288
IngestDate Sat Jul 26 02:22:13 EDT 2025
Tue Jul 01 04:10:49 EDT 2025
Sun Jul 06 04:45:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3120-376814e1dd656f4f28af6d4d1f5ce81c1fc5ee9521a453169426edf7177f67f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8500-1130
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202301400
PQID 3037267377
PQPubID 2034361
PageCount 8
ParticipantIDs proquest_journals_3037267377
crossref_primary_10_1002_ente_202301400
wiley_primary_10_1002_ente_202301400_ENTE202301400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Energy technology (Weinheim, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2020 2017 2019; 8 129 37
2021 2020 2020 2020 2021 2018 2020 2020 2020 2020 2021 2022; 417 59 30 32 143 8 30 10 59 30 7 50
2018 2021; 5 9
2019 2019 2018 2020 2020; 58 135 11 2 2
2020 2019 2021; 70 62 11
2022; 15
2021 2021 2021; 33 33 6
2003
2018 2019 2020; 30 12 32
2011 2018 2015 2017 2015 2005 2016; 1 28 283 350 155 17 28
2020 2019; 59 11
2010; 2
2019 2021; 3 6
2018 2018 2020 2016 2017 2021; 8 30 30 16 35 3
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_3_5
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_11_6
e_1_2_7_11_5
e_1_2_7_15_1
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_9_3
e_1_2_7_8_10
e_1_2_7_8_12
e_1_2_7_8_11
Myers R. (e_1_2_7_2_1) 2003
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_4_7
e_1_2_7_8_3
e_1_2_7_4_6
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_16_3
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_8_7
e_1_2_7_8_6
e_1_2_7_8_5
e_1_2_7_8_4
e_1_2_7_8_9
e_1_2_7_8_8
References_xml – volume: 15
  start-page: 8966
  year: 2022
  publication-title: Energies
– volume: 30 12 32
  start-page: 1703725 2273 2001113
  year: 2018 2019 2020
  publication-title: Adv. Mater. Energy Environ. Sci. Adv. Mater.
– volume: 5 9
  start-page: 1800848 2100490
  year: 2018 2021
  publication-title: Adv. Mater. Interfaces Energy Technol.
– volume: 58 135 11 2 2
  start-page: 7823 58 3075 540 e12035
  year: 2019 2019 2018 2020 2020
  publication-title: Angew. Chem., Int. Ed. Mater. Sci. Eng., R Energy Environ. Sci. Carbon Energy EcoMat
– volume: 1 28 283 350 155 17 28
  start-page: 34 1803329 358 109 61 2753 4536
  year: 2011 2018 2015 2017 2015 2005 2016
  publication-title: Adv. Energy Mater. Adv. Funct. Mater. J. Power Sources J. Power Sources Electrochim. Acta Adv. Mater. Chem. Mater.
– year: 2003
– volume: 70 62 11
  start-page: 104523 550 2100608
  year: 2020 2019 2021
  publication-title: Nano Energy Nano Energy Adv. Energy Mater.
– volume: 8 30 30 16 35 3
  start-page: 1801804 1705850 1909832 7718 331 1553
  year: 2018 2018 2020 2016 2017 2021
  publication-title: Adv. Energy Mater. Adv. Mater. Adv. Funct. Mater. Nano Lett. Nano Energy CCS Chem.
– volume: 3 6
  start-page: 1800111 1015
  year: 2019 2021
  publication-title: Adv. Sustainable Syst. ACS Energy Lett.
– volume: 8 129 37
  start-page: 2000348 14395 197
  year: 2020 2017 2019
  publication-title: Energy Technol. Angew. Chem. J. Energy Chem.
– volume: 33 33 6
  start-page: 2007406 2007388 3063
  year: 2021 2021 2021
  publication-title: Adv. Mater. Adv. Mater. ACS Energy Lett.
– volume: 2
  start-page: 2131
  year: 2010
  publication-title: Nanoscale
– volume: 5
  start-page: 3483
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 59 11
  start-page: 13180 32046
  year: 2020 2019
  publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces
– volume: 417 59 30 32 143 8 30 10 59 30 7 50
  start-page: 128096 19292 1908528 2003021 3143 1801090 2000599 1904215 9377 2001263 eabe0219 435
  year: 2021 2020 2020 2020 2021 2018 2020 2020 2020 2020 2021 2022
  publication-title: Chem. Eng. J. Angew. Chem., Int. Ed. Adv. Funct. Mater. Adv. Mater. J. Am. Chem. Soc. Adv. Energy Mater. Adv. Funct. Mater. Adv. Energy Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Sci. Adv. Energy Storage Mater.
– ident: e_1_2_7_4_6
  doi: 10.1002/adma.200500663
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202000162
– ident: e_1_2_7_8_5
  doi: 10.1021/jacs.0c11753
– ident: e_1_2_7_16_3
  doi: 10.1002/adma.202001113
– ident: e_1_2_7_11_6
  doi: 10.31635/ccschem.020.202000325
– volume-title: The Basics of Chemistry
  year: 2003
  ident: e_1_2_7_2_1
  doi: 10.5040/9798216959151
– ident: e_1_2_7_5_3
  doi: 10.1002/aenm.202100608
– ident: e_1_2_7_15_1
  doi: 10.3390/en15238966
– ident: e_1_2_7_3_4
  doi: 10.1002/cey2.67
– ident: e_1_2_7_8_11
  doi: 10.1126/sciadv.abe0219
– ident: e_1_2_7_14_1
  doi: 10.1039/c0nr00246a
– ident: e_1_2_7_9_3
  doi: 10.1016/j.jechem.2019.03.014
– ident: e_1_2_7_4_7
  doi: 10.1021/acs.chemmater.6b00232
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.201803329
– ident: e_1_2_7_11_4
  doi: 10.1021/acs.nanolett.6b03803
– ident: e_1_2_7_5_2
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_7_8_10
  doi: 10.1002/adfm.202001263
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201703725
– ident: e_1_2_7_4_5
  doi: 10.1016/j.electacta.2014.12.145
– ident: e_1_2_7_3_5
  doi: 10.1002/eom2.12035
– ident: e_1_2_7_4_4
  doi: 10.1016/j.jpowsour.2017.03.069
– ident: e_1_2_7_7_2
  doi: 10.1002/ente.202100490
– ident: e_1_2_7_4_3
  doi: 10.1016/j.jpowsour.2015.02.114
– ident: e_1_2_7_9_1
  doi: 10.1002/ente.202000348
– ident: e_1_2_7_8_4
  doi: 10.1002/adma.202003021
– ident: e_1_2_7_11_5
  doi: 10.1016/j.nanoen.2017.04.007
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.202007388
– ident: e_1_2_7_16_2
  doi: 10.1039/C9EE00956F
– ident: e_1_2_7_13_1
  doi: 10.1039/C6TA10204B
– ident: e_1_2_7_8_6
  doi: 10.1002/aenm.201801090
– ident: e_1_2_7_6_2
  doi: 10.1021/acsami.9b11243
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201801804
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.201000010
– ident: e_1_2_7_8_8
  doi: 10.1002/aenm.201904215
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nanoen.2020.104523
– ident: e_1_2_7_3_2
  doi: 10.1016/j.mser.2018.10.002
– ident: e_1_2_7_11_3
  doi: 10.1002/adfm.201909832
– ident: e_1_2_7_7_1
  doi: 10.1002/admi.201800848
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.202008634
– ident: e_1_2_7_8_12
  doi: 10.1016/j.ensm.2022.04.006
– ident: e_1_2_7_8_7
  doi: 10.1002/adfm.202000599
– ident: e_1_2_7_10_3
  doi: 10.1021/acsenergylett.1c01249
– ident: e_1_2_7_3_3
  doi: 10.1039/C8EE01991F
– ident: e_1_2_7_8_9
  doi: 10.1002/anie.202001844
– ident: e_1_2_7_12_2
  doi: 10.1021/acsenergylett.0c02684
– ident: e_1_2_7_8_3
  doi: 10.1002/adfm.201908528
– ident: e_1_2_7_9_2
  doi: 10.1002/ange.201707093
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201904174
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cej.2020.128096
– ident: e_1_2_7_12_1
  doi: 10.1002/adsu.201800111
– ident: e_1_2_7_11_2
  doi: 10.1002/adma.201705850
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202007406
SSID ssj0001053503
Score 2.266606
Snippet Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Anodes
Aqueous electrolytes
aqueous Zn metal batteries
Batteries
Dendrites
Density functional theory
Diffusion barriers
Heavy metals
Plasma
plasma treatment
Polyanilines
Vanadium pentoxide
Zinc
zinc fluoride
Zinc fluorides
zinc metal anode
Title Aqueous Zinc Metal Batteries with Anode Stabilized by Plasma Treatment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202301400
https://www.proquest.com/docview/3037267377
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLZQu8CAeIpCqW5AYgrNXS6vsYJWFaJVJYJUsUTJ3VliIFS0DPDr8eXRx4TElgzx4MTn73PszwA3qBX6MbqOq7UgguK7ThRj6HDkkYsauSqHwibTYPwiH-f-fGuKv9KHWBfcbGSU57UN8Cxf9jeioVay8s4u_7YcgUh7287XWvV8IWebKouVLynXI1NkSoewdtQoN7qiv2tiNzNt4OY2aC2zzugIDmu4yAbV-z2GPVOcwMGWiOApjAZkgfg7e30rFJsYQtOsUs0kEsxsnZURx9eGEa60nbA_RrP8m80INr9nLGkazc8gGQ2T-7FTb0dwlMft2DMRBS4N15ogGUoUUYaBlpqjr0zEFUflGxNTes4kBVoQUy42Gom-hRiE6J1Dq_gozAWwTEXSGPKAl0vp6zijtB-p0BOh_UnDZQduG8eki0oDI63UjkVqXZiuXdiBbuO3tI6FZUpJMhR2HU7YAVH68g8r6XCaDNd3l_956Ar26bpuselCa_X5Za4JPazyXvmB9KA9eJg8Pf8Cyhy7Og
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hMgAD4ikKBTwgMYXGjhM7Y4VaFWirDkFCLFbqh8RAQFAG-PWc8-hjQmJMpNzwJZf7vtP5O4ArZ7SLUxcGoTEMBUocBjJ1IqCOytAZR3V5KGw8SYaP_P4pbqYJ_VmYyh9i0XDzmVH-r32C-4Z0d-ka6j0rb_z2by8SULVv8oQJn5uMT5dtFu9fUu5HxtTkAZJt2Vg3hqy7HmK9NC355iprLcvOYA92a75IetUL3ocNWxzAzoqL4CEMehgBBTx5fik0GVuk06SyzUQVTHyjlaDIN5YgsfSjsD_WkNk3mSJvfs1J1kyaH0E26Ge3w6BejxDoiPpzz6gUKLfUGORkjjsmc5cYbqiLtZVUU6dja1OszznHTEtSLMbWONRvwiXCRcfQKt4KewIk15JbiwhEM85jk-ZY96UWEcJJE0F5G64bYNR7ZYKhKrtjpjyEagFhGzoNbqpOhk-FVVIwvw9HtIGVWP4RRfUnWX9xdfqfhy5ha5iNR2p0N3k4g228X8_bdKA1__iy50gl5rOL8mP5BRljvRI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kguhBfGK16h4ET7HZZPM6Fm2oj5YeIhQvS7q7Ax6MRetBf72zefRxEjwmkDlMMpnvm535BuAKtcIgQddxtfaIoASuEycYORx57KJGrsqhsOEoHDyLh0kwWZnir_QhFgU3Gxnl_9oG-ExjdykaaiUrb-zyb8sRiLRvlid-VttZjJdVFitfUq5HpsgUDmHtuFFudL3uuon1zLSEm6ugtcw66R7s1nCR9ar3uw8bpjiAnRURwUNIe2SB-Dt7eS0UGxpC06xSzSQSzGydlRHH14YRrrSdsD9Gs-k3GxNsfstZ1jSaH0GW9rPbgVNvR3CUz-3YMxEFLgzXmiAZCvTiHEMtNMdAmZgrjiowJqH0nAsKtDChXGw0En2LMIzQP4ZW8V6YE2C5ioUx5AF_KkSgk5zSfqwi34vsIQ0XbbhuHCNnlQaGrNSOPWldKBcubEOn8ZusY-FTUpKMPLsOJ2qDV_ryDyuyP8r6i6vT_zx0CVvju1Q-3Y8ez2CbbtfdNh1ozT--zDkBifn0ovxWfgEwKLxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueous+Zinc+Metal+Batteries+with+Anode+Stabilized+by+Plasma+Treatment&rft.jtitle=Energy+technology+%28Weinheim%2C+Germany%29&rft.au=Fangwang+Ming&rft.au=Alshareef%2C+Ayman+H&rft.au=Mohammed%2C+Omar+F&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2194-4288&rft.eissn=2194-4296&rft.volume=12&rft.issue=4&rft_id=info:doi/10.1002%2Fente.202301400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-4288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-4288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-4288&client=summon