Cancer data classification by quantum-inspired immune clone optimization-based optimal feature selection using gene expression data: deep learning approach
PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utiliza...
Saved in:
Published in | Data technologies and applications Vol. 56; no. 2; pp. 247 - 282 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bingley
Emerald Publishing Limited
15.03.2022
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
ISSN | 2514-9288 2514-9318 |
DOI | 10.1108/DTA-05-2020-0109 |
Cover
Loading…
Abstract | PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.Design/methodology/approachThe proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.FindingsThe proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.Originality/valueThis paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data. |
---|---|
AbstractList | Purpose>Gene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.Design/methodology/approach>The proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.Findings>The proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.Originality/value>This paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data. PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.Design/methodology/approachThe proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.FindingsThe proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.Originality/valueThis paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data. |
Author | Eluri, Nageswara Rao Dondeti, Venkatesulu Kancharla, Gangadhara Rao Dara, Suresh |
Author_xml | – sequence: 1 givenname: Nageswara Rao orcidid: 0000-0001-5945-2560 surname: Eluri fullname: Eluri, Nageswara Rao email: nageswararaoeluri38@gmail.com – sequence: 2 givenname: Gangadhara Rao orcidid: 0000-0002-0255-7190 surname: Kancharla fullname: Kancharla, Gangadhara Rao email: kancherla123@gmail.com – sequence: 3 givenname: Suresh orcidid: 0000-0001-6769-5511 surname: Dara fullname: Dara, Suresh email: darasuresh@live.in – sequence: 4 givenname: Venkatesulu orcidid: 0000-0002-9705-398X surname: Dondeti fullname: Dondeti, Venkatesulu email: drvenkatesulud43@gmail.com |
BookMark | eNp9kU9PHSEUxUmjiVbduyRxTYVh_j135rW2TUzc6Jpc4GIxM8wITFL7VfyyZd5rFzWNK8jld-7h3vORHIQpICHngn8SgveXn--vGW9YxSvOuOCbD-S4akTNNlL0B3_vVd8fkbOUnjgvXNPJvjkmr1sIBiO1kIGaAVLyzhvIfgpUv9DnBUJeRuZDmn1ES_04LgELWT5Apzn70f_a0UxDKu-7EgzUIeQlIk04oNl1W5IPj_QRiw5_zhGLU6muvlfUIs50QIhhZWCe4wTmxyk5dDAkPPtznpCHmy_322_s9u7r9-31LTNSiMyckbYWFW8doG6sE9rwujEGjdSCI2rdO6klh7412nYtdFo42_Yb40TVaCtPyMW-b7F9XjBl9TQtMRRLVXWireuqq2Wh2j1l4pRSRKeMz7vRcwQ_KMHVmoUqWSjeqDULtWZRhPyNcI5lR_HlPcnlXoIjRhjs_xT_BC5_A22zoOM |
CitedBy_id | crossref_primary_10_1007_s10115_024_02282_5 crossref_primary_10_1109_ACCESS_2024_3392633 crossref_primary_10_3934_math_2022504 |
Cites_doi | 10.1109/ACCESS.2021.3064084 10.1016/j.cell.2014.06.049 10.1109/TCBB.2018.2790918 10.1109/TCBB.2017.2767589 10.1016/j.neucom.2014.06.023 10.1109/TCBB.2007.70239 10.1016/j.cam.2011.10.002 10.1109/TNNLS.2017.2729778 10.1109/TCBB.2014.2312002 10.1016/j.ygeno.2019.11.004 10.1016/j.compeleceng.2013.11.024 10.1016/j.jneumeth.2019.05.006 10.1016/j.comcom.2020.03.031 10.1049/ccs2.12003 10.1109/JSTSP.2011.2160840 10.1109/TITB.2008.907984 10.1109/ACCESS.2019.2960722 10.1038/nrg2484 10.1109/TCBB.2015.2474389 10.1073/pnas.211566398 10.1007/s00521-016-2701-1 10.3322/caac.21332 10.1109/TCBB.2017.2712607 10.1109/TFUZZ.2015.2453153 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
DBID | AAYXX CITATION 0-V 7SC 7WY 7WZ 7XB 8FD 8FE 8FG ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CJNVE CNYFK DWQXO E3H F2A F~G GNUQQ HCIFZ JQ2 K6~ K7- L.- L7M L~C L~D M0C M0N M0P M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEDU PQEST PQGLB PQQKQ PQUKI PRQQA PYYUZ Q9U |
DOI | 10.1108/DTA-05-2020-0109 |
DatabaseName | CrossRef ProQuest Social Sciences Premium Collection Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Education Collection Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Education Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest One Education ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Library Science ProQuest Central Korea Library & Information Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest One Education |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Mathematics |
EISSN | 2514-9318 |
EndPage | 282 |
ExternalDocumentID | 10_1108_DTA_05_2020_0109 10.1108/DTA-05-2020-0109 |
GeographicLocations | United States--US Wisconsin |
GeographicLocations_xml | – name: Wisconsin – name: United States--US |
GroupedDBID | 3FY 7WY 9F- AAMCF AAPBV AAUDR ABIJV ABSDC ACGFS ADOMW AEUCW AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS ALSLI ARAPS ASMFL AZQEC BENPR BVLZF EBS ECCUG GEI GQ. HCIFZ K7- KBGRL KLENG M0C M0P M1O SLOBJ TGG TMF TMI TMT X0 Z12 .X0 0-V 8FE 8FG AAYXX ABJNI ABUWG ABYQI ACXJU AFKRA AFNTC AHMHQ AODMV ARALO AUCOK BEZIV BGLVJ BPHCQ CCPQU CITATION CJNVE CNYFK DWQXO GNUQQ H13 K6V K6~ M42 P62 PHGZM PHGZT PQBIZ PQEDU PQGLB PQQKQ PROAC PRQQA SCAQC Z11 Z21 -~X 0R~ 123 1JL 29P 2RR 4.4 5VS 70U 77K 7SC 7XB 8FD 8NV 8R4 8R5 9E0 AAOWE AAPSD ABEAN ABHCV ADMHG AEBZA AEDOK AEMMR AETHF AFNZV AIAFM AJFKA APPLU ATGMP E3H F2A FNNZZ GEA GEC GMM GMN IJT J1Y JI- JL0 JQ2 L.- L7M L~C L~D M0N O9- OXR P2P PKEHL PQEST PQUKI Q2X Q9U SQT TDX TEM TET TMD TMK TMX Z22 |
ID | FETCH-LOGICAL-c311t-fc3d41206faeb5df1bc045ccec3b10eebb8f3b30a86cbd76a7b1fd689cf125bd3 |
IEDL.DBID | GEI |
ISSN | 2514-9288 |
IngestDate | Mon Jun 30 13:32:28 EDT 2025 Thu Jul 31 01:04:14 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Tue Mar 15 01:51:21 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Optimal feature selection Quantum-inspired immune clone optimization algorithm Statistical feature extraction Gene expression data Recurrent neural network Cancer classification |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-fc3d41206faeb5df1bc045ccec3b10eebb8f3b30a86cbd76a7b1fd689cf125bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0255-7190 0000-0002-9705-398X 0000-0001-6769-5511 0000-0001-5945-2560 |
PQID | 2716442743 |
PQPubID | 12296 |
PageCount | 36 |
ParticipantIDs | crossref_citationtrail_10_1108_DTA_05_2020_0109 proquest_journals_2716442743 emerald_primary_10_1108_DTA-05-2020-0109 crossref_primary_10_1108_DTA_05_2020_0109 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Bingley |
PublicationPlace_xml | – name: Bingley |
PublicationTitle | Data technologies and applications |
PublicationYear | 2022 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2022031408460037000_ref013) 1996; 14 (key2022031408460037000_ref023) 2014; 11 (key2022031408460037000_ref008) 2019; 187 (key2022031408460037000_ref029) 2018; 19 (key2022031408460037000_ref034) 2012; 20 (key2022031408460037000_ref012) 2008; 8 (key2022031408460037000_ref004) 2020; 5 (key2022031408460037000_ref007) 2014; 143 (key2022031408460037000_ref032) 2001; 98 (key2022031408460037000_fur1) 2019; 16 (key2022031408460037000_ref005) 2021; 9 (key2022031408460037000_ref038) 2009; 10 (key2022031408460037000_ref042) 2009; 6 (key2022031408460037000_ref015) 2019; 7 (key2022031408460037000_ref037) 2000; 28 (key2022031408460037000_ref043) 2015; 10 (key2022031408460037000_ref040) 2018; 15 (key2022031408460037000_ref027) 2016 the Alzheimer's Disease Neuroimaging Initiative (key2022031408460037000_ref026) 2019; 323 (key2022031408460037000_ref014) 2018; 29 (key2022031408460037000_ref020) 2014; 158 (key2022031408460037000_ref030) 2016; 24 (key2022031408460037000_ref002) 2009; 13 (key2022031408460037000_ref041) 2014 (key2022031408460037000_ref001) 2020; 163 (key2022031408460037000_ref016) 2015; 14 (key2022031408460037000_ref009) 2020 (key2022031408460037000_ref006) 2014; 40 (key2022031408460037000_ref022) 2021; 9 (key2022031408460037000_ref019) 2012; 236 (key2022031408460037000_ref031) 2020; 19 (key2022031408460037000_ref010) 2021; 3 (key2022031408460037000_ref024) 2008 (key2022031408460037000_ref021) 2016; 13 (key2022031408460037000_ref028) 2019; 16 (key2022031408460037000_ref011) 2017 (key2022031408460037000_ref033) 2015 (key2022031408460037000_ref039) 2018; 29 (key2022031408460037000_ref025) 2015; 11 (key2022031408460037000_ref035) 2016; 66 (key2022031408460037000_ref003) 2012 (key2022031408460037000_ref017) 2011; 5 (key2022031408460037000_ref018) 2020; 112 (key2022031408460037000_ref036) 2020; 11 |
References_xml | – volume: 9 start-page: 39707 year: 2021 ident: key2022031408460037000_ref022 article-title: Improving the prediction of heart failure patients' survival using SMOTE and effective data mining techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064084 – volume: 19 issue: 2 year: 2020 ident: key2022031408460037000_ref031 article-title: Optimized recurrent neural network with fuzzy classifier for data prediction using hybrid optimization algorithm: scope towards diverse applications publication-title: International Journal of Wavelets, Multiresolution and Information Processing – volume: 158 start-page: 929 year: 2014 ident: key2022031408460037000_ref020 article-title: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin publication-title: Cell doi: 10.1016/j.cell.2014.06.049 – volume: 16 start-page: 442 issue: 2 year: 2019 ident: key2022031408460037000_fur1 article-title: A unified model for joint normalization and differential gene expression detection in RNA-seq data publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2018.2790918 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: key2022031408460037000_ref004 article-title: Deep learning approach for microarray cancer data classification publication-title: CAAI Transactions on Intelligence Technology – volume: 11 issue: 4 year: 2020 ident: key2022031408460037000_ref036 article-title: Predicting students' academic performance: levy search of cuckoo-based hybrid classification publication-title: International Journal of Grid and Utility Computing – volume: 16 start-page: 312 issue: 1 year: 2019 ident: key2022031408460037000_ref028 article-title: Structured penalized logistic regression for gene selection in gene expression data analysis publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2017.2767589 – volume: 20 start-page: 565 issue: 2 year: 2012 ident: key2022031408460037000_ref034 article-title: A word-based naïve Bayes classifier for confidence estimation in speech recognition publication-title: IEEE Transactions on Audio, Speech, and Language Processing – volume: 143 start-page: 44 year: 2014 ident: key2022031408460037000_ref007 article-title: Gene expression data clustering based on graph regularized subspace segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.023 – volume: 6 start-page: 333 issue: 2 year: 2009 ident: key2022031408460037000_ref042 article-title: Optimal aggregation of binary classifiers for multiclass cancer diagnosis using gene expression profiles publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2007.70239 – volume: 236 start-page: 1708 issue: 7 year: 2012 ident: key2022031408460037000_ref019 article-title: A multilevel approach for nonnegative matrix factorization publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2011.10.002 – volume: 29 start-page: 3510 issue: 8 year: 2018 ident: key2022031408460037000_ref039 article-title: A novel consistent random forest framework: bernoulli random forests publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2729778 – volume: 9 start-page: 1457 issue: 2 year: 2021 ident: key2022031408460037000_ref005 article-title: Rapid digitization of healthcare - a review of COVID-19 impact on our health systems publication-title: International Journal of All Research Education and Scientific Methods – volume: 11 start-page: 533 issue: 3 year: 2014 ident: key2022031408460037000_ref023 article-title: Mining gene expression data focusing cancer therapeutics: a digest publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2014.2312002 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: key2022031408460037000_ref029 article-title: Feature selection of gene expression data for Cancer classification using double RBF-kernels publication-title: BMC Bioinformatics – volume: 112 start-page: 1916 issue: 2 year: 2020 ident: key2022031408460037000_ref018 article-title: Unsupervised feature selection algorithm for multiclass cancer classification of gene expression RNA-Seq data publication-title: Genomics doi: 10.1016/j.ygeno.2019.11.004 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: key2022031408460037000_ref006 article-title: A survey on feature selec-tion methods publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2013.11.024 – volume: 14 issue: 2 year: 2015 ident: key2022031408460037000_ref016 article-title: Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis publication-title: Briefings in Functional Genomics – volume: 323 start-page: 108 year: 2019 ident: key2022031408460037000_ref026 article-title: A hybrid convolutional and recurrent neural network for Hippocampus analysis in alzheimer's disease publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2019.05.006 – start-page: 84 year: 2015 ident: key2022031408460037000_ref033 article-title: An improved quantum inspired immune clone optimization algorithm – start-page: 185 year: 2012 ident: key2022031408460037000_ref003 article-title: Feature selection and classification for gene expression data using evolutionary computation – start-page: 1 year: 2008 ident: key2022031408460037000_ref024 article-title: Differential evolution based feature subset selection – volume: 163 start-page: 162 year: 2020 ident: key2022031408460037000_ref001 article-title: Prevention of hello flood attack in IoT using combination of deep learning with improved rider optimization algorithm publication-title: Computer Communications doi: 10.1016/j.comcom.2020.03.031 – volume: 3 start-page: 48 year: 2021 ident: key2022031408460037000_ref010 article-title: Ensemble learning‐based classification of microarray cancer data on tree‐based features publication-title: Cognitive Computation and Systems doi: 10.1049/ccs2.12003 – volume: 5 start-page: 989 issue: 5 year: 2011 ident: key2022031408460037000_ref017 article-title: Adaptive sparsity non-negative matrix factorization for single-channel source separation publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2011.2160840 – volume: 10 issue: 9 year: 2015 ident: key2022031408460037000_ref043 article-title: Semi-supervised projective non-negative matrix factorization for cancer classification publication-title: PLoS One – volume: 8 start-page: 497 year: 2008 ident: key2022031408460037000_ref012 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC Bioinformatics – volume: 28 start-page: 74 issue: 7 year: 2000 ident: key2022031408460037000_ref037 article-title: The immune algorithm publication-title: Acta Electronica Sinica – volume: 13 start-page: 419 issue: 4 year: 2009 ident: key2022031408460037000_ref002 article-title: Complementary DNA microarray image processing based on the fuzzy Gaussian mixture model publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2008.907984 – start-page: 1 year: 2020 ident: key2022031408460037000_ref009 article-title: Optimal feature extraction and classification-oriented medical insurance prediction model: machine learning integrated with the internet of things publication-title: International Journal of Computers and Applications – volume: 7 start-page: 185338 year: 2019 ident: key2022031408460037000_ref015 article-title: Lightweight convolutional neural network for breast cancer classification using RNA-seq gene expression data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960722 – volume: 14 issue: 4 year: 1996 ident: key2022031408460037000_ref013 article-title: Use of a cDNA microarray to analyse gene expression patterns in human cancer publication-title: Nature Genetics – volume: 10 start-page: 57 issue: 1 year: 2009 ident: key2022031408460037000_ref038 article-title: RNA-Seq: a revolutionary tool for transcriptomics publication-title: Nature Reviews Genetics doi: 10.1038/nrg2484 – volume: 13 start-page: 43 issue: 1 year: 2016 ident: key2022031408460037000_ref021 article-title: A faster cDNA microarray gene expression data classifier for diagnosing diseases publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2015.2474389 – start-page: 2364 year: 2016 ident: key2022031408460037000_ref027 article-title: Gauss-Seidel based non-negative matrix factorization for gene expression clustering – volume: 98 start-page: 15149 issue: 26 year: 2001 ident: key2022031408460037000_ref032 article-title: Multiclass cancer diagnosis using tumor gene expression signatures publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.211566398 – volume: 11 start-page: 951 year: 2015 ident: key2022031408460037000_ref025 article-title: RNA sequencing and analysis publication-title: Cold Spring Harbor Protocols – volume: 29 start-page: 1545 issue: 12 year: 2018 ident: key2022031408460037000_ref014 article-title: Artificial neural network model for effective cancer classification using microarray gene expression data publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2701-1 – volume: 66 start-page: 7 issue: 1 year: 2016 ident: key2022031408460037000_ref035 article-title: Cancer statistics, 2016 publication-title: A Cancer Journal for Clinicians doi: 10.3322/caac.21332 – volume: 15 start-page: 1315 issue: 4 year: 2018 ident: key2022031408460037000_ref040 article-title: A self-training subspace clustering algorithm under low-rank representation for cancer classification on gene expression data publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2017.2712607 – start-page: 1 year: 2017 ident: key2022031408460037000_ref011 article-title: A rough based hybrid binary PSO algorithm for flat feature selec-tion and classification in gene expression data publication-title: Annals of Data Science – volume: 24 start-page: 273 issue: 2 year: 2016 ident: key2022031408460037000_ref030 article-title: Modified AHP for gene selection and cancer classification using type-2 fuzzy logic publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2453153 – volume-title: Nature-inspired Optimization Algorithms year: 2014 ident: key2022031408460037000_ref041 – volume: 187 start-page: 1 year: 2019 ident: key2022031408460037000_ref008 article-title: Fast density peak clustering for large scale data based on kNN publication-title: Knowledge-Based Systems |
SSID | ssj0002057385 ssj0017386 |
Score | 2.238306 |
Snippet | PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are... Purpose>Gene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 247 |
SubjectTerms | Accuracy Algorithms Bioinformatics Breast cancer Cancer Classification Cloning Datasets Deep learning Diagnosis Feature extraction Feature selection Gene expression Genetics Heuristic methods Heuristics Leukemia Literature Reviews Lymphoma Machine learning Mathematics Optimization Recurrent neural networks Scientific Concepts Teaching Methods |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XOCAFpYV5SUfEFoOVu04cd29IAQUhAQnkLhFsT1GSPQBbSX2t-yfZSZ1CqwQlxwSO7E8k3l4Hh9jBw5MHjoyiKqIWuSVV6LSOggdUDmigRKNpNrh6xtzeZdf3Rf36cBtnNIqG5lYC-ow9HRG3s7IsM_Rh9LHo2dBqFEUXU0QGotsWaGmIT63vYt5FIEALQlcDo0C0c2sbcKU0rbPbk8oBpyR9yTrdMQPaum_2tx3-Vwrnd4PtpasRX4yI-86W4DBBttLtQb8kKdiItpcnv7SDbZ6PW_FOv7J_p0SXV84pYJyT7YyJQfNpri__HmKWzvti8cBhdwh8EcqGAEcOcTrEAVKP1VqClJ4YXYL1xShbgnKxzWQDr2NUugfODIkcHhN-bWD-rt_eAAY8YRQ8cCbRuab7K53fnt6KRIig_BaqYmIXodcZdLEClwRonIeTULvwWunJIBzNmqnZWWNd6Fjqo5TMRjb9RENKRf0L7Y0wOVvMW4znxddKDRU6KIbb6MyQQEV5qMQ0qbF2g1BSp_alRNqxlNZuy3SlkjCUhYlkbAkErbY0XzGaNaq45uxvxONvxr6iTNabLdhgjL93-PynRu3v3-8w1YyKpigDMBily1NXqawh2bMxO3XvPoGBA3xkA priority: 102 providerName: ProQuest |
Title | Cancer data classification by quantum-inspired immune clone optimization-based optimal feature selection using gene expression data: deep learning approach |
URI | https://www.emerald.com/insight/content/doi/10.1108/DTA-05-2020-0109/full/html https://www.proquest.com/docview/2716442743 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71ceHCG7G0XfmAEBzcjePE6-VWSpcKqQtCrdRbFL9KRffRblYC_gp_lhnHKWpVIQ5ccogmjq3Pnhnb880AvDReFW6YOV6XQfKitoLXUjouHRpHdFCCyog7fDRRhyfFx9PydA0mHRcmhlW2xzFRT5_PlrRJHVDgNmrh64QDVL3m_fEe3ePmtAOiG54BnVgPvjbTi3XYFOTIdOTfdOaSU_a_WKUTrXrBR7nW3c3lHc3dsFS36Lp_VHa0Q-MHMO9G0IaffNtdNWbX_ryV3PH_DfEh3E8uK9tr59gjWPOzx7CTCA_sFUuMJkKYJVXxBH7t03S6YhSByiy56BST1AqZH-xyhYiuphx7tUCl69g58VQ8Ss7xOUc9Nk0EUU521rWvsBfBx0ykbBnr91BrFLl_xnAdeOa_p7DeWfzvW-a8X7BUGOOMdfnTn8LJ-OB4_5CnQhDcSiEaHqx0hcgzFWpvSheEseiJWuutNCLz3hgdpJFZrZU1bqjqoRHBKT2yAf034-Qz2Jhh958D07ktypEvpa-zQimrg1BOeMoHgLpPqh4MOtArm7KkU7GOiyruljJdISRVVlYESUWQ9ODN9ReLNkPIX2RfJ-TvEr2BdA-2u4lWJbWyrHLa3RY5en0v_r2lLbiXE2eDghDLbdhorlZ-Bz2pxvRhXY8_9GHz3cHk85d-XCz4PBKffgNrJRxZ |
linkProvider | Emerald |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9AAcEBQQgbbsARAcVtn12hsHCaH-KqVNhFAq9Wa8f1UlmqRNIuiz8A48IzP2OgWEeuvFB3vXXumbnZn1zDcD8Mp4nbqucLzMguJpaSUvlXJcOTSO6KAELYg7PBjq_nH66SQ7WYFfDReG0iobnVgpajex9I-8k5Bjn-IZSn2cXnDqGkXR1aaFRi0Wh_7qOx7ZZh8OdhHf10myvzfa6fPYVYBbJeWcB6tcKhOhQ-lN5oI0Ft0aa71VRgrvjcmDMkqUubbGdXXZNTI4nfdsQGfAOIXvvQOrKTFaW7C6vTf8_GUZt6AWmtTODt0Q3kvyvAmMiryzO9qiqHNC5zVRJUD-YQj_YQNfW4TKzO0_hAfRP2VbtUA9ghU_XoONyG5gb1ikLxGcLOqFNbg_WBZ_nT2GnzskSZeMkk-ZJe-c0pHqKeaKXSwQzMU5PxtTkN87dkYUFY8jJ3idoAo7j9xQTibW1bdwTcFXRUjZrGrdQ2-jpP1ThlvAM_8jZvSOq---Z877KYs9MU5ZUzr9CRzfClpPoTXG5T8Dlic2zXo-U74UqdY2D1I76akUAKo9pdvQaQApbCyQTn06vhXVQUnkBUJYiKwgCAuCsA3vljOmdXGQG8a-jRj_b-hfktGG9UYIiqhRZsW1_D-_-fFLuNsfDY6Ko4Ph4Qu4lxBdg_IPs3VozS8XfgOdqLnZjJLL4Ottb5bfLLczMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4ICggFlrwARAcrLXjxPEiIVR1WVpKKw6t1FuIX1Ulurvt7gr6W_gn_DpmEmcLCPXWSw6JnVj65pl5AbywQee-FJ7XRVQ8r53ktVKeK4_KEQ2UqAXVDu_t6-3D_NNRcbQCv7paGEqr7GRiI6j9xNE_8n5Ghn2OPpTqx5QW8WU4ej894zRBiiKt3TiNlkR2w8V3dN9m73aGiPXLLBt9ONja5mnCAHdKyjmPTvlcZkLHOtjCR2kdmjjOBaesFCFYa6KyStRGO-tLXZdWRq_NwEU0DKxX-N4bcLNU5YAcPzP6uIxg0DBNGmyHBgkfZMZ0IVJh-sODTYo_Z-S5iSYV8g-V-E9d8KVuaBTe6B7cTZYq22xJ6z6shPEabKQ6B_aKpUImApYlCbEGd_aWbWBnD-DnFtHUOaM0VObITqfEpHaLvWBnC4R1ccpPxhTuD56dULFKwJUTvE5QmJ2mKlFOyta3t_BMMTTtSNmsGeJDb6P0_WOGzBBY-JFye8fNd98yH8KUpekYx6xrov4QDq8Fq0ewOsbjPwZmMpcXg1CoUItca2ei1F4GagqAAlDpHvQ7QCqXWqXTxI5vVeMyCVMhhJUoKoKwIgh78Ga5Y9q2Cbli7euE8f-W_kUZPVjviKBKsmVWXXLCk6sfP4dbyCLV55393adwO6O6DUpELNZhdX6-CBtoTc3ts4ZsGXy9bj75DfKeNgI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+data+classification+by+quantum-inspired+immune+clone+optimization-based+optimal+feature+selection+using+gene+expression+data%3A+deep+learning+approach&rft.jtitle=Data+technologies+and+applications&rft.au=Eluri%2C+Nageswara+Rao&rft.au=Kancharla%2C+Gangadhara+Rao&rft.au=Dara%2C+Suresh&rft.au=Dondeti%2C+Venkatesulu&rft.date=2022-03-15&rft.pub=Emerald+Publishing+Limited&rft.issn=2514-9288&rft.eissn=2514-9318&rft.volume=56&rft.issue=2&rft.spage=247&rft.epage=282&rft_id=info:doi/10.1108%2FDTA-05-2020-0109&rft.externalDocID=10.1108%2FDTA-05-2020-0109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-9288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-9288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-9288&client=summon |