Cancer data classification by quantum-inspired immune clone optimization-based optimal feature selection using gene expression data: deep learning approach

PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utiliza...

Full description

Saved in:
Bibliographic Details
Published inData technologies and applications Vol. 56; no. 2; pp. 247 - 282
Main Authors Eluri, Nageswara Rao, Kancharla, Gangadhara Rao, Dara, Suresh, Dondeti, Venkatesulu
Format Journal Article
LanguageEnglish
Published Bingley Emerald Publishing Limited 15.03.2022
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN2514-9288
2514-9318
DOI10.1108/DTA-05-2020-0109

Cover

Loading…
Abstract PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.Design/methodology/approachThe proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.FindingsThe proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.Originality/valueThis paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data.
AbstractList Purpose>Gene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.Design/methodology/approach>The proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.Findings>The proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.Originality/value>This paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data.
PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.Design/methodology/approachThe proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.FindingsThe proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.Originality/valueThis paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data.
Author Eluri, Nageswara Rao
Dondeti, Venkatesulu
Kancharla, Gangadhara Rao
Dara, Suresh
Author_xml – sequence: 1
  givenname: Nageswara Rao
  orcidid: 0000-0001-5945-2560
  surname: Eluri
  fullname: Eluri, Nageswara Rao
  email: nageswararaoeluri38@gmail.com
– sequence: 2
  givenname: Gangadhara Rao
  orcidid: 0000-0002-0255-7190
  surname: Kancharla
  fullname: Kancharla, Gangadhara Rao
  email: kancherla123@gmail.com
– sequence: 3
  givenname: Suresh
  orcidid: 0000-0001-6769-5511
  surname: Dara
  fullname: Dara, Suresh
  email: darasuresh@live.in
– sequence: 4
  givenname: Venkatesulu
  orcidid: 0000-0002-9705-398X
  surname: Dondeti
  fullname: Dondeti, Venkatesulu
  email: drvenkatesulud43@gmail.com
BookMark eNp9kU9PHSEUxUmjiVbduyRxTYVh_j135rW2TUzc6Jpc4GIxM8wITFL7VfyyZd5rFzWNK8jld-7h3vORHIQpICHngn8SgveXn--vGW9YxSvOuOCbD-S4akTNNlL0B3_vVd8fkbOUnjgvXNPJvjkmr1sIBiO1kIGaAVLyzhvIfgpUv9DnBUJeRuZDmn1ES_04LgELWT5Apzn70f_a0UxDKu-7EgzUIeQlIk04oNl1W5IPj_QRiw5_zhGLU6muvlfUIs50QIhhZWCe4wTmxyk5dDAkPPtznpCHmy_322_s9u7r9-31LTNSiMyckbYWFW8doG6sE9rwujEGjdSCI2rdO6klh7412nYtdFo42_Yb40TVaCtPyMW-b7F9XjBl9TQtMRRLVXWireuqq2Wh2j1l4pRSRKeMz7vRcwQ_KMHVmoUqWSjeqDULtWZRhPyNcI5lR_HlPcnlXoIjRhjs_xT_BC5_A22zoOM
CitedBy_id crossref_primary_10_1007_s10115_024_02282_5
crossref_primary_10_1109_ACCESS_2024_3392633
crossref_primary_10_3934_math_2022504
Cites_doi 10.1109/ACCESS.2021.3064084
10.1016/j.cell.2014.06.049
10.1109/TCBB.2018.2790918
10.1109/TCBB.2017.2767589
10.1016/j.neucom.2014.06.023
10.1109/TCBB.2007.70239
10.1016/j.cam.2011.10.002
10.1109/TNNLS.2017.2729778
10.1109/TCBB.2014.2312002
10.1016/j.ygeno.2019.11.004
10.1016/j.compeleceng.2013.11.024
10.1016/j.jneumeth.2019.05.006
10.1016/j.comcom.2020.03.031
10.1049/ccs2.12003
10.1109/JSTSP.2011.2160840
10.1109/TITB.2008.907984
10.1109/ACCESS.2019.2960722
10.1038/nrg2484
10.1109/TCBB.2015.2474389
10.1073/pnas.211566398
10.1007/s00521-016-2701-1
10.3322/caac.21332
10.1109/TCBB.2017.2712607
10.1109/TFUZZ.2015.2453153
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0-V
7SC
7WY
7WZ
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CJNVE
CNYFK
DWQXO
E3H
F2A
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M0P
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
PYYUZ
Q9U
DOI 10.1108/DTA-05-2020-0109
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Education Collection
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Education Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Education
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Library Science
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest One Education

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Mathematics
EISSN 2514-9318
EndPage 282
ExternalDocumentID 10_1108_DTA_05_2020_0109
10.1108/DTA-05-2020-0109
GeographicLocations United States--US
Wisconsin
GeographicLocations_xml – name: Wisconsin
– name: United States--US
GroupedDBID 3FY
7WY
9F-
AAMCF
AAPBV
AAUDR
ABIJV
ABSDC
ACGFS
ADOMW
AEUCW
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARAPS
ASMFL
AZQEC
BENPR
BVLZF
EBS
ECCUG
GEI
GQ.
HCIFZ
K7-
KBGRL
KLENG
M0C
M0P
M1O
SLOBJ
TGG
TMF
TMI
TMT
X0
Z12
.X0
0-V
8FE
8FG
AAYXX
ABJNI
ABUWG
ABYQI
ACXJU
AFKRA
AFNTC
AHMHQ
AODMV
ARALO
AUCOK
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CJNVE
CNYFK
DWQXO
GNUQQ
H13
K6V
K6~
M42
P62
PHGZM
PHGZT
PQBIZ
PQEDU
PQGLB
PQQKQ
PROAC
PRQQA
SCAQC
Z11
Z21
-~X
0R~
123
1JL
29P
2RR
4.4
5VS
70U
77K
7SC
7XB
8FD
8NV
8R4
8R5
9E0
AAOWE
AAPSD
ABEAN
ABHCV
ADMHG
AEBZA
AEDOK
AEMMR
AETHF
AFNZV
AIAFM
AJFKA
APPLU
ATGMP
E3H
F2A
FNNZZ
GEA
GEC
GMM
GMN
IJT
J1Y
JI-
JL0
JQ2
L.-
L7M
L~C
L~D
M0N
O9-
OXR
P2P
PKEHL
PQEST
PQUKI
Q2X
Q9U
SQT
TDX
TEM
TET
TMD
TMK
TMX
Z22
ID FETCH-LOGICAL-c311t-fc3d41206faeb5df1bc045ccec3b10eebb8f3b30a86cbd76a7b1fd689cf125bd3
IEDL.DBID GEI
ISSN 2514-9288
IngestDate Mon Jun 30 13:32:28 EDT 2025
Thu Jul 31 01:04:14 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Tue Mar 15 01:51:21 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Optimal feature selection
Quantum-inspired immune clone optimization algorithm
Statistical feature extraction
Gene expression data
Recurrent neural network
Cancer classification
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-fc3d41206faeb5df1bc045ccec3b10eebb8f3b30a86cbd76a7b1fd689cf125bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0255-7190
0000-0002-9705-398X
0000-0001-6769-5511
0000-0001-5945-2560
PQID 2716442743
PQPubID 12296
PageCount 36
ParticipantIDs crossref_citationtrail_10_1108_DTA_05_2020_0109
proquest_journals_2716442743
emerald_primary_10_1108_DTA-05-2020-0109
crossref_primary_10_1108_DTA_05_2020_0109
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Bingley
PublicationPlace_xml – name: Bingley
PublicationTitle Data technologies and applications
PublicationYear 2022
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2022031408460037000_ref013) 1996; 14
(key2022031408460037000_ref023) 2014; 11
(key2022031408460037000_ref008) 2019; 187
(key2022031408460037000_ref029) 2018; 19
(key2022031408460037000_ref034) 2012; 20
(key2022031408460037000_ref012) 2008; 8
(key2022031408460037000_ref004) 2020; 5
(key2022031408460037000_ref007) 2014; 143
(key2022031408460037000_ref032) 2001; 98
(key2022031408460037000_fur1) 2019; 16
(key2022031408460037000_ref005) 2021; 9
(key2022031408460037000_ref038) 2009; 10
(key2022031408460037000_ref042) 2009; 6
(key2022031408460037000_ref015) 2019; 7
(key2022031408460037000_ref037) 2000; 28
(key2022031408460037000_ref043) 2015; 10
(key2022031408460037000_ref040) 2018; 15
(key2022031408460037000_ref027) 2016
the Alzheimer's Disease Neuroimaging Initiative (key2022031408460037000_ref026) 2019; 323
(key2022031408460037000_ref014) 2018; 29
(key2022031408460037000_ref020) 2014; 158
(key2022031408460037000_ref030) 2016; 24
(key2022031408460037000_ref002) 2009; 13
(key2022031408460037000_ref041) 2014
(key2022031408460037000_ref001) 2020; 163
(key2022031408460037000_ref016) 2015; 14
(key2022031408460037000_ref009) 2020
(key2022031408460037000_ref006) 2014; 40
(key2022031408460037000_ref022) 2021; 9
(key2022031408460037000_ref019) 2012; 236
(key2022031408460037000_ref031) 2020; 19
(key2022031408460037000_ref010) 2021; 3
(key2022031408460037000_ref024) 2008
(key2022031408460037000_ref021) 2016; 13
(key2022031408460037000_ref028) 2019; 16
(key2022031408460037000_ref011) 2017
(key2022031408460037000_ref033) 2015
(key2022031408460037000_ref039) 2018; 29
(key2022031408460037000_ref025) 2015; 11
(key2022031408460037000_ref035) 2016; 66
(key2022031408460037000_ref003) 2012
(key2022031408460037000_ref017) 2011; 5
(key2022031408460037000_ref018) 2020; 112
(key2022031408460037000_ref036) 2020; 11
References_xml – volume: 9
  start-page: 39707
  year: 2021
  ident: key2022031408460037000_ref022
  article-title: Improving the prediction of heart failure patients' survival using SMOTE and effective data mining techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064084
– volume: 19
  issue: 2
  year: 2020
  ident: key2022031408460037000_ref031
  article-title: Optimized recurrent neural network with fuzzy classifier for data prediction using hybrid optimization algorithm: scope towards diverse applications
  publication-title: International Journal of Wavelets, Multiresolution and Information Processing
– volume: 158
  start-page: 929
  year: 2014
  ident: key2022031408460037000_ref020
  article-title: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.049
– volume: 16
  start-page: 442
  issue: 2
  year: 2019
  ident: key2022031408460037000_fur1
  article-title: A unified model for joint normalization and differential gene expression detection in RNA-seq data
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2018.2790918
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: key2022031408460037000_ref004
  article-title: Deep learning approach for microarray cancer data classification
  publication-title: CAAI Transactions on Intelligence Technology
– volume: 11
  issue: 4
  year: 2020
  ident: key2022031408460037000_ref036
  article-title: Predicting students' academic performance: levy search of cuckoo-based hybrid classification
  publication-title: International Journal of Grid and Utility Computing
– volume: 16
  start-page: 312
  issue: 1
  year: 2019
  ident: key2022031408460037000_ref028
  article-title: Structured penalized logistic regression for gene selection in gene expression data analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2017.2767589
– volume: 20
  start-page: 565
  issue: 2
  year: 2012
  ident: key2022031408460037000_ref034
  article-title: A word-based naïve Bayes classifier for confidence estimation in speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– volume: 143
  start-page: 44
  year: 2014
  ident: key2022031408460037000_ref007
  article-title: Gene expression data clustering based on graph regularized subspace segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.023
– volume: 6
  start-page: 333
  issue: 2
  year: 2009
  ident: key2022031408460037000_ref042
  article-title: Optimal aggregation of binary classifiers for multiclass cancer diagnosis using gene expression profiles
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2007.70239
– volume: 236
  start-page: 1708
  issue: 7
  year: 2012
  ident: key2022031408460037000_ref019
  article-title: A multilevel approach for nonnegative matrix factorization
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2011.10.002
– volume: 29
  start-page: 3510
  issue: 8
  year: 2018
  ident: key2022031408460037000_ref039
  article-title: A novel consistent random forest framework: bernoulli random forests
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2729778
– volume: 9
  start-page: 1457
  issue: 2
  year: 2021
  ident: key2022031408460037000_ref005
  article-title: Rapid digitization of healthcare - a review of COVID-19 impact on our health systems
  publication-title: International Journal of All Research Education and Scientific Methods
– volume: 11
  start-page: 533
  issue: 3
  year: 2014
  ident: key2022031408460037000_ref023
  article-title: Mining gene expression data focusing cancer therapeutics: a digest
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2014.2312002
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: key2022031408460037000_ref029
  article-title: Feature selection of gene expression data for Cancer classification using double RBF-kernels
  publication-title: BMC Bioinformatics
– volume: 112
  start-page: 1916
  issue: 2
  year: 2020
  ident: key2022031408460037000_ref018
  article-title: Unsupervised feature selection algorithm for multiclass cancer classification of gene expression RNA-Seq data
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.11.004
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: key2022031408460037000_ref006
  article-title: A survey on feature selec-tion methods
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 14
  issue: 2
  year: 2015
  ident: key2022031408460037000_ref016
  article-title: Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis
  publication-title: Briefings in Functional Genomics
– volume: 323
  start-page: 108
  year: 2019
  ident: key2022031408460037000_ref026
  article-title: A hybrid convolutional and recurrent neural network for Hippocampus analysis in alzheimer's disease
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2019.05.006
– start-page: 84
  year: 2015
  ident: key2022031408460037000_ref033
  article-title: An improved quantum inspired immune clone optimization algorithm
– start-page: 185
  year: 2012
  ident: key2022031408460037000_ref003
  article-title: Feature selection and classification for gene expression data using evolutionary computation
– start-page: 1
  year: 2008
  ident: key2022031408460037000_ref024
  article-title: Differential evolution based feature subset selection
– volume: 163
  start-page: 162
  year: 2020
  ident: key2022031408460037000_ref001
  article-title: Prevention of hello flood attack in IoT using combination of deep learning with improved rider optimization algorithm
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2020.03.031
– volume: 3
  start-page: 48
  year: 2021
  ident: key2022031408460037000_ref010
  article-title: Ensemble learning‐based classification of microarray cancer data on tree‐based features
  publication-title: Cognitive Computation and Systems
  doi: 10.1049/ccs2.12003
– volume: 5
  start-page: 989
  issue: 5
  year: 2011
  ident: key2022031408460037000_ref017
  article-title: Adaptive sparsity non-negative matrix factorization for single-channel source separation
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2011.2160840
– volume: 10
  issue: 9
  year: 2015
  ident: key2022031408460037000_ref043
  article-title: Semi-supervised projective non-negative matrix factorization for cancer classification
  publication-title: PLoS One
– volume: 8
  start-page: 497
  year: 2008
  ident: key2022031408460037000_ref012
  article-title: Clustering cancer gene expression data: a comparative study
  publication-title: BMC Bioinformatics
– volume: 28
  start-page: 74
  issue: 7
  year: 2000
  ident: key2022031408460037000_ref037
  article-title: The immune algorithm
  publication-title: Acta Electronica Sinica
– volume: 13
  start-page: 419
  issue: 4
  year: 2009
  ident: key2022031408460037000_ref002
  article-title: Complementary DNA microarray image processing based on the fuzzy Gaussian mixture model
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2008.907984
– start-page: 1
  year: 2020
  ident: key2022031408460037000_ref009
  article-title: Optimal feature extraction and classification-oriented medical insurance prediction model: machine learning integrated with the internet of things
  publication-title: International Journal of Computers and Applications
– volume: 7
  start-page: 185338
  year: 2019
  ident: key2022031408460037000_ref015
  article-title: Lightweight convolutional neural network for breast cancer classification using RNA-seq gene expression data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960722
– volume: 14
  issue: 4
  year: 1996
  ident: key2022031408460037000_ref013
  article-title: Use of a cDNA microarray to analyse gene expression patterns in human cancer
  publication-title: Nature Genetics
– volume: 10
  start-page: 57
  issue: 1
  year: 2009
  ident: key2022031408460037000_ref038
  article-title: RNA-Seq: a revolutionary tool for transcriptomics
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg2484
– volume: 13
  start-page: 43
  issue: 1
  year: 2016
  ident: key2022031408460037000_ref021
  article-title: A faster cDNA microarray gene expression data classifier for diagnosing diseases
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2474389
– start-page: 2364
  year: 2016
  ident: key2022031408460037000_ref027
  article-title: Gauss-Seidel based non-negative matrix factorization for gene expression clustering
– volume: 98
  start-page: 15149
  issue: 26
  year: 2001
  ident: key2022031408460037000_ref032
  article-title: Multiclass cancer diagnosis using tumor gene expression signatures
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.211566398
– volume: 11
  start-page: 951
  year: 2015
  ident: key2022031408460037000_ref025
  article-title: RNA sequencing and analysis
  publication-title: Cold Spring Harbor Protocols
– volume: 29
  start-page: 1545
  issue: 12
  year: 2018
  ident: key2022031408460037000_ref014
  article-title: Artificial neural network model for effective cancer classification using microarray gene expression data
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2701-1
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  ident: key2022031408460037000_ref035
  article-title: Cancer statistics, 2016
  publication-title: A Cancer Journal for Clinicians
  doi: 10.3322/caac.21332
– volume: 15
  start-page: 1315
  issue: 4
  year: 2018
  ident: key2022031408460037000_ref040
  article-title: A self-training subspace clustering algorithm under low-rank representation for cancer classification on gene expression data
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2017.2712607
– start-page: 1
  year: 2017
  ident: key2022031408460037000_ref011
  article-title: A rough based hybrid binary PSO algorithm for flat feature selec-tion and classification in gene expression data
  publication-title: Annals of Data Science
– volume: 24
  start-page: 273
  issue: 2
  year: 2016
  ident: key2022031408460037000_ref030
  article-title: Modified AHP for gene selection and cancer classification using type-2 fuzzy logic
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2453153
– volume-title: Nature-inspired Optimization Algorithms
  year: 2014
  ident: key2022031408460037000_ref041
– volume: 187
  start-page: 1
  year: 2019
  ident: key2022031408460037000_ref008
  article-title: Fast density peak clustering for large scale data based on kNN
  publication-title: Knowledge-Based Systems
SSID ssj0002057385
ssj0017386
Score 2.238306
Snippet PurposeGene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are...
Purpose>Gene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms Accuracy
Algorithms
Bioinformatics
Breast cancer
Cancer
Classification
Cloning
Datasets
Deep learning
Diagnosis
Feature extraction
Feature selection
Gene expression
Genetics
Heuristic methods
Heuristics
Leukemia
Literature Reviews
Lymphoma
Machine learning
Mathematics
Optimization
Recurrent neural networks
Scientific Concepts
Teaching Methods
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XOCAFpYV5SUfEFoOVu04cd29IAQUhAQnkLhFsT1GSPQBbSX2t-yfZSZ1CqwQlxwSO7E8k3l4Hh9jBw5MHjoyiKqIWuSVV6LSOggdUDmigRKNpNrh6xtzeZdf3Rf36cBtnNIqG5lYC-ow9HRG3s7IsM_Rh9LHo2dBqFEUXU0QGotsWaGmIT63vYt5FIEALQlcDo0C0c2sbcKU0rbPbk8oBpyR9yTrdMQPaum_2tx3-Vwrnd4PtpasRX4yI-86W4DBBttLtQb8kKdiItpcnv7SDbZ6PW_FOv7J_p0SXV84pYJyT7YyJQfNpri__HmKWzvti8cBhdwh8EcqGAEcOcTrEAVKP1VqClJ4YXYL1xShbgnKxzWQDr2NUugfODIkcHhN-bWD-rt_eAAY8YRQ8cCbRuab7K53fnt6KRIig_BaqYmIXodcZdLEClwRonIeTULvwWunJIBzNmqnZWWNd6Fjqo5TMRjb9RENKRf0L7Y0wOVvMW4znxddKDRU6KIbb6MyQQEV5qMQ0qbF2g1BSp_alRNqxlNZuy3SlkjCUhYlkbAkErbY0XzGaNaq45uxvxONvxr6iTNabLdhgjL93-PynRu3v3-8w1YyKpigDMBily1NXqawh2bMxO3XvPoGBA3xkA
  priority: 102
  providerName: ProQuest
Title Cancer data classification by quantum-inspired immune clone optimization-based optimal feature selection using gene expression data: deep learning approach
URI https://www.emerald.com/insight/content/doi/10.1108/DTA-05-2020-0109/full/html
https://www.proquest.com/docview/2716442743
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71ceHCG7G0XfmAEBzcjePE6-VWSpcKqQtCrdRbFL9KRffRblYC_gp_lhnHKWpVIQ5ccogmjq3Pnhnb880AvDReFW6YOV6XQfKitoLXUjouHRpHdFCCyog7fDRRhyfFx9PydA0mHRcmhlW2xzFRT5_PlrRJHVDgNmrh64QDVL3m_fEe3ePmtAOiG54BnVgPvjbTi3XYFOTIdOTfdOaSU_a_WKUTrXrBR7nW3c3lHc3dsFS36Lp_VHa0Q-MHMO9G0IaffNtdNWbX_ryV3PH_DfEh3E8uK9tr59gjWPOzx7CTCA_sFUuMJkKYJVXxBH7t03S6YhSByiy56BST1AqZH-xyhYiuphx7tUCl69g58VQ8Ss7xOUc9Nk0EUU521rWvsBfBx0ykbBnr91BrFLl_xnAdeOa_p7DeWfzvW-a8X7BUGOOMdfnTn8LJ-OB4_5CnQhDcSiEaHqx0hcgzFWpvSheEseiJWuutNCLz3hgdpJFZrZU1bqjqoRHBKT2yAf034-Qz2Jhh958D07ktypEvpa-zQimrg1BOeMoHgLpPqh4MOtArm7KkU7GOiyruljJdISRVVlYESUWQ9ODN9ReLNkPIX2RfJ-TvEr2BdA-2u4lWJbWyrHLa3RY5en0v_r2lLbiXE2eDghDLbdhorlZ-Bz2pxvRhXY8_9GHz3cHk85d-XCz4PBKffgNrJRxZ
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9AAcEBQQgbbsARAcVtn12hsHCaH-KqVNhFAq9Wa8f1UlmqRNIuiz8A48IzP2OgWEeuvFB3vXXumbnZn1zDcD8Mp4nbqucLzMguJpaSUvlXJcOTSO6KAELYg7PBjq_nH66SQ7WYFfDReG0iobnVgpajex9I-8k5Bjn-IZSn2cXnDqGkXR1aaFRi0Wh_7qOx7ZZh8OdhHf10myvzfa6fPYVYBbJeWcB6tcKhOhQ-lN5oI0Ft0aa71VRgrvjcmDMkqUubbGdXXZNTI4nfdsQGfAOIXvvQOrKTFaW7C6vTf8_GUZt6AWmtTODt0Q3kvyvAmMiryzO9qiqHNC5zVRJUD-YQj_YQNfW4TKzO0_hAfRP2VbtUA9ghU_XoONyG5gb1ikLxGcLOqFNbg_WBZ_nT2GnzskSZeMkk-ZJe-c0pHqKeaKXSwQzMU5PxtTkN87dkYUFY8jJ3idoAo7j9xQTibW1bdwTcFXRUjZrGrdQ2-jpP1ThlvAM_8jZvSOq---Z877KYs9MU5ZUzr9CRzfClpPoTXG5T8Dlic2zXo-U74UqdY2D1I76akUAKo9pdvQaQApbCyQTn06vhXVQUnkBUJYiKwgCAuCsA3vljOmdXGQG8a-jRj_b-hfktGG9UYIiqhRZsW1_D-_-fFLuNsfDY6Ko4Ph4Qu4lxBdg_IPs3VozS8XfgOdqLnZjJLL4Ottb5bfLLczMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4ICggFlrwARAcrLXjxPEiIVR1WVpKKw6t1FuIX1Ulurvt7gr6W_gn_DpmEmcLCPXWSw6JnVj65pl5AbywQee-FJ7XRVQ8r53ktVKeK4_KEQ2UqAXVDu_t6-3D_NNRcbQCv7paGEqr7GRiI6j9xNE_8n5Ghn2OPpTqx5QW8WU4ej894zRBiiKt3TiNlkR2w8V3dN9m73aGiPXLLBt9ONja5mnCAHdKyjmPTvlcZkLHOtjCR2kdmjjOBaesFCFYa6KyStRGO-tLXZdWRq_NwEU0DKxX-N4bcLNU5YAcPzP6uIxg0DBNGmyHBgkfZMZ0IVJh-sODTYo_Z-S5iSYV8g-V-E9d8KVuaBTe6B7cTZYq22xJ6z6shPEabKQ6B_aKpUImApYlCbEGd_aWbWBnD-DnFtHUOaM0VObITqfEpHaLvWBnC4R1ccpPxhTuD56dULFKwJUTvE5QmJ2mKlFOyta3t_BMMTTtSNmsGeJDb6P0_WOGzBBY-JFye8fNd98yH8KUpekYx6xrov4QDq8Fq0ewOsbjPwZmMpcXg1CoUItca2ei1F4GagqAAlDpHvQ7QCqXWqXTxI5vVeMyCVMhhJUoKoKwIgh78Ga5Y9q2Cbli7euE8f-W_kUZPVjviKBKsmVWXXLCk6sfP4dbyCLV55393adwO6O6DUpELNZhdX6-CBtoTc3ts4ZsGXy9bj75DfKeNgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+data+classification+by+quantum-inspired+immune+clone+optimization-based+optimal+feature+selection+using+gene+expression+data%3A+deep+learning+approach&rft.jtitle=Data+technologies+and+applications&rft.au=Eluri%2C+Nageswara+Rao&rft.au=Kancharla%2C+Gangadhara+Rao&rft.au=Dara%2C+Suresh&rft.au=Dondeti%2C+Venkatesulu&rft.date=2022-03-15&rft.pub=Emerald+Publishing+Limited&rft.issn=2514-9288&rft.eissn=2514-9318&rft.volume=56&rft.issue=2&rft.spage=247&rft.epage=282&rft_id=info:doi/10.1108%2FDTA-05-2020-0109&rft.externalDocID=10.1108%2FDTA-05-2020-0109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-9288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-9288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-9288&client=summon