Cross-Subject Activity Detection for COVID-19 Infection Avoidance Based on Automatically Annotated IMU Data

The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal Influenza, Swine flu, Ebola virus, etc. Thus, people have been advised to avoid such activity to break the viral transmission chain. However, empiri...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 13; pp. 13125 - 13135
Main Authors Rizk, Hamada, Amano, Tatsuya, Yamaguchi, Hirozumi, Youssef, Moustafa
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3176291

Cover

Loading…
Abstract The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal Influenza, Swine flu, Ebola virus, etc. Thus, people have been advised to avoid such activity to break the viral transmission chain. However, empirical studies showed that it is either impossible or difficult to avoid as it is unconsciously a human habit. This gives rise to the need to develop means enabling the automatic prediction of the occurrence of such activity. In this paper, we propose SafeSense , a cross-subject face-touch prediction system that combines the sensing capability of smartwatches and smartphones. The system includes innovative modules for automatically labeling the smartwatches' sensor measurements using smartphones' proximity sensors during normal phone use. Additionally, SafeSense uses a multi-task learning approach based on autoencoders for learning a subject-invariant representation without any assumptions about the target subjects. SafeSense also improves the deep model's generalization ability and incorporates different modules to boost the per-subject system's accuracy and robustness at run-time. We evaluated the proposed system on ten subjects using three different smartwatches and their connected phones. Results show that SafeSense can obtain as high as 97.9% prediction accuracy with a F1-score of 0.98. This outperforms the state-of-the-art techniques in all the considered scenarios without extra data collection overhead. These results highlight the feasibility of the proposed system for boosting public safety.
AbstractList The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal Influenza, Swine flu, Ebola virus, etc. Thus, people have been advised to avoid such activity to break the viral transmission chain. However, empirical studies showed that it is either impossible or difficult to avoid as it is unconsciously a human habit. This gives rise to the need to develop means enabling the automatic prediction of the occurrence of such activity. In this paper, we propose SafeSense , a cross-subject face-touch prediction system that combines the sensing capability of smartwatches and smartphones. The system includes innovative modules for automatically labeling the smartwatches’ sensor measurements using smartphones’ proximity sensors during normal phone use. Additionally, SafeSense uses a multi-task learning approach based on autoencoders for learning a subject-invariant representation without any assumptions about the target subjects. SafeSense also improves the deep model’s generalization ability and incorporates different modules to boost the per-subject system’s accuracy and robustness at run-time. We evaluated the proposed system on ten subjects using three different smartwatches and their connected phones. Results show that SafeSense can obtain as high as 97.9% prediction accuracy with a F1-score of 0.98. This outperforms the state-of-the-art techniques in all the considered scenarios without extra data collection overhead. These results highlight the feasibility of the proposed system for boosting public safety.
Author Yamaguchi, Hirozumi
Youssef, Moustafa
Rizk, Hamada
Amano, Tatsuya
Author_xml – sequence: 1
  givenname: Hamada
  orcidid: 0000-0002-8278-8801
  surname: Rizk
  fullname: Rizk, Hamada
  email: hamada_rizk@f-eng.tanta.edu.eg
  organization: Department of Computer and Control Engineering, Tanta University, Tanta, Egypt
– sequence: 2
  givenname: Tatsuya
  orcidid: 0000-0002-8011-247X
  surname: Amano
  fullname: Amano, Tatsuya
  email: t-amano@ist.osaka-u.ac.jp
  organization: Osaka University, Suita, Japan
– sequence: 3
  givenname: Hirozumi
  surname: Yamaguchi
  fullname: Yamaguchi, Hirozumi
  email: h-yamagu@ist.osaka-u.ac.jp
  organization: Osaka University, Suita, Japan
– sequence: 4
  givenname: Moustafa
  orcidid: 0000-0002-2063-4364
  surname: Youssef
  fullname: Youssef, Moustafa
  email: moustafa-youssef@aucegypt.edu
  organization: Department of Computer Science and Engineering, AUC, Cairo, Egypt
BookMark eNo9kM1OwzAQhC1UJErhARAXS5xT_JPEyTGkBYIKPZQibpYdb6SU1i6JU6lvT6JWnHZ3dmZX-q7RyDoLCN1RMqWUpI9vq_nHlBHGppyKmKX0Ao1pFCUBFWEyGnpOgpCL7yt03bYbQmgqIjFGP3nj2jZYdXoDpcdZ6etD7Y94Br6fa2dx5RqcL7-KWUBTXNjqLGcHVxtlS8BPqgWDB6nzbqd8Xart9ogza51Xvl8V72s8U17doMtKbVu4PdcJWj_PP_PXYLF8KfJsEZScUh-A0CFwyoQ2TFWxTgSIijFjDKu4ZiHXRGgIlQKjKNW6dyQplJEAExORKD5BD6e7-8b9dtB6uXFdY_uXksVJzyYOedy76MlVDgQaqOS-qXeqOUpK5MBUDkzlwFSemfaZ-1OmBoB_fyqESBPG_wDHiHTt
CODEN ISJEAZ
Cites_doi 10.1080/15459620802003896
10.1145/3397536.3422202
10.1007/978-3-319-26561-2_6
10.1109/WCNC.2019.8886005
10.1145/3397536.3422207
10.1109/IE54923.2022.9826758
10.1109/PerComWorkshops53856.2022.9767256
10.1145/3161174
10.1145/3347146.3363460
10.1145/3397536.3428349
10.1145/3474717.3486808
10.1109/TMC.2018.2879075
10.1109/MedComNet55087.2022.9810400
10.1145/3386901.3396603
10.1109/PerCom45495.2020.9127366
10.1109/SAHCN.2016.7732967
10.1109/PERCOM.2019.8767421
10.3390/s16010115
10.1016/j.ajic.2014.10.015
10.1109/PerComWorkshops53856.2022.9767322
10.1145/3474717.3483958
10.1038/s41598-020-67521-5
10.1109/5.726791
10.1007/978-3-642-21257-4_36
10.3389/frobt.2021.612392
10.1145/3338286.3340143
10.1109/5.58337
10.1109/PERCOM.2015.7146523
10.1145/2820783.2820824
10.1109/IE54923.2022.9826773
10.1145/3325425.3329940
10.1007/s12519-020-00343-7
10.1145/3411764.3445484
10.1016/j.eswa.2016.04.032
10.1109/9780470544037.ch14
10.4108/icst.mobicase.2014.257786
10.1145/2733373.2806333
10.1145/3423423.3423433
10.1007/978-3-642-35289-8_26
10.3390/s18041055
10.1007/978-3-030-94822-1_29
10.1109/PerComWorkshops53856.2022.9767292
10.3390/s140406474
10.3390/s22072700
10.4108/icst.mobiquitous.2014.257920
10.1016/j.pmcj.2021.101420
10.1145/3347146.3359065
10.3390/s17112556
10.1016/j.brainres.2014.02.002
10.3390/ijerph19010237
10.1145/3427477.3429459
10.1109/JSEN.2018.2885958
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3176291
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 13135
ExternalDocumentID 10_1109_JSEN_2022_3176291
9777982
Genre orig-research
GrantInformation_xml – fundername: “Research and Development of Information and Communication Technologies that Contribute to Countermeasures against Infectious Diseases,” the Commissioned Research of the National Institute of Information and Communications Technology (NICT), Japan
  grantid: 222-C03
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c311t-e7b4e3127bd2af6b87e7f22ddd2f3b243b07be4aaeda11bb6b889ec57ed6078a3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:12:55 EDT 2025
Tue Jul 01 04:26:52 EDT 2025
Wed Aug 27 02:23:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-e7b4e3127bd2af6b87e7f22ddd2f3b243b07be4aaeda11bb6b889ec57ed6078a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8278-8801
0000-0002-8011-247X
0000-0002-2063-4364
PQID 2682916436
PQPubID 75733
PageCount 11
ParticipantIDs ieee_primary_9777982
crossref_primary_10_1109_JSEN_2022_3176291
proquest_journals_2682916436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Shokry (ref23) 2021
ref58
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref8
ref7
ref9
ref4
(ref30) 2020
ref3
ref6
ref5
Glorot (ref60)
ref40
ref35
Krizhevsky (ref42)
ref37
Schlüter (ref50)
ref36
ref31
ref33
ref32
ref2
McFee (ref49)
ref1
ref39
ref38
Kingma (ref55) 2014
Srivastava (ref61) 2014; 15
Roy (ref34) 2021
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Srivastava (ref53)
ref62
References_xml – ident: ref1
  doi: 10.1080/15459620802003896
– ident: ref11
  doi: 10.1145/3397536.3422202
– ident: ref6
  doi: 10.1007/978-3-319-26561-2_6
– ident: ref44
  doi: 10.1109/WCNC.2019.8886005
– ident: ref57
  doi: 10.1145/3397536.3422207
– ident: ref27
  doi: 10.1109/IE54923.2022.9826758
– ident: ref58
  doi: 10.1109/PerComWorkshops53856.2022.9767256
– year: 2021
  ident: ref23
  article-title: Quantum computing for location determination
  publication-title: arXiv:2106.11751
– ident: ref5
  doi: 10.1145/3161174
– ident: ref46
  doi: 10.1145/3347146.3363460
– ident: ref17
  doi: 10.1145/3397536.3428349
– ident: ref48
  doi: 10.1145/3474717.3486808
– ident: ref21
  doi: 10.1109/TMC.2018.2879075
– ident: ref26
  doi: 10.1109/MedComNet55087.2022.9810400
– ident: ref9
  doi: 10.1145/3386901.3396603
– ident: ref47
  doi: 10.1109/PerCom45495.2020.9127366
– ident: ref20
  doi: 10.1109/SAHCN.2016.7732967
– ident: ref52
  doi: 10.1109/PERCOM.2019.8767421
– ident: ref41
  doi: 10.3390/s16010115
– ident: ref2
  doi: 10.1016/j.ajic.2014.10.015
– ident: ref13
  doi: 10.1109/PerComWorkshops53856.2022.9767322
– ident: ref22
  doi: 10.1145/3474717.3483958
– ident: ref31
  doi: 10.1038/s41598-020-67521-5
– ident: ref43
  doi: 10.1109/5.726791
– ident: ref35
  doi: 10.1007/978-3-642-21257-4_36
– ident: ref8
  doi: 10.3389/frobt.2021.612392
– start-page: 248
  volume-title: Proc. ISMIR
  ident: ref49
  article-title: A software framework for musical data augmentation
– ident: ref32
  doi: 10.1145/3338286.3340143
– ident: ref56
  doi: 10.1109/5.58337
– ident: ref18
  doi: 10.1109/PERCOM.2015.7146523
– ident: ref19
  doi: 10.1145/2820783.2820824
– ident: ref28
  doi: 10.1109/IE54923.2022.9826773
– ident: ref29
  doi: 10.1145/3325425.3329940
– ident: ref3
  doi: 10.1007/s12519-020-00343-7
– start-page: 121
  volume-title: Proc. ISMIR
  ident: ref50
  article-title: Exploring data augmentation for improved singing voice detection with neural networks
– ident: ref33
  doi: 10.1145/3411764.3445484
– ident: ref7
  doi: 10.1016/j.eswa.2016.04.032
– ident: ref51
  doi: 10.1109/9780470544037.ch14
– ident: ref37
  doi: 10.4108/icst.mobicase.2014.257786
– ident: ref39
  doi: 10.1145/2733373.2806333
– ident: ref10
  doi: 10.1145/3423423.3423433
– ident: ref62
  doi: 10.1007/978-3-642-35289-8_26
– year: 2021
  ident: ref34
  article-title: CovidAlert—A wristwatch-based system to alert users from face touching
  publication-title: arXiv:2112.00131
– ident: ref38
  doi: 10.3390/s18041055
– ident: ref12
  doi: 10.1007/978-3-030-94822-1_29
– ident: ref14
  doi: 10.1109/PerComWorkshops53856.2022.9767292
– start-page: 315
  volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist.
  ident: ref60
  article-title: Deep sparse rectifier neural networks
– start-page: 843
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref53
  article-title: Unsupervised learning of video representations using LSTMs
– ident: ref36
  doi: 10.3390/s140406474
– year: 2014
  ident: ref55
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– volume-title: Is it Recommended to Use the Non-Dominant Hand to Avoid Contagion by Coronavirus?
  year: 2020
  ident: ref30
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref61
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref15
  doi: 10.3390/s22072700
– ident: ref16
  doi: 10.4108/icst.mobiquitous.2014.257920
– ident: ref54
  doi: 10.1016/j.pmcj.2021.101420
– ident: ref45
  doi: 10.1145/3347146.3359065
– ident: ref40
  doi: 10.3390/s17112556
– ident: ref4
  doi: 10.1016/j.brainres.2014.02.002
– ident: ref24
  doi: 10.3390/ijerph19010237
– ident: ref25
  doi: 10.1145/3427477.3429459
– ident: ref59
  doi: 10.1109/JSEN.2018.2885958
– start-page: 1097
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: ImageNet classification with deep convolutional neural networks
SSID ssj0019757
Score 2.3737006
Snippet The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 13125
SubjectTerms activity detection
Convolutional neural networks
Coronaviruses
COVID-19
Covid-19 infection avoidance
Data collection
Data models
Disease transmission
Face recognition
Face-touch prediction
Feature extraction
Influenza
Learning
Modules
Public safety
Sensors
Smartphones
smartwatch-based sensing
Smartwatches
Viral diseases
Viruses
Wearable computers
Title Cross-Subject Activity Detection for COVID-19 Infection Avoidance Based on Automatically Annotated IMU Data
URI https://ieeexplore.ieee.org/document/9777982
https://www.proquest.com/docview/2682916436
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXoBDgRbEQkE-cEJ4G9vZ2Dkuu626lbYcYNHeIj8mKmqVIJpFKr-esZNd8TpwiyLbGnnGM994xjMAb2SUXIWak9uFPK8nihtTIi8cSi-UMS49FF5eFuer_GI9We_Bu91bGERMyWc4jp8plh9av4lXZSeEVXRpSOHeI8etf6u1ixiUOlX1pAOc8Vzp9RDBFFl5cvHx9JI8QSnJQaWzX4rfbFBqqvKXJk7m5ewRLLeE9Vkl1-NN58b-xx81G_-X8sdwMOBMNu0F4wnsYXMID3-pPngI94cG6Fd3R3A9i5RyUiPxXoZNfd9Ugs2xS7laDSNwy2YfPi_mXJRsMaRwNWz6vf0SouSw92QPA4u_Nl2bCsHam5s7Nm2aNgLawBbLFZvbzj6F1dnpp9k5H_owcK-E6Dhql6MSUrsgbV04o1HXUoYQZK2czJXLtMPcWgxWCOdoBLHbTzSGghCIVc9gv2kbfA6M0AJpkAwdyUAuvbE1Yq0nPuQ-CG_qEbzdcqb62pfbqJKbkpVVZGMV2VgNbBzBUdzp3cBhk0dwvOVlNRzI20oWhmYQ_Cpe_HvWS3gQ1-4zcY9hv_u2wVeENzr3OgnaTw7t0n4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceLQgthTwgRPC29hOYue43W21W7rLgS7aW-THREWtEgTZSuXXd-xkV7wO3KLIlkee1zf2eIaQdyJIrgTFMOwCllaZZFoXwHILwnGptY0PheeLfLpMz1fZaod82L6FAYCYfAbD8Bnv8n3j1uGo7Bixiio0GtwH6Pcz3r3W2t4ZFCrW9UQVTlgq1aq_w-RJcXz--XSBsaAQGKKi9hf8Ny8U26r8ZYujgzl7QuYb0rq8kuvhurVD9_OPqo3_S_tT8rhHmnTUicYzsgP1Pnn0S_3BfbLXt0C_ujsg1-NAKUNDEk5m6Mh1bSXoBNqYrVVThLd0_OnLbMJ4QWd9EldNR7fNVx9kh56gR_Q0_Fq3TSwFa25u7uiorpsAaT2dzZd0YlrznCzPTi_HU9Z3YmBOct4yUDYFyYWyXpgqt1qBqoTw3otKWpFKmygLqTHgDefW4ghkuMsU-BwxiJEvyG7d1PCSUMQLaEMSsCgFqXDaVACVypxPnedOVwPyfsOZ8ltXcKOMgUpSlIGNZWBj2bNxQA7CTm8H9ps8IEcbXpa9Sv4oRa5xBgKw_PDfs96Svenl_KK8mC0-viIPwzpdXu4R2W2_r-E1oo_WvolCdw8y_dXH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+Activity+Detection+for+COVID-19+Infection+Avoidance+Based+on+Automatically+Annotated+IMU+Data&rft.jtitle=IEEE+sensors+journal&rft.au=Rizk%2C+Hamada&rft.au=Amano%2C+Tatsuya&rft.au=Yamaguchi%2C+Hirozumi&rft.au=Youssef%2C+Moustafa&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=13&rft.spage=13125&rft_id=info:doi/10.1109%2FJSEN.2022.3176291&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon