Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins
Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinc...
Saved in:
Published in | Acta biomaterialia Vol. 195; pp. 509 - 521 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
15.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits.
GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements.
[Display omitted] |
---|---|
AbstractList | Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements. Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements.Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements. Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements. [Display omitted] |
Author | Jin, Peipei Zhang, Ju Wei, Pengfei Chen, Zhaozheng Wang, Hongyang Feng, Qiyu Li, Haowen Wang, Ziyu Han, Da Miao, Yanyan |
Author_xml | – sequence: 1 givenname: Peipei surname: Jin fullname: Jin, Peipei organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 2 givenname: Zhaozheng surname: Chen fullname: Chen, Zhaozheng organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 3 givenname: Ju surname: Zhang fullname: Zhang, Ju organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 4 givenname: Haowen surname: Li fullname: Li, Haowen organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China – sequence: 5 givenname: Pengfei surname: Wei fullname: Wei, Pengfei organization: School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China – sequence: 6 givenname: Ziyu surname: Wang fullname: Wang, Ziyu organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 7 givenname: Qiyu surname: Feng fullname: Feng, Qiyu email: qiyufeng@ustc.edu.cn organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 8 givenname: Hongyang surname: Wang fullname: Wang, Hongyang email: hywangk@vip.sina.com organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 9 givenname: Da surname: Han fullname: Han, Da email: dahan@sjtu.edu.cn organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China – sequence: 10 givenname: Yanyan surname: Miao fullname: Miao, Yanyan email: miaoyy@sjtu.edu.cn organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39952883$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtqHDEQRUVwiB_JH4SgpTc90aP1mE0g2IltMGSTrBW1VBpr6JYmksbgv7eGsbM0XKhanLpVdc_RScoJEPpMyYoSKr9uV9a1KeYVI0ysCOvi79AZ1UoPSkh90ns1skERSU_Rea1bQrimTH9Ap3y9Fkxrfob-XsMjzHm3QGo4B2xxsikPzZYNtJg22D3EBYrFIRfcHgB72BTrbYs5HfgFlqnYBNgmj91Ty7vZ1iU6vCu5QUz1I3of7Fzh00u9QH9-_vh9dTvc_7q5u_p-PzhOaRtASTFKrYFL64PkQRAxas2UnAIF8CNhyqkgg2YWdP9RaU79RAmnXKwt4Rfo8ujbF__bQ21midXBPPfj8r4aTqXiQoxr1tEvL-h-WsCbXYmLLU_mNZUOjEfAlVxrgfAfocQcwjdbcwzfHMI3hHUdxr4dx6D_-RihmOoiJAc-FnDN-BzfNngGE2-OUg |
Cites_doi | 10.1016/j.cub.2021.04.012 10.1083/jcb.141.4.905 10.1002/adfm.202406096 10.1038/s41467-020-15113-2 10.1016/j.cell.2017.10.033 10.1002/smll.202207335 10.1038/s41568-018-0002-y 10.1126/sciimmunol.abl8357 10.1038/s41392-021-00572-w 10.1016/j.cell.2010.01.028 10.1038/s41586-022-05235-6 10.1006/excr.1999.4652 10.1074/jbc.M111.255976 10.1038/s41578-023-00552-2 10.1021/acsnano.3c04457 10.1007/978-981-15-0602-4_25 10.1038/s41699-021-00202-7 10.1039/D2CS00193D 10.1038/s41580-024-00729-9 10.1039/C5SC00114E 10.1038/s41392-024-01983-1 10.1038/s41467-022-33410-w 10.1074/mcp.M111.008771 10.1002/anie.202102170 10.1016/j.bios.2016.07.030 10.4161/auto.5.3.7662 10.1038/s41594-020-0438-0 10.1038/s41392-022-00966-4 10.1038/nrd.2016.199 10.1080/15548627.2019.1580105 10.1080/15548627.2023.2274711 10.1016/j.biomaterials.2014.03.087 10.1016/j.carbon.2012.02.038 10.1038/s41420-023-01781-8 10.1016/j.addr.2016.03.007 10.1038/s41422-021-00533-6 10.1039/D3NR06059D 10.1002/mco2.118 10.1083/jcb.84.2.455 10.1080/15548627.2020.1797280 10.1038/ncomms2270 10.1016/j.ddtec.2018.12.002 10.1016/j.biomaterials.2012.02.021 10.1038/nprot.2010.66 10.1039/C4CC06016D 10.14348/molcells.2017.0115 10.1039/C6NR07255K 10.1038/s41586-020-2545-9 10.1038/s41589-018-0021-8 10.1038/s41565-023-01572-3 10.1038/s41598-021-02837-4 10.1039/D2CS00197G 10.1039/D3SC04249A 10.1039/D0SC02658A 10.1158/0008-5472.CAN-09-4290 10.1039/D3SC02361C 10.1016/j.jconrel.2006.07.009 10.3390/cells11050851 10.1016/j.cell.2007.10.009 10.1002/anie.202107347 10.1021/acsnano.2c10379 10.1039/D2CP04082D |
ContentType | Journal Article |
Copyright | 2025 Acta Materialia Inc. Copyright © 2025 Acta Materialia Inc. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 Acta Materialia Inc. – notice: Copyright © 2025 Acta Materialia Inc. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.actbio.2025.02.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 521 |
ExternalDocumentID | 39952883 10_1016_j_actbio_2025_02_023 S1742706125001102 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEZYN AFJKZ AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION EJD RIG SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c311t-e7654688e36adf63f505488276bf1eed4027c7f6f82ae88787831db1031359a03 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Fri Jul 11 00:04:39 EDT 2025 Sat Jun 14 01:31:01 EDT 2025 Tue Jul 01 05:16:55 EDT 2025 Sat Mar 22 15:54:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aptamer Graphene oxide (GO) Autophagy-lysosome Targeted protein degradation Cancer therapy Ubiquitin-proteasome |
Language | English |
License | Copyright © 2025 Acta Materialia Inc. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-e7654688e36adf63f505488276bf1eed4027c7f6f82ae88787831db1031359a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39952883 |
PQID | 3167355492 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3167355492 pubmed_primary_39952883 crossref_primary_10_1016_j_actbio_2025_02_023 elsevier_sciencedirect_doi_10_1016_j_actbio_2025_02_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shin, Li, Jang, Khoshakhlagh, Akbari, Nasajpour, Zhang, Tamayol, Khademhosseini (bib0021) 2016; 105 Banik, Pedram, Wisnovsky, Ahn, Riley, Bertozzi (bib0010) 2020; 584 Cai, Li, Wu, Yang, Tedesco, Li, Bi (bib0044) 2024; 34 Khine, Wen, Jin, Foller, Joshi (bib0017) 2022; 24 Hou, Moreau, Chadee (bib0052) 2012; 3 Baig (bib0067) 2022; 165 Wang, Liu, Wang, Jiang, Qian, You, Han, Zeng, Li, Lu, Jiang, Zhu, Li, Huang, Tang, Wang, Yan, Xiong, Shi, Bai, Liu, Li, Zhao, Chen, Qian (bib0020) 2022; 13 Gaeta, Meenderink, Postema, Cencer, Tyska (bib0046) 2021; 31 Miao, Gao, Mao, Zhang, Yang, Yang, Han (bib0030) 2021; 60 Comoglio, Trusolino, Boccaccio (bib0033) 2018; 18 Sefah, Shangguan, Xiong, O'Donoghue, Tan (bib0027) 2010; 5 Gupta, Kaul, Singh, Kumar, Singhal (bib0061) 2021; 11 Zhou, Rossi (bib0026) 2017; 16 Nabet, Roberts, Buckley, Paulk, Dastjerdi, Yang, Leggett, Erb, Lawlor, Souza, Scott, Vittori, Perry, Qi, Winter, Wong, Gray, Bradner (bib0008) 2018; 14 Zhao, Widen, Jamaluddin, Tian, Wood, Edeh, Brasier (bib0032) 2011; 10 Aguib, Heiseke, Gilch, Riemer, Baier, Schätzl, Ertmer (bib0037) 2009; 5 Huang, Liu, Lv, Zhang, Zhou, Lin, Guo (bib0019) 2023; 19 Li, Li, Wu (bib0066) 2022; 11 Lin, Tobin, Grumet, Lin (bib0039) 1980; 84 Aoki, Nomura, Fujimoto (bib0041) 1999; 253 Sun, Cao, Mao, Sun, Zhang, Song (bib0065) 2024; 12 Li, Crews (bib0004) 2022; 51 Clift, McEwan, Labzin, Konieczny, Mogessie, James, Schuh (bib0007) 2017; 171 Bassères, Ebbs, Levantini, Baldwin (bib0048) 2010; 70 Innocenzi, Stagi (bib0023) 2020; 11 He, Gao, Ma, Ma, Dong, Sheng (bib0058) 2021; 60 Klionsky, Abdel-Aziz, Abdelfatah, Abdellatif, Abdoli, Abel, Abeliovich, Abildgaard, Abudu, Acevedo-Arozena, Adamopoulos (bib0035) 2021; 17 Yue, Wei, Yue, Wang, Luo, Gao, Ma, Ma, Su (bib0043) 2012; 33 Zhang, Tan, Wang (bib0029) 2023; 17 Liu, Qian, Ran, Li, Fu, Su, Xie, Tan (bib0028) 2023; 17 Marei, Tsai, Kee, Ruiz, He, Cox, Sun, Penikalapati, Dwivedi, Choi, Kan, Saenz-Lopez, Dorighi, Zhang, Kschonsak, Kljavin, Amin, Kim, Mancini, Nguyen, Wang, Janezic, Doan, Mai, Xi, Gu, Heinlein, Biehs, Wu, Lehoux, Harris, Comps-Agrar, Seshasayee, de Sauvage, Grimmer, Li, Agard, de Sousa (bib0054) 2022; 610 Ji, Kwon (bib0012) 2017; 40 Shafiee, Iravani, Varma (bib0018) 2020; 3 Mizushima, Yoshimori, Levine (bib0038) 2010; 140 Huang, Gan, Wang, Xu, Xie (bib0047) 2019; 15 Hu, Mu, Wen, Zhou (bib0062) 2012; 50 Mahmoudi, Landry, Moore, Coreas (bib0064) 2023; 8 Wang, Yu, Liu, Feng, Hou, Chen, Ma, Huang, Dai (bib0016) 2023; 10 Jin, Wei, Zhang, Lin, Sha, Hu, Zhang, Zhou, Yao, Ren, Yang, Liu, Wen (bib0036) 2016; 8 Mao, Guo, Yan (bib0053) 2014; 35 Andrews, Joshi, Tzolos, Syed, Cuthbert, Crica, Lozano, Okwelogu, Raftis, Bruce, Poland, Duffin, Fokkens, Boere, Leseman, Megson, Whitfield, Ziegler, Tammireddy, Hadjidemetriou, Bussy, Cassee, Newby, Kostarelos, Miller (bib0024) 2024; 19 Farley, Bhattacharya, Cleland, Chandran, Wu (bib0056) 2024 Sekhon, Kaur, Kim, Sekhon (bib0060) 2021; 5 Zhang, Zhang, Aldalbahi, Zuo, Fan, Mi (bib0022) 2017; 89 Liu, Liu, Chen, Xing, Zhang, Zhang (bib0059) 2023; 15 Zhong, Zhao, Wang, Su, Lan (bib0015) 2024; 16 Ueki, Sando (bib0031) 2014; 50 Cui, Cong, Yin, Li, Ye, Liu, Tang (bib0014) 2024; 10 Lee, Yoon, Sung, Bae, Park, Suh, Kwon (bib0011) 2024; 20 Zhong, Li, Xiong, Wang, Wu, Yuan, Yang, Tian, Miao, Wang, Yang (bib0003) 2021; 6 Zhao, Zhao, Zhong, Tong, Jia (bib0013) 2022; 7 Naito, Ohoka, Shibata (bib0009) 2019; 31 Cui, Benamar, Schmitz-Abe, Poondi-Krishnan, Chen, Jugder, Fatou, Fong, Zhong, Mehta, Buyanbat, Eklioglu, Karabiber, Baris, Kiykim, Keles, Stephen-Victor, Angelini, Charbonnier, Chatila (bib0051) 2022; 7 Wu, Yoon, Xiong, Dixon-Clarke, Nowak, Fischer (bib0001) 2020; 27 Fretz, Jin, Conibere, Penning, Al-Taei, Storm, Futaki, Takeuchi, Nakase, Jones (bib0040) 2006; 116 Yang, Yang, Zhang, Li, Yang, Wang, Chen, Zhang, He, Wang, Dai, Wang, Zhang (bib0057) 2024; 9 Shen, Dassama (bib0002) 2023; 14 Wang, Le (bib0034) 2019; 1206 Tsai, Nowak, Ebert, Fischer (bib0055) 2024; 25 Wan, Anderson, Barnitz, Snow, Bidere, Zheng, Hegde, Lam, Staudt, Levens, Deutsch, Lenardo (bib0050) 2007; 131 Head, Hu, Finley, Saldana, Bonds, Miyanohara, Niesman, Ali, Murray, Insel, Roth, Patel, Patel (bib0045) 2011; 286 Domostegui, Nieto-Barrado, Perez-Lopez, Mayor-Ruiz (bib0006) 2022; 51 Orlandi, Fishman (bib0042) 1998; 141 Liu, Liu, Dong, Xia, Yang, Wei, Fan, Fang, Zou, Zheng, Leong, Shi (bib0063) 2024 Yang, Sun, Ni, Yang, Tong, Liu, Li, Rao (bib0005) 2021; 31 Jasim, Ménard-Moyon, Bégin, Bianco, Kostarelos (bib0025) 2015; 6 Xie, Du, Zhang, Wang, Zhang, He, Qiu, Jiang, Tan (bib0049) 2020; 11 Ji (10.1016/j.actbio.2025.02.023_bib0012) 2017; 40 Huang (10.1016/j.actbio.2025.02.023_bib0019) 2023; 19 Yang (10.1016/j.actbio.2025.02.023_bib0057) 2024; 9 Zhang (10.1016/j.actbio.2025.02.023_bib0022) 2017; 89 Lee (10.1016/j.actbio.2025.02.023_bib0011) 2024; 20 Zhao (10.1016/j.actbio.2025.02.023_bib0013) 2022; 7 Tsai (10.1016/j.actbio.2025.02.023_bib0055) 2024; 25 Zhong (10.1016/j.actbio.2025.02.023_bib0015) 2024; 16 Klionsky (10.1016/j.actbio.2025.02.023_bib0035) 2021; 17 Jasim (10.1016/j.actbio.2025.02.023_bib0025) 2015; 6 He (10.1016/j.actbio.2025.02.023_bib0058) 2021; 60 Huang (10.1016/j.actbio.2025.02.023_bib0047) 2019; 15 Mahmoudi (10.1016/j.actbio.2025.02.023_bib0064) 2023; 8 Liu (10.1016/j.actbio.2025.02.023_bib0063) 2024 Gupta (10.1016/j.actbio.2025.02.023_bib0061) 2021; 11 Shin (10.1016/j.actbio.2025.02.023_bib0021) 2016; 105 Wu (10.1016/j.actbio.2025.02.023_bib0001) 2020; 27 Li (10.1016/j.actbio.2025.02.023_bib0066) 2022; 11 Hou (10.1016/j.actbio.2025.02.023_bib0052) 2012; 3 Lin (10.1016/j.actbio.2025.02.023_bib0039) 1980; 84 Farley (10.1016/j.actbio.2025.02.023_bib0056) 2024 Wang (10.1016/j.actbio.2025.02.023_bib0016) 2023; 10 Head (10.1016/j.actbio.2025.02.023_bib0045) 2011; 286 Innocenzi (10.1016/j.actbio.2025.02.023_bib0023) 2020; 11 Orlandi (10.1016/j.actbio.2025.02.023_bib0042) 1998; 141 Wang (10.1016/j.actbio.2025.02.023_bib0020) 2022; 13 Zhou (10.1016/j.actbio.2025.02.023_bib0026) 2017; 16 Miao (10.1016/j.actbio.2025.02.023_bib0030) 2021; 60 Mao (10.1016/j.actbio.2025.02.023_bib0053) 2014; 35 Marei (10.1016/j.actbio.2025.02.023_bib0054) 2022; 610 Ueki (10.1016/j.actbio.2025.02.023_bib0031) 2014; 50 Banik (10.1016/j.actbio.2025.02.023_bib0010) 2020; 584 Li (10.1016/j.actbio.2025.02.023_bib0004) 2022; 51 Shen (10.1016/j.actbio.2025.02.023_bib0002) 2023; 14 Cui (10.1016/j.actbio.2025.02.023_bib0014) 2024; 10 Gaeta (10.1016/j.actbio.2025.02.023_bib0046) 2021; 31 Sekhon (10.1016/j.actbio.2025.02.023_bib0060) 2021; 5 Wan (10.1016/j.actbio.2025.02.023_bib0050) 2007; 131 Cui (10.1016/j.actbio.2025.02.023_bib0051) 2022; 7 Liu (10.1016/j.actbio.2025.02.023_bib0059) 2023; 15 Sun (10.1016/j.actbio.2025.02.023_bib0065) 2024; 12 Jin (10.1016/j.actbio.2025.02.023_bib0036) 2016; 8 Khine (10.1016/j.actbio.2025.02.023_bib0017) 2022; 24 Baig (10.1016/j.actbio.2025.02.023_bib0067) 2022; 165 Domostegui (10.1016/j.actbio.2025.02.023_bib0006) 2022; 51 Aguib (10.1016/j.actbio.2025.02.023_bib0037) 2009; 5 Wang (10.1016/j.actbio.2025.02.023_bib0034) 2019; 1206 Zhang (10.1016/j.actbio.2025.02.023_bib0029) 2023; 17 Zhao (10.1016/j.actbio.2025.02.023_bib0032) 2011; 10 Naito (10.1016/j.actbio.2025.02.023_bib0009) 2019; 31 Comoglio (10.1016/j.actbio.2025.02.023_bib0033) 2018; 18 Sefah (10.1016/j.actbio.2025.02.023_bib0027) 2010; 5 Yue (10.1016/j.actbio.2025.02.023_bib0043) 2012; 33 Mizushima (10.1016/j.actbio.2025.02.023_bib0038) 2010; 140 Clift (10.1016/j.actbio.2025.02.023_bib0007) 2017; 171 Liu (10.1016/j.actbio.2025.02.023_bib0028) 2023; 17 Cai (10.1016/j.actbio.2025.02.023_bib0044) 2024; 34 Aoki (10.1016/j.actbio.2025.02.023_bib0041) 1999; 253 Nabet (10.1016/j.actbio.2025.02.023_bib0008) 2018; 14 Hu (10.1016/j.actbio.2025.02.023_bib0062) 2012; 50 Zhong (10.1016/j.actbio.2025.02.023_bib0003) 2021; 6 Bassères (10.1016/j.actbio.2025.02.023_bib0048) 2010; 70 Fretz (10.1016/j.actbio.2025.02.023_bib0040) 2006; 116 Xie (10.1016/j.actbio.2025.02.023_bib0049) 2020; 11 Andrews (10.1016/j.actbio.2025.02.023_bib0024) 2024; 19 Shafiee (10.1016/j.actbio.2025.02.023_bib0018) 2020; 3 Yang (10.1016/j.actbio.2025.02.023_bib0005) 2021; 31 |
References_xml | – volume: 34 year: 2024 ident: bib0044 article-title: Two birds with one stone: guanidyl carbon dots with enhanced antioxidative and lipolytic functions in metabolic associated fatty liver publication-title: Adv. Funct. Mater. – volume: 60 start-page: 23299 year: 2021 end-page: 23305 ident: bib0058 article-title: Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer publication-title: Angew. Chem. Int. Ed. Engl. – volume: 60 start-page: 11267 year: 2021 end-page: 11271 ident: bib0030 article-title: Bispecific aptamer chimeras enable targeted protein degradation on cell membranes publication-title: Angew. Chem. Int. Ed. Engl. – volume: 19 start-page: 705 year: 2024 end-page: 714 ident: bib0024 article-title: First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1300 year: 2012 ident: bib0052 article-title: PPARγ is an E3 ligase that induces the degradation of nfκb/p65 publication-title: Nat. Commun. – volume: 10 start-page: 141 year: 2024 ident: bib0014 article-title: Role of protein degradation systems in colorectal cancer publication-title: Cell Death. Discov. – volume: 286 start-page: 33310 year: 2011 end-page: 33321 ident: bib0045 article-title: Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons publication-title: J. Biol. Chem. – volume: 17 start-page: 6150 year: 2023 end-page: 6164 ident: bib0028 article-title: Aptamer-based targeted protein degradation publication-title: ACS. Nano – volume: 31 start-page: 35 year: 2019 end-page: 42 ident: bib0009 article-title: SNIPERs-hijacking IAP activity to induce protein degradation publication-title: Drug Discov. Today Technol. – volume: 105 start-page: 255 year: 2016 end-page: 274 ident: bib0021 article-title: Graphene-based materials for tissue engineering publication-title: Adv. Drug Deliv. Rev. – volume: 17 start-page: 1 year: 2021 end-page: 382 ident: bib0035 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1) publication-title: Autophagy. – volume: 610 start-page: 182 year: 2022 end-page: 189 ident: bib0054 article-title: Antibody targeting of E3 ubiquitin ligases for receptor degradation publication-title: Nature – volume: 14 start-page: 431 year: 2018 end-page: 441 ident: bib0008 article-title: The dTAG system for immediate and target-specific protein degradation publication-title: Nat. Chem. Biol. – volume: 584 start-page: 291 year: 2020 end-page: 297 ident: bib0010 article-title: Lysosome-targeting chimaeras for degradation of extracellular proteins publication-title: Nature – volume: 165 year: 2022 ident: bib0067 article-title: Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions publication-title: Composites Part A: Applied Science and Manufacturing – year: 2024 ident: bib0056 article-title: The targeted protein degradation landscape publication-title: Nat. Rev. Drug Discov. – volume: 9 start-page: 275 year: 2024 ident: bib0057 article-title: Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy publication-title: Signal. Transduct. Target. Ther. – volume: 13 start-page: 5657 year: 2022 ident: bib0020 article-title: Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells publication-title: Nat. Commun. – volume: 31 start-page: 2561 year: 2021 end-page: 2575 ident: bib0046 article-title: Direct visualization of epithelial microvilli biogenesis publication-title: Curr. Biol. – volume: 7 start-page: 113 year: 2022 ident: bib0013 article-title: Targeted protein degradation: mechanisms, strategies and application publication-title: Signal. Transduct. Target. Ther. – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: bib0038 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 5 start-page: 21 year: 2021 ident: bib0060 article-title: 2D graphene oxide–aptamer conjugate materials for cancer diagnosis publication-title: npj 2D Materials and Applications – volume: 10 year: 2023 ident: bib0016 article-title: Nano-LYTACs for degradation of membrane proteins and inhibition of CD24/Siglec-10 signaling pathway publication-title: Adv. Sci. (Weinh) – volume: 11 start-page: 1347 year: 2020 ident: bib0049 article-title: Aptamer-based optical manipulation of protein subcellular localization in cells publication-title: Nat. Commun. – volume: 20 start-page: 463 year: 2024 end-page: 465 ident: bib0011 article-title: Targeted degradation of SNCA/α-synuclein aggregates in neurodegeneration using the AUTOTAC chemical platform publication-title: Autophagy. – volume: 19 year: 2023 ident: bib0019 article-title: MMP9-responsive graphene oxide quantum dot-based Nano-in-Micro drug delivery system for combinatorial therapy of choroidal neovascularization publication-title: Small. – volume: 51 start-page: 5214 year: 2022 end-page: 5236 ident: bib0004 article-title: PROTACs: past, present and future publication-title: Chem. Soc. Rev. – volume: 5 start-page: 361 year: 2009 end-page: 369 ident: bib0037 article-title: Autophagy induction by trehalose counteracts cellular prion infection publication-title: Autophagy. – volume: 15 start-page: 134 year: 2023 end-page: 145 ident: bib0059 article-title: Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy publication-title: Chem. Sci. – volume: 31 start-page: 1315 year: 2021 end-page: 1318 ident: bib0005 article-title: Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently publication-title: Cell Res. – volume: 40 start-page: 441 year: 2017 end-page: 449 ident: bib0012 article-title: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy publication-title: Mol. Cells – volume: 15 start-page: 1258 year: 2019 end-page: 1279 ident: bib0047 article-title: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance publication-title: Autophagy. – volume: 35 start-page: 6069 year: 2014 end-page: 6077 ident: bib0053 article-title: Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets publication-title: Biomaterials – volume: 25 start-page: 740 year: 2024 end-page: 757 ident: bib0055 article-title: Targeted protein degradation: from mechanisms to clinic publication-title: Nature Reviews Molecular Cell Biology – volume: 7 start-page: eabl8357 year: 2022 ident: bib0051 article-title: A Stk4-Foxp3-NF-κb p65 transcriptional complex promotes T(reg) cell activation and homeostasis publication-title: Sci. Immunol. – volume: 11 start-page: 851 year: 2022 ident: bib0066 article-title: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress publication-title: Cells – volume: 12 year: 2024 ident: bib0065 article-title: Post-translational modifications of p65: state of the art publication-title: Front. Cell Dev. Biol. – volume: 14 start-page: 8433 year: 2023 end-page: 8447 ident: bib0002 article-title: Opportunities and challenges of protein-based targeted protein degradation publication-title: Chem. Sci. – volume: 5 start-page: 1169 year: 2010 end-page: 1185 ident: bib0027 article-title: Development of DNA aptamers using Cell-SELEX publication-title: Nat. Protoc. – volume: 253 start-page: 629 year: 1999 end-page: 636 ident: bib0041 article-title: Tyrosine phosphorylation of caveolin-1 in the endothelium publication-title: Exp. Cell Res. – year: 2024 ident: bib0063 article-title: Targeted protein degradation via cellular trafficking of nanoparticles publication-title: Nat. Nanotechnol. – volume: 6 start-page: 3952 year: 2015 end-page: 3964 ident: bib0025 article-title: Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets publication-title: Chem. Sci. – volume: 1206 start-page: 527 year: 2019 end-page: 550 ident: bib0034 article-title: Autophagy and ubiquitin-proteasome system publication-title: Adv. Exp. Med. Biol. – volume: 11 start-page: 6606 year: 2020 end-page: 6622 ident: bib0023 article-title: Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective publication-title: Chem. Sci. – volume: 17 start-page: 15146 year: 2023 end-page: 15154 ident: bib0029 article-title: Chemical tailoring of aptamer glues with significantly enhanced recognition ability for targeted membrane protein degradation publication-title: ACS. Nano – volume: 50 start-page: 2772 year: 2012 end-page: 2781 ident: bib0062 article-title: Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses publication-title: Carbon. N. Y. – volume: 8 start-page: 422 year: 2023 end-page: 438 ident: bib0064 article-title: The protein corona from nanomedicine to environmental science publication-title: Nat. Rev. Mater. – volume: 8 start-page: 18740 year: 2016 end-page: 18750 ident: bib0036 article-title: Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide publication-title: Nanoscale – volume: 141 start-page: 905 year: 1998 end-page: 915 ident: bib0042 article-title: Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains publication-title: J. Cell Biol. – volume: 33 start-page: 4013 year: 2012 end-page: 4021 ident: bib0043 article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses publication-title: Biomaterials – volume: 131 start-page: 927 year: 2007 end-page: 939 ident: bib0050 article-title: Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation publication-title: Cell – volume: 3 start-page: e118 year: 2020 ident: bib0018 article-title: Graphene and graphene oxide with anticancer applications: challenges and future perspectives publication-title: MedComm – volume: 70 start-page: 3537 year: 2010 end-page: 3546 ident: bib0048 article-title: Requirement of the NF-kappaB subunit p65/RelA for K-ras-induced lung tumorigenesis publication-title: Cancer Res. – volume: 16 start-page: 4378 year: 2024 end-page: 4391 ident: bib0015 article-title: Nano-PROTACs: state of the art and perspectives publication-title: Nanoscale – volume: 24 start-page: 26337 year: 2022 end-page: 26355 ident: bib0017 article-title: Functional groups in graphene oxide publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 13131 year: 2014 end-page: 13134 ident: bib0031 article-title: A DNA aptamer to c-Met inhibits cancer cell migration publication-title: Chem. Commun. (Camb) – volume: 10 year: 2011 ident: bib0032 article-title: Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry publication-title: Mol. Cell Proteomics. – volume: 18 start-page: 341 year: 2018 end-page: 358 ident: bib0033 article-title: Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy publication-title: Nat. Rev. Cancer – volume: 11 start-page: 23456 year: 2021 ident: bib0061 article-title: Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D(3) publication-title: Sci. Rep. – volume: 27 start-page: 605 year: 2020 end-page: 614 ident: bib0001 article-title: Targeted protein degradation as a powerful research tool in basic biology and drug target discovery publication-title: Nat. Struct. Mol. Biol. – volume: 84 start-page: 455 year: 1980 end-page: 460 ident: bib0039 article-title: Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation publication-title: J. Cell Biol. – volume: 116 start-page: 247 year: 2006 end-page: 254 ident: bib0040 article-title: Effects of Na publication-title: J. Control Release – volume: 6 start-page: 201 year: 2021 ident: bib0003 article-title: Small molecules in targeted cancer therapy: advances, challenges, and future perspectives publication-title: Signal. Transduct. Target. Ther. – volume: 89 start-page: 96 year: 2017 end-page: 106 ident: bib0022 article-title: Fluorescent biosensors enabled by graphene and graphene oxide publication-title: Biosens. Bioelectron. – volume: 51 start-page: 5498 year: 2022 end-page: 5517 ident: bib0006 article-title: Chasing molecular glue degraders: screening approaches publication-title: Chem. Soc. Rev. – volume: 16 start-page: 181 year: 2017 end-page: 202 ident: bib0026 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat. Rev. Drug Discov. – volume: 171 start-page: 1692 year: 2017 end-page: 1706 ident: bib0007 article-title: A method for the acute and rapid degradation of endogenous proteins publication-title: Cell – volume: 31 start-page: 2561 issue: 12 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0046 article-title: Direct visualization of epithelial microvilli biogenesis publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.04.012 – volume: 141 start-page: 905 issue: 4 year: 1998 ident: 10.1016/j.actbio.2025.02.023_bib0042 article-title: Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains publication-title: J. Cell Biol. doi: 10.1083/jcb.141.4.905 – volume: 34 issue: 45 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0044 article-title: Two birds with one stone: guanidyl carbon dots with enhanced antioxidative and lipolytic functions in metabolic associated fatty liver publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202406096 – volume: 11 start-page: 1347 issue: 1 year: 2020 ident: 10.1016/j.actbio.2025.02.023_bib0049 article-title: Aptamer-based optical manipulation of protein subcellular localization in cells publication-title: Nat. Commun. doi: 10.1038/s41467-020-15113-2 – volume: 171 start-page: 1692 issue: 7 year: 2017 ident: 10.1016/j.actbio.2025.02.023_bib0007 article-title: A method for the acute and rapid degradation of endogenous proteins publication-title: Cell doi: 10.1016/j.cell.2017.10.033 – volume: 19 issue: 39 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0019 article-title: MMP9-responsive graphene oxide quantum dot-based Nano-in-Micro drug delivery system for combinatorial therapy of choroidal neovascularization publication-title: Small. doi: 10.1002/smll.202207335 – volume: 18 start-page: 341 issue: 6 year: 2018 ident: 10.1016/j.actbio.2025.02.023_bib0033 article-title: Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0002-y – volume: 7 start-page: eabl8357 issue: 75 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0051 article-title: A Stk4-Foxp3-NF-κb p65 transcriptional complex promotes T(reg) cell activation and homeostasis publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abl8357 – volume: 6 start-page: 201 issue: 1 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0003 article-title: Small molecules in targeted cancer therapy: advances, challenges, and future perspectives publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-021-00572-w – volume: 140 start-page: 313 issue: 3 year: 2010 ident: 10.1016/j.actbio.2025.02.023_bib0038 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 – volume: 610 start-page: 182 issue: 7930 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0054 article-title: Antibody targeting of E3 ubiquitin ligases for receptor degradation publication-title: Nature doi: 10.1038/s41586-022-05235-6 – volume: 10 issue: 13 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0016 article-title: Nano-LYTACs for degradation of membrane proteins and inhibition of CD24/Siglec-10 signaling pathway publication-title: Adv. Sci. (Weinh) – volume: 253 start-page: 629 issue: 2 year: 1999 ident: 10.1016/j.actbio.2025.02.023_bib0041 article-title: Tyrosine phosphorylation of caveolin-1 in the endothelium publication-title: Exp. Cell Res. doi: 10.1006/excr.1999.4652 – volume: 286 start-page: 33310 issue: 38 year: 2011 ident: 10.1016/j.actbio.2025.02.023_bib0045 article-title: Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.255976 – volume: 8 start-page: 422 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0064 article-title: The protein corona from nanomedicine to environmental science publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-023-00552-2 – volume: 17 start-page: 15146 issue: 15 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0029 article-title: Chemical tailoring of aptamer glues with significantly enhanced recognition ability for targeted membrane protein degradation publication-title: ACS. Nano doi: 10.1021/acsnano.3c04457 – volume: 1206 start-page: 527 year: 2019 ident: 10.1016/j.actbio.2025.02.023_bib0034 article-title: Autophagy and ubiquitin-proteasome system publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-15-0602-4_25 – volume: 5 start-page: 21 issue: 1 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0060 article-title: 2D graphene oxide–aptamer conjugate materials for cancer diagnosis publication-title: npj 2D Materials and Applications doi: 10.1038/s41699-021-00202-7 – volume: 51 start-page: 5214 issue: 12 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0004 article-title: PROTACs: past, present and future publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00193D – volume: 25 start-page: 740 issue: 9 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0055 article-title: Targeted protein degradation: from mechanisms to clinic publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/s41580-024-00729-9 – volume: 6 start-page: 3952 issue: 7 year: 2015 ident: 10.1016/j.actbio.2025.02.023_bib0025 article-title: Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets publication-title: Chem. Sci. doi: 10.1039/C5SC00114E – volume: 9 start-page: 275 issue: 1 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0057 article-title: Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-024-01983-1 – volume: 13 start-page: 5657 issue: 1 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0020 article-title: Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells publication-title: Nat. Commun. doi: 10.1038/s41467-022-33410-w – volume: 10 issue: 6 year: 2011 ident: 10.1016/j.actbio.2025.02.023_bib0032 article-title: Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry publication-title: Mol. Cell Proteomics. doi: 10.1074/mcp.M111.008771 – volume: 60 start-page: 11267 issue: 20 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0030 article-title: Bispecific aptamer chimeras enable targeted protein degradation on cell membranes publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202102170 – volume: 89 start-page: 96 issue: Pt 1 year: 2017 ident: 10.1016/j.actbio.2025.02.023_bib0022 article-title: Fluorescent biosensors enabled by graphene and graphene oxide publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.030 – volume: 5 start-page: 361 issue: 3 year: 2009 ident: 10.1016/j.actbio.2025.02.023_bib0037 article-title: Autophagy induction by trehalose counteracts cellular prion infection publication-title: Autophagy. doi: 10.4161/auto.5.3.7662 – volume: 27 start-page: 605 issue: 7 year: 2020 ident: 10.1016/j.actbio.2025.02.023_bib0001 article-title: Targeted protein degradation as a powerful research tool in basic biology and drug target discovery publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0438-0 – volume: 12 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0065 article-title: Post-translational modifications of p65: state of the art publication-title: Front. Cell Dev. Biol. – volume: 7 start-page: 113 issue: 1 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0013 article-title: Targeted protein degradation: mechanisms, strategies and application publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-022-00966-4 – volume: 16 start-page: 181 issue: 3 year: 2017 ident: 10.1016/j.actbio.2025.02.023_bib0026 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.199 – volume: 15 start-page: 1258 issue: 7 year: 2019 ident: 10.1016/j.actbio.2025.02.023_bib0047 article-title: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance publication-title: Autophagy. doi: 10.1080/15548627.2019.1580105 – volume: 20 start-page: 463 issue: 2 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0011 article-title: Targeted degradation of SNCA/α-synuclein aggregates in neurodegeneration using the AUTOTAC chemical platform publication-title: Autophagy. doi: 10.1080/15548627.2023.2274711 – volume: 35 start-page: 6069 issue: 23 year: 2014 ident: 10.1016/j.actbio.2025.02.023_bib0053 article-title: Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.087 – volume: 50 start-page: 2772 year: 2012 ident: 10.1016/j.actbio.2025.02.023_bib0062 article-title: Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses publication-title: Carbon. N. Y. doi: 10.1016/j.carbon.2012.02.038 – volume: 165 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0067 article-title: Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions publication-title: Composites Part A: Applied Science and Manufacturing – volume: 10 start-page: 141 issue: 1 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0014 article-title: Role of protein degradation systems in colorectal cancer publication-title: Cell Death. Discov. doi: 10.1038/s41420-023-01781-8 – volume: 105 start-page: 255 issue: Pt B year: 2016 ident: 10.1016/j.actbio.2025.02.023_bib0021 article-title: Graphene-based materials for tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.03.007 – year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0063 article-title: Targeted protein degradation via cellular trafficking of nanoparticles publication-title: Nat. Nanotechnol. – volume: 31 start-page: 1315 issue: 12 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0005 article-title: Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently publication-title: Cell Res. doi: 10.1038/s41422-021-00533-6 – volume: 16 start-page: 4378 issue: 9 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0015 article-title: Nano-PROTACs: state of the art and perspectives publication-title: Nanoscale doi: 10.1039/D3NR06059D – volume: 3 start-page: e118 issue: 1 year: 2020 ident: 10.1016/j.actbio.2025.02.023_bib0018 article-title: Graphene and graphene oxide with anticancer applications: challenges and future perspectives publication-title: MedComm doi: 10.1002/mco2.118 – volume: 84 start-page: 455 issue: 2 year: 1980 ident: 10.1016/j.actbio.2025.02.023_bib0039 article-title: Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation publication-title: J. Cell Biol. doi: 10.1083/jcb.84.2.455 – volume: 17 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0035 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1) publication-title: Autophagy. doi: 10.1080/15548627.2020.1797280 – volume: 3 start-page: 1300 year: 2012 ident: 10.1016/j.actbio.2025.02.023_bib0052 article-title: PPARγ is an E3 ligase that induces the degradation of nfκb/p65 publication-title: Nat. Commun. doi: 10.1038/ncomms2270 – volume: 31 start-page: 35 year: 2019 ident: 10.1016/j.actbio.2025.02.023_bib0009 article-title: SNIPERs-hijacking IAP activity to induce protein degradation publication-title: Drug Discov. Today Technol. doi: 10.1016/j.ddtec.2018.12.002 – volume: 33 start-page: 4013 issue: 16 year: 2012 ident: 10.1016/j.actbio.2025.02.023_bib0043 article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.021 – volume: 5 start-page: 1169 issue: 6 year: 2010 ident: 10.1016/j.actbio.2025.02.023_bib0027 article-title: Development of DNA aptamers using Cell-SELEX publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.66 – volume: 50 start-page: 13131 issue: 86 year: 2014 ident: 10.1016/j.actbio.2025.02.023_bib0031 article-title: A DNA aptamer to c-Met inhibits cancer cell migration publication-title: Chem. Commun. (Camb) doi: 10.1039/C4CC06016D – volume: 40 start-page: 441 issue: 7 year: 2017 ident: 10.1016/j.actbio.2025.02.023_bib0012 article-title: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy publication-title: Mol. Cells doi: 10.14348/molcells.2017.0115 – volume: 8 start-page: 18740 issue: 44 year: 2016 ident: 10.1016/j.actbio.2025.02.023_bib0036 article-title: Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide publication-title: Nanoscale doi: 10.1039/C6NR07255K – volume: 584 start-page: 291 issue: 7820 year: 2020 ident: 10.1016/j.actbio.2025.02.023_bib0010 article-title: Lysosome-targeting chimaeras for degradation of extracellular proteins publication-title: Nature doi: 10.1038/s41586-020-2545-9 – volume: 14 start-page: 431 issue: 5 year: 2018 ident: 10.1016/j.actbio.2025.02.023_bib0008 article-title: The dTAG system for immediate and target-specific protein degradation publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0021-8 – volume: 19 start-page: 705 issue: 5 year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0024 article-title: First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01572-3 – volume: 11 start-page: 23456 issue: 1 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0061 article-title: Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D(3) publication-title: Sci. Rep. doi: 10.1038/s41598-021-02837-4 – volume: 51 start-page: 5498 issue: 13 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0006 article-title: Chasing molecular glue degraders: screening approaches publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00197G – volume: 15 start-page: 134 issue: 1 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0059 article-title: Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy publication-title: Chem. Sci. doi: 10.1039/D3SC04249A – volume: 11 start-page: 6606 issue: 26 year: 2020 ident: 10.1016/j.actbio.2025.02.023_bib0023 article-title: Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective publication-title: Chem. Sci. doi: 10.1039/D0SC02658A – volume: 70 start-page: 3537 issue: 9 year: 2010 ident: 10.1016/j.actbio.2025.02.023_bib0048 article-title: Requirement of the NF-kappaB subunit p65/RelA for K-ras-induced lung tumorigenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-4290 – volume: 14 start-page: 8433 issue: 32 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0002 article-title: Opportunities and challenges of protein-based targeted protein degradation publication-title: Chem. Sci. doi: 10.1039/D3SC02361C – volume: 116 start-page: 247 issue: 2 year: 2006 ident: 10.1016/j.actbio.2025.02.023_bib0040 article-title: Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine publication-title: J. Control Release doi: 10.1016/j.jconrel.2006.07.009 – volume: 11 start-page: 851 issue: 5 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0066 article-title: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress publication-title: Cells doi: 10.3390/cells11050851 – volume: 131 start-page: 927 issue: 5 year: 2007 ident: 10.1016/j.actbio.2025.02.023_bib0050 article-title: Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation publication-title: Cell doi: 10.1016/j.cell.2007.10.009 – year: 2024 ident: 10.1016/j.actbio.2025.02.023_bib0056 article-title: The targeted protein degradation landscape publication-title: Nat. Rev. Drug Discov. – volume: 60 start-page: 23299 issue: 43 year: 2021 ident: 10.1016/j.actbio.2025.02.023_bib0058 article-title: Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202107347 – volume: 17 start-page: 6150 issue: 7 year: 2023 ident: 10.1016/j.actbio.2025.02.023_bib0028 article-title: Aptamer-based targeted protein degradation publication-title: ACS. Nano doi: 10.1021/acsnano.2c10379 – volume: 24 start-page: 26337 issue: 43 year: 2022 ident: 10.1016/j.actbio.2025.02.023_bib0017 article-title: Functional groups in graphene oxide publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP04082D |
SSID | ssj0038128 |
Score | 2.4592075 |
Snippet | Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 509 |
SubjectTerms | Animals Aptamer Aptamers, Nucleotide - chemistry Aptamers, Nucleotide - pharmacology Autophagy Autophagy-lysosome Cancer therapy Cell Line, Tumor Cytoplasm - metabolism Graphene oxide (GO) Graphite - chemistry Graphite - pharmacology Humans Lysosomes - metabolism Membrane Proteins - metabolism Mice Mice, Nude Proteasome Endopeptidase Complex - metabolism Proteolysis Targeted protein degradation Ubiquitin-proteasome |
Title | Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins |
URI | https://dx.doi.org/10.1016/j.actbio.2025.02.023 https://www.ncbi.nlm.nih.gov/pubmed/39952883 https://www.proquest.com/docview/3167355492 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfjs_RgSvcW3SNdtxDMdU3EUHu8WmSbHC2uG6gxf_dt9L2zEPQ5D20vJKw3vp7_2Svg9Cbl2drEBbhsXJWaBNH3DQM0wazRMZa9s3uDXwPAnH0-Bx1p01yLDOhcGwygr7S0x3aF3d6VTa7CzStPMCXJpL56Fd4TPE4SCQOMvvvtdhHuCQXH9VFGYoXafPuRivKC50iimAvOsqd3KxzT1to5_ODY0OyH7FH-mgHOIhadjsiOxtVBU8Jm8bgUA0T2hEsyjLWRnzDRI0fk9xK4oCX6XA_6jBghFlbyWUn9s5LKEzS6PM0PiryBfAsOdpTF1NhzRbnpDp6P51OGZVIwUWC98vmJWYstTrWRFGJglFArQHPlwuQ5344CRhDSljmYRJj0cWUAcO4RuNHSBEtx954pQ0szyz54RGHGyoPYtEE_waAoLQAQ-k5dZ42rYIq_WnFmW9DFUHkn2oUt8K9a08DqdoEVkrWf2yuwJI_-PJm9omCj4J_M8BqslXS4XJ_Uij-rxFzkpjrceCmbzYYPni3--9JLt4hXFofveKNIvPlb0GYlLotpt5bbIzeHgaT34A5w7hew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG4260E9GN-uz5p4rQst0OVojJtVVy-uibdKaYmYLGxcPHjxtztTwKwHY2LgBENoZujM1zLzDSFnjicr0JYhOTkLtInBD3qGSaN5JlNtY4NbA3f30egxuHkKnzrksq2FwbTKxvfXPt156-ZKv9Fmf5bn_QfA0ly6CO2Iz8APLwUwfbGNwfnnd54HRCTXYBWlGYq39XMuyStJK51jDSAPHXUnF7_Fp9_wp4tDw3Wy1gBIelGPcYN0bLFJVhdoBbfI80ImEC0zmtAiKUpWJ32DBE1fctyLogBYKQBAapAxom6uhPJTO4U1dGFpUhiaflTlDCD2NE-pI3XIi_k2eRxeTS5HrOmkwFLh-xWzEmuWBgMrosRkkcgA98DM5TLSmQ9REhaRMpVZlA14YsHtwCF8o7EFhAjjxBM7pFuUhd0jNOFgRO1ZRJoQ2NAjCB3wQFpujadtj7BWf2pWE2aoNpPsVdX6Vqhv5XE4RY_IVsnqh-EV-PQ_njxtbaJgTuCPDlBN-T5XWN2POCrmPbJbG-t7LFjKix2W9__93hOyPJrcjdX4-v72gKzgHUxK88ND0q3e3u0RoJRKH7uv8Asl-uMJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+nano-targeting+chimera+for+the+degradation+of+membrane+and+cytoplasmic+proteins&rft.jtitle=Acta+biomaterialia&rft.au=Jin%2C+Peipei&rft.au=Chen%2C+Zhaozheng&rft.au=Zhang%2C+Ju&rft.au=Li%2C+Haowen&rft.date=2025-03-15&rft.pub=Elsevier+Inc&rft.issn=1742-7061&rft.volume=195&rft.spage=509&rft.epage=521&rft_id=info:doi/10.1016%2Fj.actbio.2025.02.023&rft.externalDocID=S1742706125001102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |