Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins

Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinc...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 195; pp. 509 - 521
Main Authors Jin, Peipei, Chen, Zhaozheng, Zhang, Ju, Li, Haowen, Wei, Pengfei, Wang, Ziyu, Feng, Qiyu, Wang, Hongyang, Han, Da, Miao, Yanyan
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 15.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements. [Display omitted]
AbstractList Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements.
Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements.Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements.
Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements. [Display omitted]
Author Jin, Peipei
Zhang, Ju
Wei, Pengfei
Chen, Zhaozheng
Wang, Hongyang
Feng, Qiyu
Li, Haowen
Wang, Ziyu
Han, Da
Miao, Yanyan
Author_xml – sequence: 1
  givenname: Peipei
  surname: Jin
  fullname: Jin, Peipei
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 2
  givenname: Zhaozheng
  surname: Chen
  fullname: Chen, Zhaozheng
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 3
  givenname: Ju
  surname: Zhang
  fullname: Zhang, Ju
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 4
  givenname: Haowen
  surname: Li
  fullname: Li, Haowen
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
– sequence: 5
  givenname: Pengfei
  surname: Wei
  fullname: Wei, Pengfei
  organization: School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
– sequence: 6
  givenname: Ziyu
  surname: Wang
  fullname: Wang, Ziyu
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 7
  givenname: Qiyu
  surname: Feng
  fullname: Feng, Qiyu
  email: qiyufeng@ustc.edu.cn
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 8
  givenname: Hongyang
  surname: Wang
  fullname: Wang, Hongyang
  email: hywangk@vip.sina.com
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 9
  givenname: Da
  surname: Han
  fullname: Han, Da
  email: dahan@sjtu.edu.cn
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
– sequence: 10
  givenname: Yanyan
  surname: Miao
  fullname: Miao, Yanyan
  email: miaoyy@sjtu.edu.cn
  organization: Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39952883$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqHDEQRUVwiB_JH4SgpTc90aP1mE0g2IltMGSTrBW1VBpr6JYmksbgv7eGsbM0XKhanLpVdc_RScoJEPpMyYoSKr9uV9a1KeYVI0ysCOvi79AZ1UoPSkh90ns1skERSU_Rea1bQrimTH9Ap3y9Fkxrfob-XsMjzHm3QGo4B2xxsikPzZYNtJg22D3EBYrFIRfcHgB72BTrbYs5HfgFlqnYBNgmj91Ty7vZ1iU6vCu5QUz1I3of7Fzh00u9QH9-_vh9dTvc_7q5u_p-PzhOaRtASTFKrYFL64PkQRAxas2UnAIF8CNhyqkgg2YWdP9RaU79RAmnXKwt4Rfo8ujbF__bQ21midXBPPfj8r4aTqXiQoxr1tEvL-h-WsCbXYmLLU_mNZUOjEfAlVxrgfAfocQcwjdbcwzfHMI3hHUdxr4dx6D_-RihmOoiJAc-FnDN-BzfNngGE2-OUg
Cites_doi 10.1016/j.cub.2021.04.012
10.1083/jcb.141.4.905
10.1002/adfm.202406096
10.1038/s41467-020-15113-2
10.1016/j.cell.2017.10.033
10.1002/smll.202207335
10.1038/s41568-018-0002-y
10.1126/sciimmunol.abl8357
10.1038/s41392-021-00572-w
10.1016/j.cell.2010.01.028
10.1038/s41586-022-05235-6
10.1006/excr.1999.4652
10.1074/jbc.M111.255976
10.1038/s41578-023-00552-2
10.1021/acsnano.3c04457
10.1007/978-981-15-0602-4_25
10.1038/s41699-021-00202-7
10.1039/D2CS00193D
10.1038/s41580-024-00729-9
10.1039/C5SC00114E
10.1038/s41392-024-01983-1
10.1038/s41467-022-33410-w
10.1074/mcp.M111.008771
10.1002/anie.202102170
10.1016/j.bios.2016.07.030
10.4161/auto.5.3.7662
10.1038/s41594-020-0438-0
10.1038/s41392-022-00966-4
10.1038/nrd.2016.199
10.1080/15548627.2019.1580105
10.1080/15548627.2023.2274711
10.1016/j.biomaterials.2014.03.087
10.1016/j.carbon.2012.02.038
10.1038/s41420-023-01781-8
10.1016/j.addr.2016.03.007
10.1038/s41422-021-00533-6
10.1039/D3NR06059D
10.1002/mco2.118
10.1083/jcb.84.2.455
10.1080/15548627.2020.1797280
10.1038/ncomms2270
10.1016/j.ddtec.2018.12.002
10.1016/j.biomaterials.2012.02.021
10.1038/nprot.2010.66
10.1039/C4CC06016D
10.14348/molcells.2017.0115
10.1039/C6NR07255K
10.1038/s41586-020-2545-9
10.1038/s41589-018-0021-8
10.1038/s41565-023-01572-3
10.1038/s41598-021-02837-4
10.1039/D2CS00197G
10.1039/D3SC04249A
10.1039/D0SC02658A
10.1158/0008-5472.CAN-09-4290
10.1039/D3SC02361C
10.1016/j.jconrel.2006.07.009
10.3390/cells11050851
10.1016/j.cell.2007.10.009
10.1002/anie.202107347
10.1021/acsnano.2c10379
10.1039/D2CP04082D
ContentType Journal Article
Copyright 2025 Acta Materialia Inc.
Copyright © 2025 Acta Materialia Inc. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 Acta Materialia Inc.
– notice: Copyright © 2025 Acta Materialia Inc. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.actbio.2025.02.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 521
ExternalDocumentID 39952883
10_1016_j_actbio_2025_02_023
S1742706125001102
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
EJD
RIG
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c311t-e7654688e36adf63f505488276bf1eed4027c7f6f82ae88787831db1031359a03
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Fri Jul 11 00:04:39 EDT 2025
Sat Jun 14 01:31:01 EDT 2025
Tue Jul 01 05:16:55 EDT 2025
Sat Mar 22 15:54:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Aptamer
Graphene oxide (GO)
Autophagy-lysosome
Targeted protein degradation
Cancer therapy
Ubiquitin-proteasome
Language English
License Copyright © 2025 Acta Materialia Inc. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-e7654688e36adf63f505488276bf1eed4027c7f6f82ae88787831db1031359a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39952883
PQID 3167355492
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3167355492
pubmed_primary_39952883
crossref_primary_10_1016_j_actbio_2025_02_023
elsevier_sciencedirect_doi_10_1016_j_actbio_2025_02_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shin, Li, Jang, Khoshakhlagh, Akbari, Nasajpour, Zhang, Tamayol, Khademhosseini (bib0021) 2016; 105
Banik, Pedram, Wisnovsky, Ahn, Riley, Bertozzi (bib0010) 2020; 584
Cai, Li, Wu, Yang, Tedesco, Li, Bi (bib0044) 2024; 34
Khine, Wen, Jin, Foller, Joshi (bib0017) 2022; 24
Hou, Moreau, Chadee (bib0052) 2012; 3
Baig (bib0067) 2022; 165
Wang, Liu, Wang, Jiang, Qian, You, Han, Zeng, Li, Lu, Jiang, Zhu, Li, Huang, Tang, Wang, Yan, Xiong, Shi, Bai, Liu, Li, Zhao, Chen, Qian (bib0020) 2022; 13
Gaeta, Meenderink, Postema, Cencer, Tyska (bib0046) 2021; 31
Miao, Gao, Mao, Zhang, Yang, Yang, Han (bib0030) 2021; 60
Comoglio, Trusolino, Boccaccio (bib0033) 2018; 18
Sefah, Shangguan, Xiong, O'Donoghue, Tan (bib0027) 2010; 5
Gupta, Kaul, Singh, Kumar, Singhal (bib0061) 2021; 11
Zhou, Rossi (bib0026) 2017; 16
Nabet, Roberts, Buckley, Paulk, Dastjerdi, Yang, Leggett, Erb, Lawlor, Souza, Scott, Vittori, Perry, Qi, Winter, Wong, Gray, Bradner (bib0008) 2018; 14
Zhao, Widen, Jamaluddin, Tian, Wood, Edeh, Brasier (bib0032) 2011; 10
Aguib, Heiseke, Gilch, Riemer, Baier, Schätzl, Ertmer (bib0037) 2009; 5
Huang, Liu, Lv, Zhang, Zhou, Lin, Guo (bib0019) 2023; 19
Li, Li, Wu (bib0066) 2022; 11
Lin, Tobin, Grumet, Lin (bib0039) 1980; 84
Aoki, Nomura, Fujimoto (bib0041) 1999; 253
Sun, Cao, Mao, Sun, Zhang, Song (bib0065) 2024; 12
Li, Crews (bib0004) 2022; 51
Clift, McEwan, Labzin, Konieczny, Mogessie, James, Schuh (bib0007) 2017; 171
Bassères, Ebbs, Levantini, Baldwin (bib0048) 2010; 70
Innocenzi, Stagi (bib0023) 2020; 11
He, Gao, Ma, Ma, Dong, Sheng (bib0058) 2021; 60
Klionsky, Abdel-Aziz, Abdelfatah, Abdellatif, Abdoli, Abel, Abeliovich, Abildgaard, Abudu, Acevedo-Arozena, Adamopoulos (bib0035) 2021; 17
Yue, Wei, Yue, Wang, Luo, Gao, Ma, Ma, Su (bib0043) 2012; 33
Zhang, Tan, Wang (bib0029) 2023; 17
Liu, Qian, Ran, Li, Fu, Su, Xie, Tan (bib0028) 2023; 17
Marei, Tsai, Kee, Ruiz, He, Cox, Sun, Penikalapati, Dwivedi, Choi, Kan, Saenz-Lopez, Dorighi, Zhang, Kschonsak, Kljavin, Amin, Kim, Mancini, Nguyen, Wang, Janezic, Doan, Mai, Xi, Gu, Heinlein, Biehs, Wu, Lehoux, Harris, Comps-Agrar, Seshasayee, de Sauvage, Grimmer, Li, Agard, de Sousa (bib0054) 2022; 610
Ji, Kwon (bib0012) 2017; 40
Shafiee, Iravani, Varma (bib0018) 2020; 3
Mizushima, Yoshimori, Levine (bib0038) 2010; 140
Huang, Gan, Wang, Xu, Xie (bib0047) 2019; 15
Hu, Mu, Wen, Zhou (bib0062) 2012; 50
Mahmoudi, Landry, Moore, Coreas (bib0064) 2023; 8
Wang, Yu, Liu, Feng, Hou, Chen, Ma, Huang, Dai (bib0016) 2023; 10
Jin, Wei, Zhang, Lin, Sha, Hu, Zhang, Zhou, Yao, Ren, Yang, Liu, Wen (bib0036) 2016; 8
Mao, Guo, Yan (bib0053) 2014; 35
Andrews, Joshi, Tzolos, Syed, Cuthbert, Crica, Lozano, Okwelogu, Raftis, Bruce, Poland, Duffin, Fokkens, Boere, Leseman, Megson, Whitfield, Ziegler, Tammireddy, Hadjidemetriou, Bussy, Cassee, Newby, Kostarelos, Miller (bib0024) 2024; 19
Farley, Bhattacharya, Cleland, Chandran, Wu (bib0056) 2024
Sekhon, Kaur, Kim, Sekhon (bib0060) 2021; 5
Zhang, Zhang, Aldalbahi, Zuo, Fan, Mi (bib0022) 2017; 89
Liu, Liu, Chen, Xing, Zhang, Zhang (bib0059) 2023; 15
Zhong, Zhao, Wang, Su, Lan (bib0015) 2024; 16
Ueki, Sando (bib0031) 2014; 50
Cui, Cong, Yin, Li, Ye, Liu, Tang (bib0014) 2024; 10
Lee, Yoon, Sung, Bae, Park, Suh, Kwon (bib0011) 2024; 20
Zhong, Li, Xiong, Wang, Wu, Yuan, Yang, Tian, Miao, Wang, Yang (bib0003) 2021; 6
Zhao, Zhao, Zhong, Tong, Jia (bib0013) 2022; 7
Naito, Ohoka, Shibata (bib0009) 2019; 31
Cui, Benamar, Schmitz-Abe, Poondi-Krishnan, Chen, Jugder, Fatou, Fong, Zhong, Mehta, Buyanbat, Eklioglu, Karabiber, Baris, Kiykim, Keles, Stephen-Victor, Angelini, Charbonnier, Chatila (bib0051) 2022; 7
Wu, Yoon, Xiong, Dixon-Clarke, Nowak, Fischer (bib0001) 2020; 27
Fretz, Jin, Conibere, Penning, Al-Taei, Storm, Futaki, Takeuchi, Nakase, Jones (bib0040) 2006; 116
Yang, Yang, Zhang, Li, Yang, Wang, Chen, Zhang, He, Wang, Dai, Wang, Zhang (bib0057) 2024; 9
Shen, Dassama (bib0002) 2023; 14
Wang, Le (bib0034) 2019; 1206
Tsai, Nowak, Ebert, Fischer (bib0055) 2024; 25
Wan, Anderson, Barnitz, Snow, Bidere, Zheng, Hegde, Lam, Staudt, Levens, Deutsch, Lenardo (bib0050) 2007; 131
Head, Hu, Finley, Saldana, Bonds, Miyanohara, Niesman, Ali, Murray, Insel, Roth, Patel, Patel (bib0045) 2011; 286
Domostegui, Nieto-Barrado, Perez-Lopez, Mayor-Ruiz (bib0006) 2022; 51
Orlandi, Fishman (bib0042) 1998; 141
Liu, Liu, Dong, Xia, Yang, Wei, Fan, Fang, Zou, Zheng, Leong, Shi (bib0063) 2024
Yang, Sun, Ni, Yang, Tong, Liu, Li, Rao (bib0005) 2021; 31
Jasim, Ménard-Moyon, Bégin, Bianco, Kostarelos (bib0025) 2015; 6
Xie, Du, Zhang, Wang, Zhang, He, Qiu, Jiang, Tan (bib0049) 2020; 11
Ji (10.1016/j.actbio.2025.02.023_bib0012) 2017; 40
Huang (10.1016/j.actbio.2025.02.023_bib0019) 2023; 19
Yang (10.1016/j.actbio.2025.02.023_bib0057) 2024; 9
Zhang (10.1016/j.actbio.2025.02.023_bib0022) 2017; 89
Lee (10.1016/j.actbio.2025.02.023_bib0011) 2024; 20
Zhao (10.1016/j.actbio.2025.02.023_bib0013) 2022; 7
Tsai (10.1016/j.actbio.2025.02.023_bib0055) 2024; 25
Zhong (10.1016/j.actbio.2025.02.023_bib0015) 2024; 16
Klionsky (10.1016/j.actbio.2025.02.023_bib0035) 2021; 17
Jasim (10.1016/j.actbio.2025.02.023_bib0025) 2015; 6
He (10.1016/j.actbio.2025.02.023_bib0058) 2021; 60
Huang (10.1016/j.actbio.2025.02.023_bib0047) 2019; 15
Mahmoudi (10.1016/j.actbio.2025.02.023_bib0064) 2023; 8
Liu (10.1016/j.actbio.2025.02.023_bib0063) 2024
Gupta (10.1016/j.actbio.2025.02.023_bib0061) 2021; 11
Shin (10.1016/j.actbio.2025.02.023_bib0021) 2016; 105
Wu (10.1016/j.actbio.2025.02.023_bib0001) 2020; 27
Li (10.1016/j.actbio.2025.02.023_bib0066) 2022; 11
Hou (10.1016/j.actbio.2025.02.023_bib0052) 2012; 3
Lin (10.1016/j.actbio.2025.02.023_bib0039) 1980; 84
Farley (10.1016/j.actbio.2025.02.023_bib0056) 2024
Wang (10.1016/j.actbio.2025.02.023_bib0016) 2023; 10
Head (10.1016/j.actbio.2025.02.023_bib0045) 2011; 286
Innocenzi (10.1016/j.actbio.2025.02.023_bib0023) 2020; 11
Orlandi (10.1016/j.actbio.2025.02.023_bib0042) 1998; 141
Wang (10.1016/j.actbio.2025.02.023_bib0020) 2022; 13
Zhou (10.1016/j.actbio.2025.02.023_bib0026) 2017; 16
Miao (10.1016/j.actbio.2025.02.023_bib0030) 2021; 60
Mao (10.1016/j.actbio.2025.02.023_bib0053) 2014; 35
Marei (10.1016/j.actbio.2025.02.023_bib0054) 2022; 610
Ueki (10.1016/j.actbio.2025.02.023_bib0031) 2014; 50
Banik (10.1016/j.actbio.2025.02.023_bib0010) 2020; 584
Li (10.1016/j.actbio.2025.02.023_bib0004) 2022; 51
Shen (10.1016/j.actbio.2025.02.023_bib0002) 2023; 14
Cui (10.1016/j.actbio.2025.02.023_bib0014) 2024; 10
Gaeta (10.1016/j.actbio.2025.02.023_bib0046) 2021; 31
Sekhon (10.1016/j.actbio.2025.02.023_bib0060) 2021; 5
Wan (10.1016/j.actbio.2025.02.023_bib0050) 2007; 131
Cui (10.1016/j.actbio.2025.02.023_bib0051) 2022; 7
Liu (10.1016/j.actbio.2025.02.023_bib0059) 2023; 15
Sun (10.1016/j.actbio.2025.02.023_bib0065) 2024; 12
Jin (10.1016/j.actbio.2025.02.023_bib0036) 2016; 8
Khine (10.1016/j.actbio.2025.02.023_bib0017) 2022; 24
Baig (10.1016/j.actbio.2025.02.023_bib0067) 2022; 165
Domostegui (10.1016/j.actbio.2025.02.023_bib0006) 2022; 51
Aguib (10.1016/j.actbio.2025.02.023_bib0037) 2009; 5
Wang (10.1016/j.actbio.2025.02.023_bib0034) 2019; 1206
Zhang (10.1016/j.actbio.2025.02.023_bib0029) 2023; 17
Zhao (10.1016/j.actbio.2025.02.023_bib0032) 2011; 10
Naito (10.1016/j.actbio.2025.02.023_bib0009) 2019; 31
Comoglio (10.1016/j.actbio.2025.02.023_bib0033) 2018; 18
Sefah (10.1016/j.actbio.2025.02.023_bib0027) 2010; 5
Yue (10.1016/j.actbio.2025.02.023_bib0043) 2012; 33
Mizushima (10.1016/j.actbio.2025.02.023_bib0038) 2010; 140
Clift (10.1016/j.actbio.2025.02.023_bib0007) 2017; 171
Liu (10.1016/j.actbio.2025.02.023_bib0028) 2023; 17
Cai (10.1016/j.actbio.2025.02.023_bib0044) 2024; 34
Aoki (10.1016/j.actbio.2025.02.023_bib0041) 1999; 253
Nabet (10.1016/j.actbio.2025.02.023_bib0008) 2018; 14
Hu (10.1016/j.actbio.2025.02.023_bib0062) 2012; 50
Zhong (10.1016/j.actbio.2025.02.023_bib0003) 2021; 6
Bassères (10.1016/j.actbio.2025.02.023_bib0048) 2010; 70
Fretz (10.1016/j.actbio.2025.02.023_bib0040) 2006; 116
Xie (10.1016/j.actbio.2025.02.023_bib0049) 2020; 11
Andrews (10.1016/j.actbio.2025.02.023_bib0024) 2024; 19
Shafiee (10.1016/j.actbio.2025.02.023_bib0018) 2020; 3
Yang (10.1016/j.actbio.2025.02.023_bib0005) 2021; 31
References_xml – volume: 34
  year: 2024
  ident: bib0044
  article-title: Two birds with one stone: guanidyl carbon dots with enhanced antioxidative and lipolytic functions in metabolic associated fatty liver
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 23299
  year: 2021
  end-page: 23305
  ident: bib0058
  article-title: Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 60
  start-page: 11267
  year: 2021
  end-page: 11271
  ident: bib0030
  article-title: Bispecific aptamer chimeras enable targeted protein degradation on cell membranes
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 19
  start-page: 705
  year: 2024
  end-page: 714
  ident: bib0024
  article-title: First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1300
  year: 2012
  ident: bib0052
  article-title: PPARγ is an E3 ligase that induces the degradation of nfκb/p65
  publication-title: Nat. Commun.
– volume: 10
  start-page: 141
  year: 2024
  ident: bib0014
  article-title: Role of protein degradation systems in colorectal cancer
  publication-title: Cell Death. Discov.
– volume: 286
  start-page: 33310
  year: 2011
  end-page: 33321
  ident: bib0045
  article-title: Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 6150
  year: 2023
  end-page: 6164
  ident: bib0028
  article-title: Aptamer-based targeted protein degradation
  publication-title: ACS. Nano
– volume: 31
  start-page: 35
  year: 2019
  end-page: 42
  ident: bib0009
  article-title: SNIPERs-hijacking IAP activity to induce protein degradation
  publication-title: Drug Discov. Today Technol.
– volume: 105
  start-page: 255
  year: 2016
  end-page: 274
  ident: bib0021
  article-title: Graphene-based materials for tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
– volume: 17
  start-page: 1
  year: 2021
  end-page: 382
  ident: bib0035
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1)
  publication-title: Autophagy.
– volume: 610
  start-page: 182
  year: 2022
  end-page: 189
  ident: bib0054
  article-title: Antibody targeting of E3 ubiquitin ligases for receptor degradation
  publication-title: Nature
– volume: 14
  start-page: 431
  year: 2018
  end-page: 441
  ident: bib0008
  article-title: The dTAG system for immediate and target-specific protein degradation
  publication-title: Nat. Chem. Biol.
– volume: 584
  start-page: 291
  year: 2020
  end-page: 297
  ident: bib0010
  article-title: Lysosome-targeting chimaeras for degradation of extracellular proteins
  publication-title: Nature
– volume: 165
  year: 2022
  ident: bib0067
  article-title: Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions
  publication-title: Composites Part A: Applied Science and Manufacturing
– year: 2024
  ident: bib0056
  article-title: The targeted protein degradation landscape
  publication-title: Nat. Rev. Drug Discov.
– volume: 9
  start-page: 275
  year: 2024
  ident: bib0057
  article-title: Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy
  publication-title: Signal. Transduct. Target. Ther.
– volume: 13
  start-page: 5657
  year: 2022
  ident: bib0020
  article-title: Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells
  publication-title: Nat. Commun.
– volume: 31
  start-page: 2561
  year: 2021
  end-page: 2575
  ident: bib0046
  article-title: Direct visualization of epithelial microvilli biogenesis
  publication-title: Curr. Biol.
– volume: 7
  start-page: 113
  year: 2022
  ident: bib0013
  article-title: Targeted protein degradation: mechanisms, strategies and application
  publication-title: Signal. Transduct. Target. Ther.
– volume: 140
  start-page: 313
  year: 2010
  end-page: 326
  ident: bib0038
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
– volume: 5
  start-page: 21
  year: 2021
  ident: bib0060
  article-title: 2D graphene oxide–aptamer conjugate materials for cancer diagnosis
  publication-title: npj 2D Materials and Applications
– volume: 10
  year: 2023
  ident: bib0016
  article-title: Nano-LYTACs for degradation of membrane proteins and inhibition of CD24/Siglec-10 signaling pathway
  publication-title: Adv. Sci. (Weinh)
– volume: 11
  start-page: 1347
  year: 2020
  ident: bib0049
  article-title: Aptamer-based optical manipulation of protein subcellular localization in cells
  publication-title: Nat. Commun.
– volume: 20
  start-page: 463
  year: 2024
  end-page: 465
  ident: bib0011
  article-title: Targeted degradation of SNCA/α-synuclein aggregates in neurodegeneration using the AUTOTAC chemical platform
  publication-title: Autophagy.
– volume: 19
  year: 2023
  ident: bib0019
  article-title: MMP9-responsive graphene oxide quantum dot-based Nano-in-Micro drug delivery system for combinatorial therapy of choroidal neovascularization
  publication-title: Small.
– volume: 51
  start-page: 5214
  year: 2022
  end-page: 5236
  ident: bib0004
  article-title: PROTACs: past, present and future
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 361
  year: 2009
  end-page: 369
  ident: bib0037
  article-title: Autophagy induction by trehalose counteracts cellular prion infection
  publication-title: Autophagy.
– volume: 15
  start-page: 134
  year: 2023
  end-page: 145
  ident: bib0059
  article-title: Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy
  publication-title: Chem. Sci.
– volume: 31
  start-page: 1315
  year: 2021
  end-page: 1318
  ident: bib0005
  article-title: Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently
  publication-title: Cell Res.
– volume: 40
  start-page: 441
  year: 2017
  end-page: 449
  ident: bib0012
  article-title: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy
  publication-title: Mol. Cells
– volume: 15
  start-page: 1258
  year: 2019
  end-page: 1279
  ident: bib0047
  article-title: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance
  publication-title: Autophagy.
– volume: 35
  start-page: 6069
  year: 2014
  end-page: 6077
  ident: bib0053
  article-title: Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets
  publication-title: Biomaterials
– volume: 25
  start-page: 740
  year: 2024
  end-page: 757
  ident: bib0055
  article-title: Targeted protein degradation: from mechanisms to clinic
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 7
  start-page: eabl8357
  year: 2022
  ident: bib0051
  article-title: A Stk4-Foxp3-NF-κb p65 transcriptional complex promotes T(reg) cell activation and homeostasis
  publication-title: Sci. Immunol.
– volume: 11
  start-page: 851
  year: 2022
  ident: bib0066
  article-title: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress
  publication-title: Cells
– volume: 12
  year: 2024
  ident: bib0065
  article-title: Post-translational modifications of p65: state of the art
  publication-title: Front. Cell Dev. Biol.
– volume: 14
  start-page: 8433
  year: 2023
  end-page: 8447
  ident: bib0002
  article-title: Opportunities and challenges of protein-based targeted protein degradation
  publication-title: Chem. Sci.
– volume: 5
  start-page: 1169
  year: 2010
  end-page: 1185
  ident: bib0027
  article-title: Development of DNA aptamers using Cell-SELEX
  publication-title: Nat. Protoc.
– volume: 253
  start-page: 629
  year: 1999
  end-page: 636
  ident: bib0041
  article-title: Tyrosine phosphorylation of caveolin-1 in the endothelium
  publication-title: Exp. Cell Res.
– year: 2024
  ident: bib0063
  article-title: Targeted protein degradation via cellular trafficking of nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 3952
  year: 2015
  end-page: 3964
  ident: bib0025
  article-title: Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets
  publication-title: Chem. Sci.
– volume: 1206
  start-page: 527
  year: 2019
  end-page: 550
  ident: bib0034
  article-title: Autophagy and ubiquitin-proteasome system
  publication-title: Adv. Exp. Med. Biol.
– volume: 11
  start-page: 6606
  year: 2020
  end-page: 6622
  ident: bib0023
  article-title: Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective
  publication-title: Chem. Sci.
– volume: 17
  start-page: 15146
  year: 2023
  end-page: 15154
  ident: bib0029
  article-title: Chemical tailoring of aptamer glues with significantly enhanced recognition ability for targeted membrane protein degradation
  publication-title: ACS. Nano
– volume: 50
  start-page: 2772
  year: 2012
  end-page: 2781
  ident: bib0062
  article-title: Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses
  publication-title: Carbon. N. Y.
– volume: 8
  start-page: 422
  year: 2023
  end-page: 438
  ident: bib0064
  article-title: The protein corona from nanomedicine to environmental science
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 18740
  year: 2016
  end-page: 18750
  ident: bib0036
  article-title: Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide
  publication-title: Nanoscale
– volume: 141
  start-page: 905
  year: 1998
  end-page: 915
  ident: bib0042
  article-title: Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains
  publication-title: J. Cell Biol.
– volume: 33
  start-page: 4013
  year: 2012
  end-page: 4021
  ident: bib0043
  article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses
  publication-title: Biomaterials
– volume: 131
  start-page: 927
  year: 2007
  end-page: 939
  ident: bib0050
  article-title: Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation
  publication-title: Cell
– volume: 3
  start-page: e118
  year: 2020
  ident: bib0018
  article-title: Graphene and graphene oxide with anticancer applications: challenges and future perspectives
  publication-title: MedComm
– volume: 70
  start-page: 3537
  year: 2010
  end-page: 3546
  ident: bib0048
  article-title: Requirement of the NF-kappaB subunit p65/RelA for K-ras-induced lung tumorigenesis
  publication-title: Cancer Res.
– volume: 16
  start-page: 4378
  year: 2024
  end-page: 4391
  ident: bib0015
  article-title: Nano-PROTACs: state of the art and perspectives
  publication-title: Nanoscale
– volume: 24
  start-page: 26337
  year: 2022
  end-page: 26355
  ident: bib0017
  article-title: Functional groups in graphene oxide
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 13131
  year: 2014
  end-page: 13134
  ident: bib0031
  article-title: A DNA aptamer to c-Met inhibits cancer cell migration
  publication-title: Chem. Commun. (Camb)
– volume: 10
  year: 2011
  ident: bib0032
  article-title: Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry
  publication-title: Mol. Cell Proteomics.
– volume: 18
  start-page: 341
  year: 2018
  end-page: 358
  ident: bib0033
  article-title: Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy
  publication-title: Nat. Rev. Cancer
– volume: 11
  start-page: 23456
  year: 2021
  ident: bib0061
  article-title: Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D(3)
  publication-title: Sci. Rep.
– volume: 27
  start-page: 605
  year: 2020
  end-page: 614
  ident: bib0001
  article-title: Targeted protein degradation as a powerful research tool in basic biology and drug target discovery
  publication-title: Nat. Struct. Mol. Biol.
– volume: 84
  start-page: 455
  year: 1980
  end-page: 460
  ident: bib0039
  article-title: Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation
  publication-title: J. Cell Biol.
– volume: 116
  start-page: 247
  year: 2006
  end-page: 254
  ident: bib0040
  article-title: Effects of Na
  publication-title: J. Control Release
– volume: 6
  start-page: 201
  year: 2021
  ident: bib0003
  article-title: Small molecules in targeted cancer therapy: advances, challenges, and future perspectives
  publication-title: Signal. Transduct. Target. Ther.
– volume: 89
  start-page: 96
  year: 2017
  end-page: 106
  ident: bib0022
  article-title: Fluorescent biosensors enabled by graphene and graphene oxide
  publication-title: Biosens. Bioelectron.
– volume: 51
  start-page: 5498
  year: 2022
  end-page: 5517
  ident: bib0006
  article-title: Chasing molecular glue degraders: screening approaches
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 181
  year: 2017
  end-page: 202
  ident: bib0026
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat. Rev. Drug Discov.
– volume: 171
  start-page: 1692
  year: 2017
  end-page: 1706
  ident: bib0007
  article-title: A method for the acute and rapid degradation of endogenous proteins
  publication-title: Cell
– volume: 31
  start-page: 2561
  issue: 12
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0046
  article-title: Direct visualization of epithelial microvilli biogenesis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.04.012
– volume: 141
  start-page: 905
  issue: 4
  year: 1998
  ident: 10.1016/j.actbio.2025.02.023_bib0042
  article-title: Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.4.905
– volume: 34
  issue: 45
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0044
  article-title: Two birds with one stone: guanidyl carbon dots with enhanced antioxidative and lipolytic functions in metabolic associated fatty liver
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202406096
– volume: 11
  start-page: 1347
  issue: 1
  year: 2020
  ident: 10.1016/j.actbio.2025.02.023_bib0049
  article-title: Aptamer-based optical manipulation of protein subcellular localization in cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15113-2
– volume: 171
  start-page: 1692
  issue: 7
  year: 2017
  ident: 10.1016/j.actbio.2025.02.023_bib0007
  article-title: A method for the acute and rapid degradation of endogenous proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.033
– volume: 19
  issue: 39
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0019
  article-title: MMP9-responsive graphene oxide quantum dot-based Nano-in-Micro drug delivery system for combinatorial therapy of choroidal neovascularization
  publication-title: Small.
  doi: 10.1002/smll.202207335
– volume: 18
  start-page: 341
  issue: 6
  year: 2018
  ident: 10.1016/j.actbio.2025.02.023_bib0033
  article-title: Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0002-y
– volume: 7
  start-page: eabl8357
  issue: 75
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0051
  article-title: A Stk4-Foxp3-NF-κb p65 transcriptional complex promotes T(reg) cell activation and homeostasis
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abl8357
– volume: 6
  start-page: 201
  issue: 1
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0003
  article-title: Small molecules in targeted cancer therapy: advances, challenges, and future perspectives
  publication-title: Signal. Transduct. Target. Ther.
  doi: 10.1038/s41392-021-00572-w
– volume: 140
  start-page: 313
  issue: 3
  year: 2010
  ident: 10.1016/j.actbio.2025.02.023_bib0038
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.028
– volume: 610
  start-page: 182
  issue: 7930
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0054
  article-title: Antibody targeting of E3 ubiquitin ligases for receptor degradation
  publication-title: Nature
  doi: 10.1038/s41586-022-05235-6
– volume: 10
  issue: 13
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0016
  article-title: Nano-LYTACs for degradation of membrane proteins and inhibition of CD24/Siglec-10 signaling pathway
  publication-title: Adv. Sci. (Weinh)
– volume: 253
  start-page: 629
  issue: 2
  year: 1999
  ident: 10.1016/j.actbio.2025.02.023_bib0041
  article-title: Tyrosine phosphorylation of caveolin-1 in the endothelium
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1999.4652
– volume: 286
  start-page: 33310
  issue: 38
  year: 2011
  ident: 10.1016/j.actbio.2025.02.023_bib0045
  article-title: Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.255976
– volume: 8
  start-page: 422
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0064
  article-title: The protein corona from nanomedicine to environmental science
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-023-00552-2
– volume: 17
  start-page: 15146
  issue: 15
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0029
  article-title: Chemical tailoring of aptamer glues with significantly enhanced recognition ability for targeted membrane protein degradation
  publication-title: ACS. Nano
  doi: 10.1021/acsnano.3c04457
– volume: 1206
  start-page: 527
  year: 2019
  ident: 10.1016/j.actbio.2025.02.023_bib0034
  article-title: Autophagy and ubiquitin-proteasome system
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-15-0602-4_25
– volume: 5
  start-page: 21
  issue: 1
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0060
  article-title: 2D graphene oxide–aptamer conjugate materials for cancer diagnosis
  publication-title: npj 2D Materials and Applications
  doi: 10.1038/s41699-021-00202-7
– volume: 51
  start-page: 5214
  issue: 12
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0004
  article-title: PROTACs: past, present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00193D
– volume: 25
  start-page: 740
  issue: 9
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0055
  article-title: Targeted protein degradation: from mechanisms to clinic
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/s41580-024-00729-9
– volume: 6
  start-page: 3952
  issue: 7
  year: 2015
  ident: 10.1016/j.actbio.2025.02.023_bib0025
  article-title: Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00114E
– volume: 9
  start-page: 275
  issue: 1
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0057
  article-title: Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy
  publication-title: Signal. Transduct. Target. Ther.
  doi: 10.1038/s41392-024-01983-1
– volume: 13
  start-page: 5657
  issue: 1
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0020
  article-title: Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33410-w
– volume: 10
  issue: 6
  year: 2011
  ident: 10.1016/j.actbio.2025.02.023_bib0032
  article-title: Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry
  publication-title: Mol. Cell Proteomics.
  doi: 10.1074/mcp.M111.008771
– volume: 60
  start-page: 11267
  issue: 20
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0030
  article-title: Bispecific aptamer chimeras enable targeted protein degradation on cell membranes
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202102170
– volume: 89
  start-page: 96
  issue: Pt 1
  year: 2017
  ident: 10.1016/j.actbio.2025.02.023_bib0022
  article-title: Fluorescent biosensors enabled by graphene and graphene oxide
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.030
– volume: 5
  start-page: 361
  issue: 3
  year: 2009
  ident: 10.1016/j.actbio.2025.02.023_bib0037
  article-title: Autophagy induction by trehalose counteracts cellular prion infection
  publication-title: Autophagy.
  doi: 10.4161/auto.5.3.7662
– volume: 27
  start-page: 605
  issue: 7
  year: 2020
  ident: 10.1016/j.actbio.2025.02.023_bib0001
  article-title: Targeted protein degradation as a powerful research tool in basic biology and drug target discovery
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0438-0
– volume: 12
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0065
  article-title: Post-translational modifications of p65: state of the art
  publication-title: Front. Cell Dev. Biol.
– volume: 7
  start-page: 113
  issue: 1
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0013
  article-title: Targeted protein degradation: mechanisms, strategies and application
  publication-title: Signal. Transduct. Target. Ther.
  doi: 10.1038/s41392-022-00966-4
– volume: 16
  start-page: 181
  issue: 3
  year: 2017
  ident: 10.1016/j.actbio.2025.02.023_bib0026
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.199
– volume: 15
  start-page: 1258
  issue: 7
  year: 2019
  ident: 10.1016/j.actbio.2025.02.023_bib0047
  article-title: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance
  publication-title: Autophagy.
  doi: 10.1080/15548627.2019.1580105
– volume: 20
  start-page: 463
  issue: 2
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0011
  article-title: Targeted degradation of SNCA/α-synuclein aggregates in neurodegeneration using the AUTOTAC chemical platform
  publication-title: Autophagy.
  doi: 10.1080/15548627.2023.2274711
– volume: 35
  start-page: 6069
  issue: 23
  year: 2014
  ident: 10.1016/j.actbio.2025.02.023_bib0053
  article-title: Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.087
– volume: 50
  start-page: 2772
  year: 2012
  ident: 10.1016/j.actbio.2025.02.023_bib0062
  article-title: Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses
  publication-title: Carbon. N. Y.
  doi: 10.1016/j.carbon.2012.02.038
– volume: 165
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0067
  article-title: Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions
  publication-title: Composites Part A: Applied Science and Manufacturing
– volume: 10
  start-page: 141
  issue: 1
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0014
  article-title: Role of protein degradation systems in colorectal cancer
  publication-title: Cell Death. Discov.
  doi: 10.1038/s41420-023-01781-8
– volume: 105
  start-page: 255
  issue: Pt B
  year: 2016
  ident: 10.1016/j.actbio.2025.02.023_bib0021
  article-title: Graphene-based materials for tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.03.007
– year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0063
  article-title: Targeted protein degradation via cellular trafficking of nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 31
  start-page: 1315
  issue: 12
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0005
  article-title: Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently
  publication-title: Cell Res.
  doi: 10.1038/s41422-021-00533-6
– volume: 16
  start-page: 4378
  issue: 9
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0015
  article-title: Nano-PROTACs: state of the art and perspectives
  publication-title: Nanoscale
  doi: 10.1039/D3NR06059D
– volume: 3
  start-page: e118
  issue: 1
  year: 2020
  ident: 10.1016/j.actbio.2025.02.023_bib0018
  article-title: Graphene and graphene oxide with anticancer applications: challenges and future perspectives
  publication-title: MedComm
  doi: 10.1002/mco2.118
– volume: 84
  start-page: 455
  issue: 2
  year: 1980
  ident: 10.1016/j.actbio.2025.02.023_bib0039
  article-title: Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.84.2.455
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0035
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1)
  publication-title: Autophagy.
  doi: 10.1080/15548627.2020.1797280
– volume: 3
  start-page: 1300
  year: 2012
  ident: 10.1016/j.actbio.2025.02.023_bib0052
  article-title: PPARγ is an E3 ligase that induces the degradation of nfκb/p65
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2270
– volume: 31
  start-page: 35
  year: 2019
  ident: 10.1016/j.actbio.2025.02.023_bib0009
  article-title: SNIPERs-hijacking IAP activity to induce protein degradation
  publication-title: Drug Discov. Today Technol.
  doi: 10.1016/j.ddtec.2018.12.002
– volume: 33
  start-page: 4013
  issue: 16
  year: 2012
  ident: 10.1016/j.actbio.2025.02.023_bib0043
  article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.021
– volume: 5
  start-page: 1169
  issue: 6
  year: 2010
  ident: 10.1016/j.actbio.2025.02.023_bib0027
  article-title: Development of DNA aptamers using Cell-SELEX
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.66
– volume: 50
  start-page: 13131
  issue: 86
  year: 2014
  ident: 10.1016/j.actbio.2025.02.023_bib0031
  article-title: A DNA aptamer to c-Met inhibits cancer cell migration
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C4CC06016D
– volume: 40
  start-page: 441
  issue: 7
  year: 2017
  ident: 10.1016/j.actbio.2025.02.023_bib0012
  article-title: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2017.0115
– volume: 8
  start-page: 18740
  issue: 44
  year: 2016
  ident: 10.1016/j.actbio.2025.02.023_bib0036
  article-title: Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide
  publication-title: Nanoscale
  doi: 10.1039/C6NR07255K
– volume: 584
  start-page: 291
  issue: 7820
  year: 2020
  ident: 10.1016/j.actbio.2025.02.023_bib0010
  article-title: Lysosome-targeting chimaeras for degradation of extracellular proteins
  publication-title: Nature
  doi: 10.1038/s41586-020-2545-9
– volume: 14
  start-page: 431
  issue: 5
  year: 2018
  ident: 10.1016/j.actbio.2025.02.023_bib0008
  article-title: The dTAG system for immediate and target-specific protein degradation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0021-8
– volume: 19
  start-page: 705
  issue: 5
  year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0024
  article-title: First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01572-3
– volume: 11
  start-page: 23456
  issue: 1
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0061
  article-title: Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D(3)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-02837-4
– volume: 51
  start-page: 5498
  issue: 13
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0006
  article-title: Chasing molecular glue degraders: screening approaches
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00197G
– volume: 15
  start-page: 134
  issue: 1
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0059
  article-title: Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC04249A
– volume: 11
  start-page: 6606
  issue: 26
  year: 2020
  ident: 10.1016/j.actbio.2025.02.023_bib0023
  article-title: Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02658A
– volume: 70
  start-page: 3537
  issue: 9
  year: 2010
  ident: 10.1016/j.actbio.2025.02.023_bib0048
  article-title: Requirement of the NF-kappaB subunit p65/RelA for K-ras-induced lung tumorigenesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-4290
– volume: 14
  start-page: 8433
  issue: 32
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0002
  article-title: Opportunities and challenges of protein-based targeted protein degradation
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC02361C
– volume: 116
  start-page: 247
  issue: 2
  year: 2006
  ident: 10.1016/j.actbio.2025.02.023_bib0040
  article-title: Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2006.07.009
– volume: 11
  start-page: 851
  issue: 5
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0066
  article-title: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress
  publication-title: Cells
  doi: 10.3390/cells11050851
– volume: 131
  start-page: 927
  issue: 5
  year: 2007
  ident: 10.1016/j.actbio.2025.02.023_bib0050
  article-title: Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.009
– year: 2024
  ident: 10.1016/j.actbio.2025.02.023_bib0056
  article-title: The targeted protein degradation landscape
  publication-title: Nat. Rev. Drug Discov.
– volume: 60
  start-page: 23299
  issue: 43
  year: 2021
  ident: 10.1016/j.actbio.2025.02.023_bib0058
  article-title: Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202107347
– volume: 17
  start-page: 6150
  issue: 7
  year: 2023
  ident: 10.1016/j.actbio.2025.02.023_bib0028
  article-title: Aptamer-based targeted protein degradation
  publication-title: ACS. Nano
  doi: 10.1021/acsnano.2c10379
– volume: 24
  start-page: 26337
  issue: 43
  year: 2022
  ident: 10.1016/j.actbio.2025.02.023_bib0017
  article-title: Functional groups in graphene oxide
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP04082D
SSID ssj0038128
Score 2.4592075
Snippet Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 509
SubjectTerms Animals
Aptamer
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - pharmacology
Autophagy
Autophagy-lysosome
Cancer therapy
Cell Line, Tumor
Cytoplasm - metabolism
Graphene oxide (GO)
Graphite - chemistry
Graphite - pharmacology
Humans
Lysosomes - metabolism
Membrane Proteins - metabolism
Mice
Mice, Nude
Proteasome Endopeptidase Complex - metabolism
Proteolysis
Targeted protein degradation
Ubiquitin-proteasome
Title Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins
URI https://dx.doi.org/10.1016/j.actbio.2025.02.023
https://www.ncbi.nlm.nih.gov/pubmed/39952883
https://www.proquest.com/docview/3167355492
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfjs_RgSvcW3SNdtxDMdU3EUHu8WmSbHC2uG6gxf_dt9L2zEPQ5D20vJKw3vp7_2Svg9Cbl2drEBbhsXJWaBNH3DQM0wazRMZa9s3uDXwPAnH0-Bx1p01yLDOhcGwygr7S0x3aF3d6VTa7CzStPMCXJpL56Fd4TPE4SCQOMvvvtdhHuCQXH9VFGYoXafPuRivKC50iimAvOsqd3KxzT1to5_ODY0OyH7FH-mgHOIhadjsiOxtVBU8Jm8bgUA0T2hEsyjLWRnzDRI0fk9xK4oCX6XA_6jBghFlbyWUn9s5LKEzS6PM0PiryBfAsOdpTF1NhzRbnpDp6P51OGZVIwUWC98vmJWYstTrWRFGJglFArQHPlwuQ5344CRhDSljmYRJj0cWUAcO4RuNHSBEtx954pQ0szyz54RGHGyoPYtEE_waAoLQAQ-k5dZ42rYIq_WnFmW9DFUHkn2oUt8K9a08DqdoEVkrWf2yuwJI_-PJm9omCj4J_M8BqslXS4XJ_Uij-rxFzkpjrceCmbzYYPni3--9JLt4hXFofveKNIvPlb0GYlLotpt5bbIzeHgaT34A5w7hew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG4260E9GN-uz5p4rQst0OVojJtVVy-uibdKaYmYLGxcPHjxtztTwKwHY2LgBENoZujM1zLzDSFnjicr0JYhOTkLtInBD3qGSaN5JlNtY4NbA3f30egxuHkKnzrksq2FwbTKxvfXPt156-ZKv9Fmf5bn_QfA0ly6CO2Iz8APLwUwfbGNwfnnd54HRCTXYBWlGYq39XMuyStJK51jDSAPHXUnF7_Fp9_wp4tDw3Wy1gBIelGPcYN0bLFJVhdoBbfI80ImEC0zmtAiKUpWJ32DBE1fctyLogBYKQBAapAxom6uhPJTO4U1dGFpUhiaflTlDCD2NE-pI3XIi_k2eRxeTS5HrOmkwFLh-xWzEmuWBgMrosRkkcgA98DM5TLSmQ9REhaRMpVZlA14YsHtwCF8o7EFhAjjxBM7pFuUhd0jNOFgRO1ZRJoQ2NAjCB3wQFpujadtj7BWf2pWE2aoNpPsVdX6Vqhv5XE4RY_IVsnqh-EV-PQ_njxtbaJgTuCPDlBN-T5XWN2POCrmPbJbG-t7LFjKix2W9__93hOyPJrcjdX4-v72gKzgHUxK88ND0q3e3u0RoJRKH7uv8Asl-uMJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+nano-targeting+chimera+for+the+degradation+of+membrane+and+cytoplasmic+proteins&rft.jtitle=Acta+biomaterialia&rft.au=Jin%2C+Peipei&rft.au=Chen%2C+Zhaozheng&rft.au=Zhang%2C+Ju&rft.au=Li%2C+Haowen&rft.date=2025-03-15&rft.pub=Elsevier+Inc&rft.issn=1742-7061&rft.volume=195&rft.spage=509&rft.epage=521&rft_id=info:doi/10.1016%2Fj.actbio.2025.02.023&rft.externalDocID=S1742706125001102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon