Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence

Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. Here we report the potent a...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 11; p. 130693
Main Authors Rezende, Samilla B., Chan, Lai Yue, Oshiro, Karen G.N., Buccini, Danieli F., Leal, Ana Paula Ferreira, Ribeiro, Camila F., Souza, Carolina M., Brandão, Amanda L.O., Gonçalves, Regina M., Cândido, Elizabete S., Macedo, Maria L.R., Craik, David J., Franco, Octávio L., Cardoso, Marlon H.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L−1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs. [Display omitted] •PaDBS1R6 has a preference for Gram-negative bacterial membranes.•PaDBS1R6 showed a potent and fast bactericidal activity.•PaDBS1R6 undergoes a coil-to-α-helix transition in membrane-like environments.•PaDBS1R6 crosses outer membranes and ends up attached to inner membranes.•PaDBS1R6 has an immunomodulatory peptide encrypted within its sequence.
AbstractList Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L−1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs. [Display omitted] •PaDBS1R6 has a preference for Gram-negative bacterial membranes.•PaDBS1R6 showed a potent and fast bactericidal activity.•PaDBS1R6 undergoes a coil-to-α-helix transition in membrane-like environments.•PaDBS1R6 crosses outer membranes and ends up attached to inner membranes.•PaDBS1R6 has an immunomodulatory peptide encrypted within its sequence.
Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L . It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.BACKGROUNDResistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.MAJOR CONCLUSIONSHere we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.GENERAL SIGNIFICANCEThis study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
ArticleNumber 130693
Author Franco, Octávio L.
Souza, Carolina M.
Leal, Ana Paula Ferreira
Rezende, Samilla B.
Brandão, Amanda L.O.
Ribeiro, Camila F.
Cândido, Elizabete S.
Craik, David J.
Cardoso, Marlon H.
Macedo, Maria L.R.
Oshiro, Karen G.N.
Buccini, Danieli F.
Chan, Lai Yue
Gonçalves, Regina M.
Author_xml – sequence: 1
  givenname: Samilla B.
  surname: Rezende
  fullname: Rezende, Samilla B.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 2
  givenname: Lai Yue
  surname: Chan
  fullname: Chan, Lai Yue
  organization: Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 3
  givenname: Karen G.N.
  surname: Oshiro
  fullname: Oshiro, Karen G.N.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 4
  givenname: Danieli F.
  surname: Buccini
  fullname: Buccini, Danieli F.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 5
  givenname: Ana Paula Ferreira
  surname: Leal
  fullname: Leal, Ana Paula Ferreira
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 6
  givenname: Camila F.
  surname: Ribeiro
  fullname: Ribeiro, Camila F.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 7
  givenname: Carolina M.
  surname: Souza
  fullname: Souza, Carolina M.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 8
  givenname: Amanda L.O.
  surname: Brandão
  fullname: Brandão, Amanda L.O.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 9
  givenname: Regina M.
  surname: Gonçalves
  fullname: Gonçalves, Regina M.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 10
  givenname: Elizabete S.
  surname: Cândido
  fullname: Cândido, Elizabete S.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 11
  givenname: Maria L.R.
  surname: Macedo
  fullname: Macedo, Maria L.R.
  organization: Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
– sequence: 12
  givenname: David J.
  surname: Craik
  fullname: Craik, David J.
  organization: Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 13
  givenname: Octávio L.
  surname: Franco
  fullname: Franco, Octávio L.
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
– sequence: 14
  givenname: Marlon H.
  surname: Cardoso
  fullname: Cardoso, Marlon H.
  email: marlonhenrique6@gmail.com
  organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39147109$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqpmkfYMqYpmNp2CwPd5UapKmrRSpUX_WCMP15I5scAGnmkfp24aRJ-2ubIDLd-4R95yRE-cdEPKWszVnvH63W3ed3oJbl6yUay5Y3YoXZMU3TVlsGKtPyIoJJgvJ6-qUnMW4Y3lVbfWKnIqWy4azdkX-3MOU0AK91zdX3_m3mj7oSCefwCWqXcJOmwQB9UDzAR8x7al31Azo0OTiv2eMftAJYlZZii7BNhyvFMdxdn70ds6ED3s6HU37oLfjwek3pgfMYIo0wq8ZnIHX5GWvhwhvjvs5-Xn78cf15-Lu66cv1x_uCiM4T4XVdWmZsLBpu6o3DBrIBd0IA7o2bSMaI0HWBjrGZAU9l1yX0lS9ELqBphLn5HLpOwWfnWNSI0YDw6Ad-DkqwVpRtWLDREYvjujcjWDVFHDUYa-ex5kBuQAm-BgD9H8RztQhNbVTS2rqkJpaUsuy94sM8j8fEYKKBg8zsBjAJGU9_r_BE73qpPM
Cites_doi 10.1074/jbc.M116.738583
10.1016/j.bbamem.2016.07.018
10.1074/jbc.M111.253393
10.1038/nnano.2010.29
10.1038/nchembio.1393
10.1016/j.bbamem.2004.08.004
10.4103/2221-1691.231281
10.1038/nrmicro.2017.42
10.1016/0003-2697(82)90118-X
10.1038/nprot.2007.30
10.1016/j.bbamem.2019.03.016
10.1016/j.bbamem.2015.03.030
10.1021/acsami.1c01643
10.1016/S0732-8893(02)00473-X
10.1039/D1SC06998E
10.1016/j.bpc.2018.04.001
10.1529/biophysj.108.131458
10.1002/jcc.540130805
10.1002/jcc.20945
10.1039/D0FD00041H
10.1093/nar/gkv1278
10.2174/1389203054065428
10.1021/cb1001558
10.1038/nrd3591
10.1111/exd.13314
10.1021/acsinfecdis.9b00073
10.1074/jbc.M111.303602
10.3389/fphar.2018.00281
10.1016/j.sjbs.2021.05.007
10.1126/science.aau5480
10.1007/978-981-13-3588-4_4
10.1038/srep35347
10.1371/journal.pone.0128663
10.1007/s00253-012-4439-8
10.3390/molecules25122850
10.1371/journal.pone.0111355
10.3389/fcell.2016.00055
10.1007/s00726-014-1780-5
10.1016/j.ijantimicag.2014.12.015
10.1074/jbc.RA118.002553
10.1016/j.pharmthera.2021.107990
10.1002/psc.2708
10.3389/fimmu.2021.712781
10.1093/bioinformatics/btw638
10.3389/fphar.2017.00264
10.1016/j.bbamem.2020.183444
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbagen.2024.130693
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 39147109
10_1016_j_bbagen_2024_130693
S0304416524001363
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c311t-da62d03de89b5fc0e7e62da73cea6c9737c4e46ceb0045ef141a24c5f33a7e753
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 04:00:48 EDT 2025
Fri May 30 10:59:45 EDT 2025
Tue Jul 01 00:22:20 EDT 2025
Sat Oct 19 15:54:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords 10RMSD
28MSD
1AMP
24PBS
18MBC
17MIC
Antibacterial peptides
7MD
14LACEN
16MHB
22FBS
2APD
9PME
21DMEM
30IM
11RMSF
3NCBI
Immunomodulatory peptides
12Rg
Wound healing
6NMR
8DPC
15MHA
13CLSI
19OD
26SUV
27SPR
31OM
29MBIC
23MTT
25DMSO
5NO
Resistant bacteria
4NR
20CEUA
Language English
License Copyright © 2024. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-da62d03de89b5fc0e7e62da73cea6c9737c4e46ceb0045ef141a24c5f33a7e753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39147109
PQID 3093593803
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3093593803
pubmed_primary_39147109
crossref_primary_10_1016_j_bbagen_2024_130693
elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong, Hu, Liao, Fa, Ciumac, Clifton, Sani, King, Maestro, Separovic (bb0180) 2021; 13
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0075) 2015
Porto, Fensterseifer, Ribeiro, Franco (bb0050) 1862; 2018
Fensterseifer, Felicio, Alves, Cardoso, Torres, Matos, Silva, Lu, Freire, Neves (bb0060) 2019; 1861
Pfalzgraff, Brandenburg, Weindl (bb0255) 2018; 9
Stone, Yang, Qui (bb0130) 2006
Hilchie, Wuerth, Hancock (bb0240) 2013; 9
Fantner, Barbero, Gray, Belcher (bb0170) 2010; 5
Jo, Kim, Iyer, Im (bb0090) 2008; 29
Fisher, Gollan, Helaine (bb0015) 2017; 15
Green, Wagner, Glogowski, Skipper, Wishnok, Tannenbaum (bb0125) 1982; 126
Mansour, de la Fuente-Núñez, Hancock (bb0030) 2015; 21
Wang, Li, Wang (bb0055) 2016; 44
Miyamoto, Kollman (bb0080) 1992; 13
Wimley (bb0210) 2010; 5
Björn, Noppa, Salomonsson, Johansson, Nilsson, Mahlapuu, Håkansson (bb0265) 2015; 45
Bonapace, Bosso, Friedrich, White (bb0150) 2002; 44
Juhl, Glattard, Aisenbrey, Bechinger (bb0205) 2021; 232
Henriques, Pattenden, Aguilar, Castanho (bb0115) 2008; 95
Aisenbrey, Marquette, Bechinger (bb0200) 2019
Fjell, Hiss, Hancock, Schneider (bb0235) 2012; 11
Veeraraghavan, Periadurai, Karunakaran, Hussain, Surapaneni, Jiao (bb0135) 2021; 28
Rashid, Veleba, Kline (bb0225) 2016; 4
Henriques, Huang, Rosengren, Franquelim, Carvalho, Johnson, Sonza, Tachedjian, Castanho, Daly (bb0120) 2011; 286
Gonzalez-Curiel, Trujillo, Montoya-Rosales, Rincon, Rivas-Calderon, de Haro-Acosta, Marin-Luevano, Lozano-Lopez, Enciso-Moreno, Rivas-Santiago (bb0035) 2014; 9
Beisswenger, Bals (bb0160) 2005; 6
Jung Kim, Lee, Park, Shin, Lim, Cho, Kim (bb0165) 2014; 46
Takahashi, Umehara, Yue, Trujillo-Paez, Peng, Nguyen, Ikutama, Okumura, Ogawa, Ikeda (bb0045) 2021; 12
Haney, Trimble, Cheng, Vallé, Hancock (bb0100) 2018; 8
Cândido, Cardoso, Chan, Torres, Oshiro, Porto, Ribeiro, Haney, Hancock, Lu (bb0070) 2019; 5
Chan, Craik, Daly (bb0110) 2016; 6
Cardoso, Chan, Cândido, Buccini, Rezende, Torres, Oshiro, Silva, Gonçalves, Lu, Santos, de la Fuente-Nunez, Craik, Franco (bb0040) 2022; 13
Harrison, Heath, Johnson, Abdel-Rahman, Strong, Evans, Miller (bb0220) 2016; 1858
Winkler, Hilpert, Brandt, Hancock (bb0065) 2009
Malanovic, Lohner (bb0185) 2016; 9
W.H.Organization (bb0010) 2017
McDonald, Mannion, Pike, Lewis, Flynn, Brannan, Browne, Jackman, Madera, Coombs (bb0195) 2015; 1848
Seelig (bb0025) 2004; 1666
Gera, Kankuri, Kogermann (bb0245) 2022; 232
Myhrman, Håkansson, Lindgren, Björn, Sjöstrand, Mahlapuu (bb0270) 2013; 97
Buccini, Nunes, Silva, Silva, Franco, Moreno (bb0105) 2018; 8
Sandhu, Morrow, Booth (bb0230) 2020; 1862
Hernández-Villa, Manrique-Moreno, Leidy, Jemioła-Rzemińska, Ortíz, Strzałka (bb0215) 2018; 238
Yin, Edwards, Li, Yip, Deber (bb0020) 2012; 287
Tornesello, Borrelli, Buonaguro, Buonaguro, Tornesello (bb0005) 2020; 25
Di Grazia, Cappiello, Imanishi, Mastrofrancesco, Picardo, Paus, Mangoni (bb0260) 2015; 10
Agwa, Peigneur, Chow, Lawrence, Craik, Tytgat, King, Henriques, Schroeder (bb0155) 2018; 293
Janson, Zhang, Prado, Paiardini (bb0085) 2017; 33
Cockerill, Wikler, Alder, Dudley, Eliopoulos, Ferraro, Hardy, Hecht, Hindler, Patel (bb0095) 2012
Pan, Zhang, Zheng, Zang, Jin (bb0145) 2017; 8
Martfeld, Greathouse, Koeppe (bb0190) 2016; 291
Liang, Park, Guan (bb0140) 2007; 2
Niyonsaba, Kiatsurayanon, Chieosilapatham, Ogawa (bb0250) 2017; 26
Lazzaro, Zasloff, Rolff (bb0175) 2020; 368
W.H.Organization (10.1016/j.bbagen.2024.130693_bb0010) 2017
Seelig (10.1016/j.bbagen.2024.130693_bb0025) 2004; 1666
Jo (10.1016/j.bbagen.2024.130693_bb0090) 2008; 29
Rashid (10.1016/j.bbagen.2024.130693_bb0225) 2016; 4
Janson (10.1016/j.bbagen.2024.130693_bb0085) 2017; 33
Chan (10.1016/j.bbagen.2024.130693_bb0110) 2016; 6
Cockerill (10.1016/j.bbagen.2024.130693_bb0095) 2012
Miyamoto (10.1016/j.bbagen.2024.130693_bb0080) 1992; 13
Fantner (10.1016/j.bbagen.2024.130693_bb0170) 2010; 5
Juhl (10.1016/j.bbagen.2024.130693_bb0205) 2021; 232
Myhrman (10.1016/j.bbagen.2024.130693_bb0270) 2013; 97
Lazzaro (10.1016/j.bbagen.2024.130693_bb0175) 2020; 368
Veeraraghavan (10.1016/j.bbagen.2024.130693_bb0135) 2021; 28
Cândido (10.1016/j.bbagen.2024.130693_bb0070) 2019; 5
Haney (10.1016/j.bbagen.2024.130693_bb0100) 2018; 8
Pan (10.1016/j.bbagen.2024.130693_bb0145) 2017; 8
Harrison (10.1016/j.bbagen.2024.130693_bb0220) 2016; 1858
Hilchie (10.1016/j.bbagen.2024.130693_bb0240) 2013; 9
Tornesello (10.1016/j.bbagen.2024.130693_bb0005) 2020; 25
Buccini (10.1016/j.bbagen.2024.130693_bb0105) 2018; 8
Malanovic (10.1016/j.bbagen.2024.130693_bb0185) 2016; 9
Hernández-Villa (10.1016/j.bbagen.2024.130693_bb0215) 2018; 238
Gera (10.1016/j.bbagen.2024.130693_bb0245) 2022; 232
Fjell (10.1016/j.bbagen.2024.130693_bb0235) 2012; 11
Abraham (10.1016/j.bbagen.2024.130693_bb0075) 2015
Stone (10.1016/j.bbagen.2024.130693_bb0130) 2006
Winkler (10.1016/j.bbagen.2024.130693_bb0065) 2009
Henriques (10.1016/j.bbagen.2024.130693_bb0115) 2008; 95
Beisswenger (10.1016/j.bbagen.2024.130693_bb0160) 2005; 6
Fisher (10.1016/j.bbagen.2024.130693_bb0015) 2017; 15
Mansour (10.1016/j.bbagen.2024.130693_bb0030) 2015; 21
Jung Kim (10.1016/j.bbagen.2024.130693_bb0165) 2014; 46
Niyonsaba (10.1016/j.bbagen.2024.130693_bb0250) 2017; 26
Yin (10.1016/j.bbagen.2024.130693_bb0020) 2012; 287
Liang (10.1016/j.bbagen.2024.130693_bb0140) 2007; 2
Gong (10.1016/j.bbagen.2024.130693_bb0180) 2021; 13
Di Grazia (10.1016/j.bbagen.2024.130693_bb0260) 2015; 10
Björn (10.1016/j.bbagen.2024.130693_bb0265) 2015; 45
Fensterseifer (10.1016/j.bbagen.2024.130693_bb0060) 2019; 1861
Henriques (10.1016/j.bbagen.2024.130693_bb0120) 2011; 286
Bonapace (10.1016/j.bbagen.2024.130693_bb0150) 2002; 44
Martfeld (10.1016/j.bbagen.2024.130693_bb0190) 2016; 291
Gonzalez-Curiel (10.1016/j.bbagen.2024.130693_bb0035) 2014; 9
Wimley (10.1016/j.bbagen.2024.130693_bb0210) 2010; 5
Aisenbrey (10.1016/j.bbagen.2024.130693_bb0200) 2019
Pfalzgraff (10.1016/j.bbagen.2024.130693_bb0255) 2018; 9
Sandhu (10.1016/j.bbagen.2024.130693_bb0230) 2020; 1862
Agwa (10.1016/j.bbagen.2024.130693_bb0155) 2018; 293
Porto (10.1016/j.bbagen.2024.130693_bb0050) 1862; 2018
Cardoso (10.1016/j.bbagen.2024.130693_bb0040) 2022; 13
Green (10.1016/j.bbagen.2024.130693_bb0125) 1982; 126
McDonald (10.1016/j.bbagen.2024.130693_bb0195) 2015; 1848
Wang (10.1016/j.bbagen.2024.130693_bb0055) 2016; 44
Takahashi (10.1016/j.bbagen.2024.130693_bb0045) 2021; 12
References_xml – volume: 1861
  start-page: 1375
  year: 2019
  end-page: 1387
  ident: bb0060
  article-title: Selective antibacterial activity of the cationic peptide PaDBS1R6 against gram-negative bacteria
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 95
  start-page: 1877
  year: 2008
  end-page: 1889
  ident: bb0115
  article-title: PrP (106-126) does not interact with membranes under physiological conditions
  publication-title: Biophys. J.
– volume: 28
  start-page: 3633
  year: 2021
  end-page: 3640
  ident: bb0135
  article-title: Green synthesis of silver nanoparticles from aqueous extract of
  publication-title: Saudi J. Bio. Sci.
– volume: 13
  start-page: 16062
  year: 2021
  end-page: 16074
  ident: bb0180
  article-title: Structural disruptions of the outer membranes of gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides
  publication-title: ACS Appl. Mater. Interfaces
– volume: 232
  year: 2022
  ident: bb0245
  article-title: Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology
  publication-title: Pharm. Therap.
– volume: 97
  start-page: 3085
  year: 2013
  end-page: 3096
  ident: bb0270
  article-title: The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 8
  start-page: 29
  year: 2018
  ident: bb0100
  article-title: Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides
  publication-title: Biomol
– volume: 15
  start-page: 453
  year: 2017
  end-page: 464
  ident: bb0015
  article-title: Persistent bacterial infections and persister cells
  publication-title: Nat. Rev. Microbiol.
– volume: 44
  start-page: 363
  year: 2002
  end-page: 366
  ident: bb0150
  article-title: Comparison of methods of interpretation of checkerboard synergy testing
  publication-title: Diagn. Microbiol. Infect. Dis.
– volume: 8
  start-page: 194
  year: 2018
  end-page: 200
  ident: bb0105
  article-title: Anti-inflammatory and antinociceptive activities of Rhipicephalus microplus saliva
  publication-title: Asian Pac. J. Trop. Biomed.
– volume: 126
  start-page: 131
  year: 1982
  end-page: 138
  ident: bb0125
  article-title: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids
  publication-title: Anal. Biochem.
– volume: 46
  start-page: 2333
  year: 2014
  end-page: 2343
  ident: bb0165
  article-title: Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection
  publication-title: Amino Acids
– volume: 232
  start-page: 419
  year: 2021
  end-page: 434
  ident: bb0205
  article-title: Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes
  publication-title: Faraday Discuss.
– volume: 6
  start-page: 35347
  year: 2016
  ident: bb0110
  article-title: Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy
  publication-title: Sci. Rep.
– start-page: 245
  year: 2006
  end-page: 256
  ident: bb0130
  article-title: Assays for nitric oxide expression
  publication-title: Mast Cells
– volume: 287
  start-page: 7738
  year: 2012
  end-page: 7745
  ident: bb0020
  article-title: Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions
  publication-title: JBC
– volume: 29
  start-page: 1859
  year: 2008
  end-page: 1865
  ident: bb0090
  article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
– volume: 368
  year: 2020
  ident: bb0175
  article-title: Antimicrobial peptides: Application informed by evolution
  publication-title: Science
– start-page: 33
  year: 2019
  end-page: 64
  ident: bb0200
  article-title: The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations
  publication-title: Antimicrob. Peptides: Basics Clin. Appl.
– volume: 33
  start-page: 444
  year: 2017
  end-page: 446
  ident: bb0085
  article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL
  publication-title: Bioinform
– volume: 286
  start-page: 24231
  year: 2011
  end-page: 24241
  ident: bb0120
  article-title: Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities
  publication-title: JBC
– volume: 13
  start-page: 9410
  year: 2022
  end-page: 9424
  ident: bb0040
  article-title: An N-capping asparagine–lysine–proline (NKP) motif contributes to a hybrid flexible/stable multifunctional peptide scaffold
  publication-title: Chem. Sci.
– start-page: 19
  year: 2015
  end-page: 25
  ident: bb0075
  article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: J. Softax.
– volume: 1666
  start-page: 40
  year: 2004
  end-page: 50
  ident: bb0025
  article-title: Thermodynamics of lipid–peptide interactions
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 5
  start-page: 280
  year: 2010
  end-page: 285
  ident: bb0170
  article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 59
  year: 2016
  ident: bb0185
  article-title: Antimicrobial peptides targeting gram-positive bacteria
  publication-title: Pharm
– volume: 1858
  start-page: 2737
  year: 2016
  end-page: 2744
  ident: bb0220
  article-title: Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 4
  start-page: 55
  year: 2016
  ident: bb0225
  article-title: Focal targeting of the bacterial envelope by antimicrobial peptides
  publication-title: Front. Cell Dev. Biol.
– start-page: 157
  year: 2009
  end-page: 174
  ident: bb0065
  article-title: Synthesis of peptide arrays using SPOT-technology and the cell spots-method, methods
  publication-title: Mol. Biol.
– volume: 2
  start-page: 329
  year: 2007
  end-page: 333
  ident: bb0140
  article-title: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro
  publication-title: Nat. Protoc.
– volume: 10
  year: 2015
  ident: bb0260
  article-title: The frog skin-derived antimicrobial peptide esculentin-1a (1−21) NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing?
  publication-title: PLoS One
– volume: 25
  start-page: 2850
  year: 2020
  ident: bb0005
  article-title: Antimicrobial peptides as anticancer agents: functional properties and biological activities
  publication-title: Molecules
– volume: 293
  start-page: 9041
  year: 2018
  end-page: 9052
  ident: bb0155
  article-title: Gating modifier toxins isolated from spider venom: modulation of voltage-gated sodium channels and the role of lipid membranes
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 519
  year: 2015
  end-page: 524
  ident: bb0265
  article-title: Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds
  publication-title: Int. J. Antimicrob. Agents
– volume: 291
  start-page: 19146
  year: 2016
  end-page: 19156
  ident: bb0190
  article-title: Ionization properties of histidine residues in the lipid bilayer membrane environment
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 37
  year: 2012
  end-page: 51
  ident: bb0235
  article-title: Designing antimicrobial peptides: form follows function
  publication-title: Nat. Rev. Drug Discov.
– volume: 5
  start-page: 905
  year: 2010
  end-page: 917
  ident: bb0210
  article-title: Describing the mechanism of antimicrobial peptide action with the interfacial activity model
  publication-title: ACS Chem. Biol.
– volume: 1862
  start-page: 183444
  year: 2020
  ident: bb0230
  article-title: Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 13
  start-page: 952
  year: 1992
  end-page: 962
  ident: bb0080
  article-title: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models
  publication-title: J. Comput. Chem.
– year: 2017
  ident: bb0010
  article-title: Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis
  publication-title: WHO
– volume: 2018
  start-page: 2043
  year: 1862
  end-page: 2052
  ident: bb0050
  article-title: Joker: an algorithm to insert patterns into sequences for designing antimicrobial peptides
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 9
  start-page: 761
  year: 2013
  end-page: 768
  ident: bb0240
  article-title: Immune modulation by multifaceted cationic host defense (antimicrobial) peptides
  publication-title: Nat. Chem. Biol.
– volume: 9
  start-page: 281
  year: 2018
  ident: bb0255
  article-title: Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds
  publication-title: Front. Pharmacol.
– volume: 6
  start-page: 255
  year: 2005
  end-page: 264
  ident: bb0160
  article-title: Functions of antimicrobial peptides in host defense and immunity
  publication-title: Curr. Protein Pept. Sci.
– volume: 26
  start-page: 989
  year: 2017
  end-page: 998
  ident: bb0250
  article-title: Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases
  publication-title: Exp. Dermatol.
– volume: 1848
  start-page: 1451
  year: 2015
  end-page: 1461
  ident: bb0195
  article-title: Structure–function relationships in histidine-rich antimicrobial peptides from Atlantic cod
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 44
  start-page: D1087
  year: 2016
  end-page: D1093
  ident: bb0055
  article-title: APD3: the antimicrobial peptide database as a tool for research and education
  publication-title: Nucleic Acids Res.
– year: 2012
  ident: bb0095
  article-title: Performance Standards for Antimicrobial Susceptibility Testing: Twenty-second Informational Supplement, ed. Tenth
– volume: 8
  start-page: 264
  year: 2017
  ident: bb0145
  article-title: Hydroxysafflor yellow a suppresses MRC-5 cell activation induced by TGF-β1 by blocking TGF-β1 binding to TβRII
  publication-title: Front. Pharmacol.
– volume: 238
  start-page: 8
  year: 2018
  end-page: 15
  ident: bb0215
  article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides
  publication-title: Biophys. Chem.
– volume: 21
  start-page: 323
  year: 2015
  end-page: 329
  ident: bb0030
  article-title: Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections
  publication-title: J. Pept. Sci.
– volume: 9
  year: 2014
  ident: bb0035
  article-title: 1, 25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model
  publication-title: PLoS One
– volume: 12
  year: 2021
  ident: bb0045
  article-title: The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway
  publication-title: Front. Immunol.
– volume: 5
  start-page: 1081
  year: 2019
  end-page: 1086
  ident: bb0070
  article-title: Short cationic peptide derived from Archaea with dual antibacterial properties and anti-infective potential
  publication-title: ACS Infect. Dis.
– volume: 291
  start-page: 19146
  year: 2016
  ident: 10.1016/j.bbagen.2024.130693_bb0190
  article-title: Ionization properties of histidine residues in the lipid bilayer membrane environment
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.738583
– volume: 1858
  start-page: 2737
  year: 2016
  ident: 10.1016/j.bbagen.2024.130693_bb0220
  article-title: Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2016.07.018
– volume: 286
  start-page: 24231
  year: 2011
  ident: 10.1016/j.bbagen.2024.130693_bb0120
  article-title: Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities
  publication-title: JBC
  doi: 10.1074/jbc.M111.253393
– volume: 5
  start-page: 280
  year: 2010
  ident: 10.1016/j.bbagen.2024.130693_bb0170
  article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.29
– year: 2017
  ident: 10.1016/j.bbagen.2024.130693_bb0010
  article-title: Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis
– volume: 9
  start-page: 761
  year: 2013
  ident: 10.1016/j.bbagen.2024.130693_bb0240
  article-title: Immune modulation by multifaceted cationic host defense (antimicrobial) peptides
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1393
– volume: 1666
  start-page: 40
  year: 2004
  ident: 10.1016/j.bbagen.2024.130693_bb0025
  article-title: Thermodynamics of lipid–peptide interactions
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2004.08.004
– volume: 8
  start-page: 194
  year: 2018
  ident: 10.1016/j.bbagen.2024.130693_bb0105
  article-title: Anti-inflammatory and antinociceptive activities of Rhipicephalus microplus saliva
  publication-title: Asian Pac. J. Trop. Biomed.
  doi: 10.4103/2221-1691.231281
– volume: 15
  start-page: 453
  year: 2017
  ident: 10.1016/j.bbagen.2024.130693_bb0015
  article-title: Persistent bacterial infections and persister cells
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.42
– volume: 126
  start-page: 131
  year: 1982
  ident: 10.1016/j.bbagen.2024.130693_bb0125
  article-title: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(82)90118-X
– volume: 2
  start-page: 329
  year: 2007
  ident: 10.1016/j.bbagen.2024.130693_bb0140
  article-title: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.30
– volume: 1861
  start-page: 1375
  year: 2019
  ident: 10.1016/j.bbagen.2024.130693_bb0060
  article-title: Selective antibacterial activity of the cationic peptide PaDBS1R6 against gram-negative bacteria
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2019.03.016
– volume: 1848
  start-page: 1451
  year: 2015
  ident: 10.1016/j.bbagen.2024.130693_bb0195
  article-title: Structure–function relationships in histidine-rich antimicrobial peptides from Atlantic cod
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2015.03.030
– volume: 13
  start-page: 16062
  year: 2021
  ident: 10.1016/j.bbagen.2024.130693_bb0180
  article-title: Structural disruptions of the outer membranes of gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01643
– volume: 44
  start-page: 363
  year: 2002
  ident: 10.1016/j.bbagen.2024.130693_bb0150
  article-title: Comparison of methods of interpretation of checkerboard synergy testing
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/S0732-8893(02)00473-X
– volume: 13
  start-page: 9410
  year: 2022
  ident: 10.1016/j.bbagen.2024.130693_bb0040
  article-title: An N-capping asparagine–lysine–proline (NKP) motif contributes to a hybrid flexible/stable multifunctional peptide scaffold
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC06998E
– year: 2012
  ident: 10.1016/j.bbagen.2024.130693_bb0095
– volume: 238
  start-page: 8
  year: 2018
  ident: 10.1016/j.bbagen.2024.130693_bb0215
  article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2018.04.001
– volume: 95
  start-page: 1877
  year: 2008
  ident: 10.1016/j.bbagen.2024.130693_bb0115
  article-title: PrP (106-126) does not interact with membranes under physiological conditions
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.131458
– volume: 13
  start-page: 952
  year: 1992
  ident: 10.1016/j.bbagen.2024.130693_bb0080
  article-title: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130805
– volume: 29
  start-page: 1859
  year: 2008
  ident: 10.1016/j.bbagen.2024.130693_bb0090
  article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20945
– start-page: 245
  year: 2006
  ident: 10.1016/j.bbagen.2024.130693_bb0130
  article-title: Assays for nitric oxide expression
– volume: 232
  start-page: 419
  year: 2021
  ident: 10.1016/j.bbagen.2024.130693_bb0205
  article-title: Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes
  publication-title: Faraday Discuss.
  doi: 10.1039/D0FD00041H
– volume: 44
  start-page: D1087
  year: 2016
  ident: 10.1016/j.bbagen.2024.130693_bb0055
  article-title: APD3: the antimicrobial peptide database as a tool for research and education
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1278
– volume: 6
  start-page: 255
  year: 2005
  ident: 10.1016/j.bbagen.2024.130693_bb0160
  article-title: Functions of antimicrobial peptides in host defense and immunity
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/1389203054065428
– volume: 9
  start-page: 59
  year: 2016
  ident: 10.1016/j.bbagen.2024.130693_bb0185
  article-title: Antimicrobial peptides targeting gram-positive bacteria
  publication-title: Pharm
– volume: 5
  start-page: 905
  year: 2010
  ident: 10.1016/j.bbagen.2024.130693_bb0210
  article-title: Describing the mechanism of antimicrobial peptide action with the interfacial activity model
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb1001558
– volume: 11
  start-page: 37
  year: 2012
  ident: 10.1016/j.bbagen.2024.130693_bb0235
  article-title: Designing antimicrobial peptides: form follows function
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3591
– volume: 26
  start-page: 989
  year: 2017
  ident: 10.1016/j.bbagen.2024.130693_bb0250
  article-title: Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.13314
– volume: 5
  start-page: 1081
  year: 2019
  ident: 10.1016/j.bbagen.2024.130693_bb0070
  article-title: Short cationic peptide derived from Archaea with dual antibacterial properties and anti-infective potential
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.9b00073
– start-page: 157
  year: 2009
  ident: 10.1016/j.bbagen.2024.130693_bb0065
  article-title: Synthesis of peptide arrays using SPOT-technology and the cell spots-method, methods
  publication-title: Mol. Biol.
– volume: 287
  start-page: 7738
  year: 2012
  ident: 10.1016/j.bbagen.2024.130693_bb0020
  article-title: Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions
  publication-title: JBC
  doi: 10.1074/jbc.M111.303602
– volume: 9
  start-page: 281
  year: 2018
  ident: 10.1016/j.bbagen.2024.130693_bb0255
  article-title: Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00281
– volume: 28
  start-page: 3633
  year: 2021
  ident: 10.1016/j.bbagen.2024.130693_bb0135
  article-title: Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929)
  publication-title: Saudi J. Bio. Sci.
  doi: 10.1016/j.sjbs.2021.05.007
– volume: 368
  year: 2020
  ident: 10.1016/j.bbagen.2024.130693_bb0175
  article-title: Antimicrobial peptides: Application informed by evolution
  publication-title: Science
  doi: 10.1126/science.aau5480
– start-page: 33
  year: 2019
  ident: 10.1016/j.bbagen.2024.130693_bb0200
  article-title: The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations
  publication-title: Antimicrob. Peptides: Basics Clin. Appl.
  doi: 10.1007/978-981-13-3588-4_4
– volume: 6
  start-page: 35347
  year: 2016
  ident: 10.1016/j.bbagen.2024.130693_bb0110
  article-title: Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy
  publication-title: Sci. Rep.
  doi: 10.1038/srep35347
– volume: 10
  year: 2015
  ident: 10.1016/j.bbagen.2024.130693_bb0260
  article-title: The frog skin-derived antimicrobial peptide esculentin-1a (1−21) NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128663
– volume: 97
  start-page: 3085
  year: 2013
  ident: 10.1016/j.bbagen.2024.130693_bb0270
  article-title: The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4439-8
– volume: 25
  start-page: 2850
  year: 2020
  ident: 10.1016/j.bbagen.2024.130693_bb0005
  article-title: Antimicrobial peptides as anticancer agents: functional properties and biological activities
  publication-title: Molecules
  doi: 10.3390/molecules25122850
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2024.130693_bb0035
  article-title: 1, 25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111355
– volume: 2018
  start-page: 2043
  year: 1862
  ident: 10.1016/j.bbagen.2024.130693_bb0050
  article-title: Joker: an algorithm to insert patterns into sequences for designing antimicrobial peptides
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 4
  start-page: 55
  year: 2016
  ident: 10.1016/j.bbagen.2024.130693_bb0225
  article-title: Focal targeting of the bacterial envelope by antimicrobial peptides
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2016.00055
– volume: 46
  start-page: 2333
  year: 2014
  ident: 10.1016/j.bbagen.2024.130693_bb0165
  article-title: Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection
  publication-title: Amino Acids
  doi: 10.1007/s00726-014-1780-5
– volume: 45
  start-page: 519
  year: 2015
  ident: 10.1016/j.bbagen.2024.130693_bb0265
  article-title: Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2014.12.015
– volume: 293
  start-page: 9041
  year: 2018
  ident: 10.1016/j.bbagen.2024.130693_bb0155
  article-title: Gating modifier toxins isolated from spider venom: modulation of voltage-gated sodium channels and the role of lipid membranes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.002553
– volume: 232
  year: 2022
  ident: 10.1016/j.bbagen.2024.130693_bb0245
  article-title: Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology
  publication-title: Pharm. Therap.
  doi: 10.1016/j.pharmthera.2021.107990
– volume: 21
  start-page: 323
  year: 2015
  ident: 10.1016/j.bbagen.2024.130693_bb0030
  article-title: Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.2708
– volume: 12
  year: 2021
  ident: 10.1016/j.bbagen.2024.130693_bb0045
  article-title: The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.712781
– volume: 8
  start-page: 29
  year: 2018
  ident: 10.1016/j.bbagen.2024.130693_bb0100
  article-title: Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides
  publication-title: Biomol
– start-page: 19
  year: 2015
  ident: 10.1016/j.bbagen.2024.130693_bb0075
  article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: J. Softax.
– volume: 33
  start-page: 444
  year: 2017
  ident: 10.1016/j.bbagen.2024.130693_bb0085
  article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btw638
– volume: 8
  start-page: 264
  year: 2017
  ident: 10.1016/j.bbagen.2024.130693_bb0145
  article-title: Hydroxysafflor yellow a suppresses MRC-5 cell activation induced by TGF-β1 by blocking TGF-β1 binding to TβRII
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2017.00264
– volume: 1862
  start-page: 183444
  year: 2020
  ident: 10.1016/j.bbagen.2024.130693_bb0230
  article-title: Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2020.183444
SSID ssj0000595
Score 2.450879
Snippet Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 130693
SubjectTerms Acinetobacter baumannii - drug effects
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibacterial peptides
Antimicrobial Peptides - chemistry
Antimicrobial Peptides - pharmacology
Biofilms - drug effects
Escherichia coli - drug effects
Humans
Immunomodulatory peptides
Microbial Sensitivity Tests
Molecular Dynamics Simulation
Peptide Fragments - chemistry
Peptide Fragments - pharmacology
Resistant bacteria
Wound healing
Title Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence
URI https://dx.doi.org/10.1016/j.bbagen.2024.130693
https://www.ncbi.nlm.nih.gov/pubmed/39147109
https://www.proquest.com/docview/3093593803
Volume 1868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBOVVHpWRuJqNY8dOjmWhWkBUFaVSb9b4EQgSyWo3PfTC_-Df4onjVhwqJI527NjyN7Ennm9mCHktOHipWsHaIEomuVfMgrTMhlqXoeE1TEF9Ph-r1Zn8eF6d75Bl9oVBWuW896c9fdqt55rFvJqLddctTtGoF9WJClmQXCiM-CmlRil_8-ua5hHVhypZEiTD1tl9buJ4WRs_WoyCWkpMi6wacdPxdJP6OR1DR_fJvVl_pIdpig_ITuj3yO2UUfJyj9xZ5gRuD8nvE2Ss-EBP4N3bU_5F0e-wpeshaskjjQva2RSpOb4OvRswiQQdepp9Jen14y4KKOqksZenVwEmsEg79C8Zfg4e04ANm0u6ngdtN_ANbx4p3vR2seG4pZm3_YicHb3_ulyxORMDc4LzkXlQpS-ED3Vjq9YVQYdYAVq4AMo1Wmgng1QOExHJKrRcciilq1ohQIf4R_SY7PZDH54SWpehcjX4BqCVUEBdeNtW3GlonK-V2ycsA2DWKeCGyUy0HyYBZhAwkwDbJzqjZP4SHBPPhH_0fJVBNREZNJRAH4aLrZmsw42oi9jmSUL7ai6i4RL5q8_-e9zn5C6WkkPjC7I7bi7Cy6jZjPZgEt0Dcuvww6fV8R8eEfut
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIlQuCMpWViPB0UwcO3Zy4AAt1ZQuqmgr9Wa8BVKpyWgmFZoL_4PfwR_EL45bcaiQkHqMl8TyZz-_-C0fQm8Y1Y6LmpHas5xw6gQxmhtifClzX9FSD0l99g_E9IR_Pi1OV9DvFAsDbpWj7I8yfZDWY8lknM3JrGkmR2DUC-pEAV6QlInEYL3rlz_Cf9vi_c5WAPltnm9_Ot6ckpFagFhGaU-cFrnLmPNlZYraZl76UKAls14LW0kmLfdcWGDW4YWvKac657aoGdPSS6CKCHL_Fg_iAmgT3v288isJ-koRTRecwPBSvN7gVGZMkBKQdjXnwMMsKnbdeXidvjuce9v30N1RYcUf4pzcRyu-XUe3I4Xlch2tbSbGuAfo1yG4yDiPD_XWxyP6ReDveoFnXVDLexwQbExMDR1eB-EUwFqBuxan4Ex8Vd2EHQFKcOjl8GVGC3jEDQS0dOedA96xbr7Es_Gj9Vx_g6tODFfLTWjYL3ByFH-ITm4En0dote1a_wThMveFLbWrtK65znSZOVMX1EpdWVcKu4FIAkDNYoYPlVzfzlQETAFgKgK2gWRCSf21UlU4hP7R83UCVQVkwDKjW99dLNRgjq5YmYU2jyPal2NhFeXgMPv0v7_7Cq1Nj_f31N7Owe4zdAdqYjTlc7Tazy_8i6BW9eblsIwx-nrT--YPgcc4ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+PaDBS1R6+has+potent+antibacterial+activity+on+clinical+bacterial+isolates+and+integrates+an+immunomodulatory+peptide+fragment+within+its+sequence&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Rezende%2C+Samilla+B.&rft.au=Chan%2C+Lai+Yue&rft.au=Oshiro%2C+Karen+G.N.&rft.au=Buccini%2C+Danieli+F.&rft.date=2024-11-01&rft.issn=0304-4165&rft.volume=1868&rft.issue=11&rft.spage=130693&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2024_130693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon