Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence
Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. Here we report the potent a...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1868; no. 11; p. 130693 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.
Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L−1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.
This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
[Display omitted]
•PaDBS1R6 has a preference for Gram-negative bacterial membranes.•PaDBS1R6 showed a potent and fast bactericidal activity.•PaDBS1R6 undergoes a coil-to-α-helix transition in membrane-like environments.•PaDBS1R6 crosses outer membranes and ends up attached to inner membranes.•PaDBS1R6 has an immunomodulatory peptide encrypted within its sequence. |
---|---|
AbstractList | Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.
Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L−1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.
This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
[Display omitted]
•PaDBS1R6 has a preference for Gram-negative bacterial membranes.•PaDBS1R6 showed a potent and fast bactericidal activity.•PaDBS1R6 undergoes a coil-to-α-helix transition in membrane-like environments.•PaDBS1R6 crosses outer membranes and ends up attached to inner membranes.•PaDBS1R6 has an immunomodulatory peptide encrypted within its sequence. Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L . It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs. Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.BACKGROUNDResistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.MAJOR CONCLUSIONSHere we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.GENERAL SIGNIFICANCEThis study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs. |
ArticleNumber | 130693 |
Author | Franco, Octávio L. Souza, Carolina M. Leal, Ana Paula Ferreira Rezende, Samilla B. Brandão, Amanda L.O. Ribeiro, Camila F. Cândido, Elizabete S. Craik, David J. Cardoso, Marlon H. Macedo, Maria L.R. Oshiro, Karen G.N. Buccini, Danieli F. Chan, Lai Yue Gonçalves, Regina M. |
Author_xml | – sequence: 1 givenname: Samilla B. surname: Rezende fullname: Rezende, Samilla B. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 2 givenname: Lai Yue surname: Chan fullname: Chan, Lai Yue organization: Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 3 givenname: Karen G.N. surname: Oshiro fullname: Oshiro, Karen G.N. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 4 givenname: Danieli F. surname: Buccini fullname: Buccini, Danieli F. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 5 givenname: Ana Paula Ferreira surname: Leal fullname: Leal, Ana Paula Ferreira organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 6 givenname: Camila F. surname: Ribeiro fullname: Ribeiro, Camila F. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 7 givenname: Carolina M. surname: Souza fullname: Souza, Carolina M. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 8 givenname: Amanda L.O. surname: Brandão fullname: Brandão, Amanda L.O. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 9 givenname: Regina M. surname: Gonçalves fullname: Gonçalves, Regina M. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 10 givenname: Elizabete S. surname: Cândido fullname: Cândido, Elizabete S. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 11 givenname: Maria L.R. surname: Macedo fullname: Macedo, Maria L.R. organization: Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil – sequence: 12 givenname: David J. surname: Craik fullname: Craik, David J. organization: Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 13 givenname: Octávio L. surname: Franco fullname: Franco, Octávio L. organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil – sequence: 14 givenname: Marlon H. surname: Cardoso fullname: Cardoso, Marlon H. email: marlonhenrique6@gmail.com organization: S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39147109$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVGVqpmkfYMqYpmNp2CwPd5UapKmrRSpUX_WCMP15I5scAGnmkfp24aRJ-2ubIDLd-4R95yRE-cdEPKWszVnvH63W3ed3oJbl6yUay5Y3YoXZMU3TVlsGKtPyIoJJgvJ6-qUnMW4Y3lVbfWKnIqWy4azdkX-3MOU0AK91zdX3_m3mj7oSCefwCWqXcJOmwQB9UDzAR8x7al31Azo0OTiv2eMftAJYlZZii7BNhyvFMdxdn70ds6ED3s6HU37oLfjwek3pgfMYIo0wq8ZnIHX5GWvhwhvjvs5-Xn78cf15-Lu66cv1x_uCiM4T4XVdWmZsLBpu6o3DBrIBd0IA7o2bSMaI0HWBjrGZAU9l1yX0lS9ELqBphLn5HLpOwWfnWNSI0YDw6Ad-DkqwVpRtWLDREYvjujcjWDVFHDUYa-ex5kBuQAm-BgD9H8RztQhNbVTS2rqkJpaUsuy94sM8j8fEYKKBg8zsBjAJGU9_r_BE73qpPM |
Cites_doi | 10.1074/jbc.M116.738583 10.1016/j.bbamem.2016.07.018 10.1074/jbc.M111.253393 10.1038/nnano.2010.29 10.1038/nchembio.1393 10.1016/j.bbamem.2004.08.004 10.4103/2221-1691.231281 10.1038/nrmicro.2017.42 10.1016/0003-2697(82)90118-X 10.1038/nprot.2007.30 10.1016/j.bbamem.2019.03.016 10.1016/j.bbamem.2015.03.030 10.1021/acsami.1c01643 10.1016/S0732-8893(02)00473-X 10.1039/D1SC06998E 10.1016/j.bpc.2018.04.001 10.1529/biophysj.108.131458 10.1002/jcc.540130805 10.1002/jcc.20945 10.1039/D0FD00041H 10.1093/nar/gkv1278 10.2174/1389203054065428 10.1021/cb1001558 10.1038/nrd3591 10.1111/exd.13314 10.1021/acsinfecdis.9b00073 10.1074/jbc.M111.303602 10.3389/fphar.2018.00281 10.1016/j.sjbs.2021.05.007 10.1126/science.aau5480 10.1007/978-981-13-3588-4_4 10.1038/srep35347 10.1371/journal.pone.0128663 10.1007/s00253-012-4439-8 10.3390/molecules25122850 10.1371/journal.pone.0111355 10.3389/fcell.2016.00055 10.1007/s00726-014-1780-5 10.1016/j.ijantimicag.2014.12.015 10.1074/jbc.RA118.002553 10.1016/j.pharmthera.2021.107990 10.1002/psc.2708 10.3389/fimmu.2021.712781 10.1093/bioinformatics/btw638 10.3389/fphar.2017.00264 10.1016/j.bbamem.2020.183444 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier B.V. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbagen.2024.130693 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 39147109 10_1016_j_bbagen_2024_130693 S0304416524001363 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c311t-da62d03de89b5fc0e7e62da73cea6c9737c4e46ceb0045ef141a24c5f33a7e753 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 04:00:48 EDT 2025 Fri May 30 10:59:45 EDT 2025 Tue Jul 01 00:22:20 EDT 2025 Sat Oct 19 15:54:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | 10RMSD 28MSD 1AMP 24PBS 18MBC 17MIC Antibacterial peptides 7MD 14LACEN 16MHB 22FBS 2APD 9PME 21DMEM 30IM 11RMSF 3NCBI Immunomodulatory peptides 12Rg Wound healing 6NMR 8DPC 15MHA 13CLSI 19OD 26SUV 27SPR 31OM 29MBIC 23MTT 25DMSO 5NO Resistant bacteria 4NR 20CEUA |
Language | English |
License | Copyright © 2024. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-da62d03de89b5fc0e7e62da73cea6c9737c4e46ceb0045ef141a24c5f33a7e753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39147109 |
PQID | 3093593803 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3093593803 pubmed_primary_39147109 crossref_primary_10_1016_j_bbagen_2024_130693 elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gong, Hu, Liao, Fa, Ciumac, Clifton, Sani, King, Maestro, Separovic (bb0180) 2021; 13 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0075) 2015 Porto, Fensterseifer, Ribeiro, Franco (bb0050) 1862; 2018 Fensterseifer, Felicio, Alves, Cardoso, Torres, Matos, Silva, Lu, Freire, Neves (bb0060) 2019; 1861 Pfalzgraff, Brandenburg, Weindl (bb0255) 2018; 9 Stone, Yang, Qui (bb0130) 2006 Hilchie, Wuerth, Hancock (bb0240) 2013; 9 Fantner, Barbero, Gray, Belcher (bb0170) 2010; 5 Jo, Kim, Iyer, Im (bb0090) 2008; 29 Fisher, Gollan, Helaine (bb0015) 2017; 15 Green, Wagner, Glogowski, Skipper, Wishnok, Tannenbaum (bb0125) 1982; 126 Mansour, de la Fuente-Núñez, Hancock (bb0030) 2015; 21 Wang, Li, Wang (bb0055) 2016; 44 Miyamoto, Kollman (bb0080) 1992; 13 Wimley (bb0210) 2010; 5 Björn, Noppa, Salomonsson, Johansson, Nilsson, Mahlapuu, Håkansson (bb0265) 2015; 45 Bonapace, Bosso, Friedrich, White (bb0150) 2002; 44 Juhl, Glattard, Aisenbrey, Bechinger (bb0205) 2021; 232 Henriques, Pattenden, Aguilar, Castanho (bb0115) 2008; 95 Aisenbrey, Marquette, Bechinger (bb0200) 2019 Fjell, Hiss, Hancock, Schneider (bb0235) 2012; 11 Veeraraghavan, Periadurai, Karunakaran, Hussain, Surapaneni, Jiao (bb0135) 2021; 28 Rashid, Veleba, Kline (bb0225) 2016; 4 Henriques, Huang, Rosengren, Franquelim, Carvalho, Johnson, Sonza, Tachedjian, Castanho, Daly (bb0120) 2011; 286 Gonzalez-Curiel, Trujillo, Montoya-Rosales, Rincon, Rivas-Calderon, de Haro-Acosta, Marin-Luevano, Lozano-Lopez, Enciso-Moreno, Rivas-Santiago (bb0035) 2014; 9 Beisswenger, Bals (bb0160) 2005; 6 Jung Kim, Lee, Park, Shin, Lim, Cho, Kim (bb0165) 2014; 46 Takahashi, Umehara, Yue, Trujillo-Paez, Peng, Nguyen, Ikutama, Okumura, Ogawa, Ikeda (bb0045) 2021; 12 Haney, Trimble, Cheng, Vallé, Hancock (bb0100) 2018; 8 Cândido, Cardoso, Chan, Torres, Oshiro, Porto, Ribeiro, Haney, Hancock, Lu (bb0070) 2019; 5 Chan, Craik, Daly (bb0110) 2016; 6 Cardoso, Chan, Cândido, Buccini, Rezende, Torres, Oshiro, Silva, Gonçalves, Lu, Santos, de la Fuente-Nunez, Craik, Franco (bb0040) 2022; 13 Harrison, Heath, Johnson, Abdel-Rahman, Strong, Evans, Miller (bb0220) 2016; 1858 Winkler, Hilpert, Brandt, Hancock (bb0065) 2009 Malanovic, Lohner (bb0185) 2016; 9 W.H.Organization (bb0010) 2017 McDonald, Mannion, Pike, Lewis, Flynn, Brannan, Browne, Jackman, Madera, Coombs (bb0195) 2015; 1848 Seelig (bb0025) 2004; 1666 Gera, Kankuri, Kogermann (bb0245) 2022; 232 Myhrman, Håkansson, Lindgren, Björn, Sjöstrand, Mahlapuu (bb0270) 2013; 97 Buccini, Nunes, Silva, Silva, Franco, Moreno (bb0105) 2018; 8 Sandhu, Morrow, Booth (bb0230) 2020; 1862 Hernández-Villa, Manrique-Moreno, Leidy, Jemioła-Rzemińska, Ortíz, Strzałka (bb0215) 2018; 238 Yin, Edwards, Li, Yip, Deber (bb0020) 2012; 287 Tornesello, Borrelli, Buonaguro, Buonaguro, Tornesello (bb0005) 2020; 25 Di Grazia, Cappiello, Imanishi, Mastrofrancesco, Picardo, Paus, Mangoni (bb0260) 2015; 10 Agwa, Peigneur, Chow, Lawrence, Craik, Tytgat, King, Henriques, Schroeder (bb0155) 2018; 293 Janson, Zhang, Prado, Paiardini (bb0085) 2017; 33 Cockerill, Wikler, Alder, Dudley, Eliopoulos, Ferraro, Hardy, Hecht, Hindler, Patel (bb0095) 2012 Pan, Zhang, Zheng, Zang, Jin (bb0145) 2017; 8 Martfeld, Greathouse, Koeppe (bb0190) 2016; 291 Liang, Park, Guan (bb0140) 2007; 2 Niyonsaba, Kiatsurayanon, Chieosilapatham, Ogawa (bb0250) 2017; 26 Lazzaro, Zasloff, Rolff (bb0175) 2020; 368 W.H.Organization (10.1016/j.bbagen.2024.130693_bb0010) 2017 Seelig (10.1016/j.bbagen.2024.130693_bb0025) 2004; 1666 Jo (10.1016/j.bbagen.2024.130693_bb0090) 2008; 29 Rashid (10.1016/j.bbagen.2024.130693_bb0225) 2016; 4 Janson (10.1016/j.bbagen.2024.130693_bb0085) 2017; 33 Chan (10.1016/j.bbagen.2024.130693_bb0110) 2016; 6 Cockerill (10.1016/j.bbagen.2024.130693_bb0095) 2012 Miyamoto (10.1016/j.bbagen.2024.130693_bb0080) 1992; 13 Fantner (10.1016/j.bbagen.2024.130693_bb0170) 2010; 5 Juhl (10.1016/j.bbagen.2024.130693_bb0205) 2021; 232 Myhrman (10.1016/j.bbagen.2024.130693_bb0270) 2013; 97 Lazzaro (10.1016/j.bbagen.2024.130693_bb0175) 2020; 368 Veeraraghavan (10.1016/j.bbagen.2024.130693_bb0135) 2021; 28 Cândido (10.1016/j.bbagen.2024.130693_bb0070) 2019; 5 Haney (10.1016/j.bbagen.2024.130693_bb0100) 2018; 8 Pan (10.1016/j.bbagen.2024.130693_bb0145) 2017; 8 Harrison (10.1016/j.bbagen.2024.130693_bb0220) 2016; 1858 Hilchie (10.1016/j.bbagen.2024.130693_bb0240) 2013; 9 Tornesello (10.1016/j.bbagen.2024.130693_bb0005) 2020; 25 Buccini (10.1016/j.bbagen.2024.130693_bb0105) 2018; 8 Malanovic (10.1016/j.bbagen.2024.130693_bb0185) 2016; 9 Hernández-Villa (10.1016/j.bbagen.2024.130693_bb0215) 2018; 238 Gera (10.1016/j.bbagen.2024.130693_bb0245) 2022; 232 Fjell (10.1016/j.bbagen.2024.130693_bb0235) 2012; 11 Abraham (10.1016/j.bbagen.2024.130693_bb0075) 2015 Stone (10.1016/j.bbagen.2024.130693_bb0130) 2006 Winkler (10.1016/j.bbagen.2024.130693_bb0065) 2009 Henriques (10.1016/j.bbagen.2024.130693_bb0115) 2008; 95 Beisswenger (10.1016/j.bbagen.2024.130693_bb0160) 2005; 6 Fisher (10.1016/j.bbagen.2024.130693_bb0015) 2017; 15 Mansour (10.1016/j.bbagen.2024.130693_bb0030) 2015; 21 Jung Kim (10.1016/j.bbagen.2024.130693_bb0165) 2014; 46 Niyonsaba (10.1016/j.bbagen.2024.130693_bb0250) 2017; 26 Yin (10.1016/j.bbagen.2024.130693_bb0020) 2012; 287 Liang (10.1016/j.bbagen.2024.130693_bb0140) 2007; 2 Gong (10.1016/j.bbagen.2024.130693_bb0180) 2021; 13 Di Grazia (10.1016/j.bbagen.2024.130693_bb0260) 2015; 10 Björn (10.1016/j.bbagen.2024.130693_bb0265) 2015; 45 Fensterseifer (10.1016/j.bbagen.2024.130693_bb0060) 2019; 1861 Henriques (10.1016/j.bbagen.2024.130693_bb0120) 2011; 286 Bonapace (10.1016/j.bbagen.2024.130693_bb0150) 2002; 44 Martfeld (10.1016/j.bbagen.2024.130693_bb0190) 2016; 291 Gonzalez-Curiel (10.1016/j.bbagen.2024.130693_bb0035) 2014; 9 Wimley (10.1016/j.bbagen.2024.130693_bb0210) 2010; 5 Aisenbrey (10.1016/j.bbagen.2024.130693_bb0200) 2019 Pfalzgraff (10.1016/j.bbagen.2024.130693_bb0255) 2018; 9 Sandhu (10.1016/j.bbagen.2024.130693_bb0230) 2020; 1862 Agwa (10.1016/j.bbagen.2024.130693_bb0155) 2018; 293 Porto (10.1016/j.bbagen.2024.130693_bb0050) 1862; 2018 Cardoso (10.1016/j.bbagen.2024.130693_bb0040) 2022; 13 Green (10.1016/j.bbagen.2024.130693_bb0125) 1982; 126 McDonald (10.1016/j.bbagen.2024.130693_bb0195) 2015; 1848 Wang (10.1016/j.bbagen.2024.130693_bb0055) 2016; 44 Takahashi (10.1016/j.bbagen.2024.130693_bb0045) 2021; 12 |
References_xml | – volume: 1861 start-page: 1375 year: 2019 end-page: 1387 ident: bb0060 article-title: Selective antibacterial activity of the cationic peptide PaDBS1R6 against gram-negative bacteria publication-title: Biochim. Biophys. Acta Biomembr. – volume: 95 start-page: 1877 year: 2008 end-page: 1889 ident: bb0115 article-title: PrP (106-126) does not interact with membranes under physiological conditions publication-title: Biophys. J. – volume: 28 start-page: 3633 year: 2021 end-page: 3640 ident: bb0135 article-title: Green synthesis of silver nanoparticles from aqueous extract of publication-title: Saudi J. Bio. Sci. – volume: 13 start-page: 16062 year: 2021 end-page: 16074 ident: bb0180 article-title: Structural disruptions of the outer membranes of gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides publication-title: ACS Appl. Mater. Interfaces – volume: 232 year: 2022 ident: bb0245 article-title: Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology publication-title: Pharm. Therap. – volume: 97 start-page: 3085 year: 2013 end-page: 3096 ident: bb0270 article-title: The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections publication-title: Appl. Microbiol. Biotechnol. – volume: 8 start-page: 29 year: 2018 ident: bb0100 article-title: Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides publication-title: Biomol – volume: 15 start-page: 453 year: 2017 end-page: 464 ident: bb0015 article-title: Persistent bacterial infections and persister cells publication-title: Nat. Rev. Microbiol. – volume: 44 start-page: 363 year: 2002 end-page: 366 ident: bb0150 article-title: Comparison of methods of interpretation of checkerboard synergy testing publication-title: Diagn. Microbiol. Infect. Dis. – volume: 8 start-page: 194 year: 2018 end-page: 200 ident: bb0105 article-title: Anti-inflammatory and antinociceptive activities of Rhipicephalus microplus saliva publication-title: Asian Pac. J. Trop. Biomed. – volume: 126 start-page: 131 year: 1982 end-page: 138 ident: bb0125 article-title: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids publication-title: Anal. Biochem. – volume: 46 start-page: 2333 year: 2014 end-page: 2343 ident: bb0165 article-title: Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection publication-title: Amino Acids – volume: 232 start-page: 419 year: 2021 end-page: 434 ident: bb0205 article-title: Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes publication-title: Faraday Discuss. – volume: 6 start-page: 35347 year: 2016 ident: bb0110 article-title: Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy publication-title: Sci. Rep. – start-page: 245 year: 2006 end-page: 256 ident: bb0130 article-title: Assays for nitric oxide expression publication-title: Mast Cells – volume: 287 start-page: 7738 year: 2012 end-page: 7745 ident: bb0020 article-title: Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions publication-title: JBC – volume: 29 start-page: 1859 year: 2008 end-page: 1865 ident: bb0090 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. – volume: 368 year: 2020 ident: bb0175 article-title: Antimicrobial peptides: Application informed by evolution publication-title: Science – start-page: 33 year: 2019 end-page: 64 ident: bb0200 article-title: The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations publication-title: Antimicrob. Peptides: Basics Clin. Appl. – volume: 33 start-page: 444 year: 2017 end-page: 446 ident: bb0085 article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL publication-title: Bioinform – volume: 286 start-page: 24231 year: 2011 end-page: 24241 ident: bb0120 article-title: Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities publication-title: JBC – volume: 13 start-page: 9410 year: 2022 end-page: 9424 ident: bb0040 article-title: An N-capping asparagine–lysine–proline (NKP) motif contributes to a hybrid flexible/stable multifunctional peptide scaffold publication-title: Chem. Sci. – start-page: 19 year: 2015 end-page: 25 ident: bb0075 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: J. Softax. – volume: 1666 start-page: 40 year: 2004 end-page: 50 ident: bb0025 article-title: Thermodynamics of lipid–peptide interactions publication-title: Biochim. Biophys. Acta Biomembr. – volume: 5 start-page: 280 year: 2010 end-page: 285 ident: bb0170 article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy publication-title: Nat. Nanotechnol. – volume: 9 start-page: 59 year: 2016 ident: bb0185 article-title: Antimicrobial peptides targeting gram-positive bacteria publication-title: Pharm – volume: 1858 start-page: 2737 year: 2016 end-page: 2744 ident: bb0220 article-title: Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom publication-title: Biochim. Biophys. Acta Biomembr. – volume: 4 start-page: 55 year: 2016 ident: bb0225 article-title: Focal targeting of the bacterial envelope by antimicrobial peptides publication-title: Front. Cell Dev. Biol. – start-page: 157 year: 2009 end-page: 174 ident: bb0065 article-title: Synthesis of peptide arrays using SPOT-technology and the cell spots-method, methods publication-title: Mol. Biol. – volume: 2 start-page: 329 year: 2007 end-page: 333 ident: bb0140 article-title: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro publication-title: Nat. Protoc. – volume: 10 year: 2015 ident: bb0260 article-title: The frog skin-derived antimicrobial peptide esculentin-1a (1−21) NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing? publication-title: PLoS One – volume: 25 start-page: 2850 year: 2020 ident: bb0005 article-title: Antimicrobial peptides as anticancer agents: functional properties and biological activities publication-title: Molecules – volume: 293 start-page: 9041 year: 2018 end-page: 9052 ident: bb0155 article-title: Gating modifier toxins isolated from spider venom: modulation of voltage-gated sodium channels and the role of lipid membranes publication-title: J. Biol. Chem. – volume: 45 start-page: 519 year: 2015 end-page: 524 ident: bb0265 article-title: Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds publication-title: Int. J. Antimicrob. Agents – volume: 291 start-page: 19146 year: 2016 end-page: 19156 ident: bb0190 article-title: Ionization properties of histidine residues in the lipid bilayer membrane environment publication-title: J. Biol. Chem. – volume: 11 start-page: 37 year: 2012 end-page: 51 ident: bb0235 article-title: Designing antimicrobial peptides: form follows function publication-title: Nat. Rev. Drug Discov. – volume: 5 start-page: 905 year: 2010 end-page: 917 ident: bb0210 article-title: Describing the mechanism of antimicrobial peptide action with the interfacial activity model publication-title: ACS Chem. Biol. – volume: 1862 start-page: 183444 year: 2020 ident: bb0230 article-title: Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2 publication-title: Biochim. Biophys. Acta Biomembr. – volume: 13 start-page: 952 year: 1992 end-page: 962 ident: bb0080 article-title: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models publication-title: J. Comput. Chem. – year: 2017 ident: bb0010 article-title: Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis publication-title: WHO – volume: 2018 start-page: 2043 year: 1862 end-page: 2052 ident: bb0050 article-title: Joker: an algorithm to insert patterns into sequences for designing antimicrobial peptides publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 9 start-page: 761 year: 2013 end-page: 768 ident: bb0240 article-title: Immune modulation by multifaceted cationic host defense (antimicrobial) peptides publication-title: Nat. Chem. Biol. – volume: 9 start-page: 281 year: 2018 ident: bb0255 article-title: Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds publication-title: Front. Pharmacol. – volume: 6 start-page: 255 year: 2005 end-page: 264 ident: bb0160 article-title: Functions of antimicrobial peptides in host defense and immunity publication-title: Curr. Protein Pept. Sci. – volume: 26 start-page: 989 year: 2017 end-page: 998 ident: bb0250 article-title: Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases publication-title: Exp. Dermatol. – volume: 1848 start-page: 1451 year: 2015 end-page: 1461 ident: bb0195 article-title: Structure–function relationships in histidine-rich antimicrobial peptides from Atlantic cod publication-title: Biochim. Biophys. Acta Biomembr. – volume: 44 start-page: D1087 year: 2016 end-page: D1093 ident: bb0055 article-title: APD3: the antimicrobial peptide database as a tool for research and education publication-title: Nucleic Acids Res. – year: 2012 ident: bb0095 article-title: Performance Standards for Antimicrobial Susceptibility Testing: Twenty-second Informational Supplement, ed. Tenth – volume: 8 start-page: 264 year: 2017 ident: bb0145 article-title: Hydroxysafflor yellow a suppresses MRC-5 cell activation induced by TGF-β1 by blocking TGF-β1 binding to TβRII publication-title: Front. Pharmacol. – volume: 238 start-page: 8 year: 2018 end-page: 15 ident: bb0215 article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides publication-title: Biophys. Chem. – volume: 21 start-page: 323 year: 2015 end-page: 329 ident: bb0030 article-title: Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections publication-title: J. Pept. Sci. – volume: 9 year: 2014 ident: bb0035 article-title: 1, 25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model publication-title: PLoS One – volume: 12 year: 2021 ident: bb0045 article-title: The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway publication-title: Front. Immunol. – volume: 5 start-page: 1081 year: 2019 end-page: 1086 ident: bb0070 article-title: Short cationic peptide derived from Archaea with dual antibacterial properties and anti-infective potential publication-title: ACS Infect. Dis. – volume: 291 start-page: 19146 year: 2016 ident: 10.1016/j.bbagen.2024.130693_bb0190 article-title: Ionization properties of histidine residues in the lipid bilayer membrane environment publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.738583 – volume: 1858 start-page: 2737 year: 2016 ident: 10.1016/j.bbagen.2024.130693_bb0220 article-title: Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2016.07.018 – volume: 286 start-page: 24231 year: 2011 ident: 10.1016/j.bbagen.2024.130693_bb0120 article-title: Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities publication-title: JBC doi: 10.1074/jbc.M111.253393 – volume: 5 start-page: 280 year: 2010 ident: 10.1016/j.bbagen.2024.130693_bb0170 article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.29 – year: 2017 ident: 10.1016/j.bbagen.2024.130693_bb0010 article-title: Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis – volume: 9 start-page: 761 year: 2013 ident: 10.1016/j.bbagen.2024.130693_bb0240 article-title: Immune modulation by multifaceted cationic host defense (antimicrobial) peptides publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1393 – volume: 1666 start-page: 40 year: 2004 ident: 10.1016/j.bbagen.2024.130693_bb0025 article-title: Thermodynamics of lipid–peptide interactions publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2004.08.004 – volume: 8 start-page: 194 year: 2018 ident: 10.1016/j.bbagen.2024.130693_bb0105 article-title: Anti-inflammatory and antinociceptive activities of Rhipicephalus microplus saliva publication-title: Asian Pac. J. Trop. Biomed. doi: 10.4103/2221-1691.231281 – volume: 15 start-page: 453 year: 2017 ident: 10.1016/j.bbagen.2024.130693_bb0015 article-title: Persistent bacterial infections and persister cells publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.42 – volume: 126 start-page: 131 year: 1982 ident: 10.1016/j.bbagen.2024.130693_bb0125 article-title: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids publication-title: Anal. Biochem. doi: 10.1016/0003-2697(82)90118-X – volume: 2 start-page: 329 year: 2007 ident: 10.1016/j.bbagen.2024.130693_bb0140 article-title: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.30 – volume: 1861 start-page: 1375 year: 2019 ident: 10.1016/j.bbagen.2024.130693_bb0060 article-title: Selective antibacterial activity of the cationic peptide PaDBS1R6 against gram-negative bacteria publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2019.03.016 – volume: 1848 start-page: 1451 year: 2015 ident: 10.1016/j.bbagen.2024.130693_bb0195 article-title: Structure–function relationships in histidine-rich antimicrobial peptides from Atlantic cod publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2015.03.030 – volume: 13 start-page: 16062 year: 2021 ident: 10.1016/j.bbagen.2024.130693_bb0180 article-title: Structural disruptions of the outer membranes of gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01643 – volume: 44 start-page: 363 year: 2002 ident: 10.1016/j.bbagen.2024.130693_bb0150 article-title: Comparison of methods of interpretation of checkerboard synergy testing publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/S0732-8893(02)00473-X – volume: 13 start-page: 9410 year: 2022 ident: 10.1016/j.bbagen.2024.130693_bb0040 article-title: An N-capping asparagine–lysine–proline (NKP) motif contributes to a hybrid flexible/stable multifunctional peptide scaffold publication-title: Chem. Sci. doi: 10.1039/D1SC06998E – year: 2012 ident: 10.1016/j.bbagen.2024.130693_bb0095 – volume: 238 start-page: 8 year: 2018 ident: 10.1016/j.bbagen.2024.130693_bb0215 article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2018.04.001 – volume: 95 start-page: 1877 year: 2008 ident: 10.1016/j.bbagen.2024.130693_bb0115 article-title: PrP (106-126) does not interact with membranes under physiological conditions publication-title: Biophys. J. doi: 10.1529/biophysj.108.131458 – volume: 13 start-page: 952 year: 1992 ident: 10.1016/j.bbagen.2024.130693_bb0080 article-title: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130805 – volume: 29 start-page: 1859 year: 2008 ident: 10.1016/j.bbagen.2024.130693_bb0090 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – start-page: 245 year: 2006 ident: 10.1016/j.bbagen.2024.130693_bb0130 article-title: Assays for nitric oxide expression – volume: 232 start-page: 419 year: 2021 ident: 10.1016/j.bbagen.2024.130693_bb0205 article-title: Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes publication-title: Faraday Discuss. doi: 10.1039/D0FD00041H – volume: 44 start-page: D1087 year: 2016 ident: 10.1016/j.bbagen.2024.130693_bb0055 article-title: APD3: the antimicrobial peptide database as a tool for research and education publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1278 – volume: 6 start-page: 255 year: 2005 ident: 10.1016/j.bbagen.2024.130693_bb0160 article-title: Functions of antimicrobial peptides in host defense and immunity publication-title: Curr. Protein Pept. Sci. doi: 10.2174/1389203054065428 – volume: 9 start-page: 59 year: 2016 ident: 10.1016/j.bbagen.2024.130693_bb0185 article-title: Antimicrobial peptides targeting gram-positive bacteria publication-title: Pharm – volume: 5 start-page: 905 year: 2010 ident: 10.1016/j.bbagen.2024.130693_bb0210 article-title: Describing the mechanism of antimicrobial peptide action with the interfacial activity model publication-title: ACS Chem. Biol. doi: 10.1021/cb1001558 – volume: 11 start-page: 37 year: 2012 ident: 10.1016/j.bbagen.2024.130693_bb0235 article-title: Designing antimicrobial peptides: form follows function publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3591 – volume: 26 start-page: 989 year: 2017 ident: 10.1016/j.bbagen.2024.130693_bb0250 article-title: Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases publication-title: Exp. Dermatol. doi: 10.1111/exd.13314 – volume: 5 start-page: 1081 year: 2019 ident: 10.1016/j.bbagen.2024.130693_bb0070 article-title: Short cationic peptide derived from Archaea with dual antibacterial properties and anti-infective potential publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.9b00073 – start-page: 157 year: 2009 ident: 10.1016/j.bbagen.2024.130693_bb0065 article-title: Synthesis of peptide arrays using SPOT-technology and the cell spots-method, methods publication-title: Mol. Biol. – volume: 287 start-page: 7738 year: 2012 ident: 10.1016/j.bbagen.2024.130693_bb0020 article-title: Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions publication-title: JBC doi: 10.1074/jbc.M111.303602 – volume: 9 start-page: 281 year: 2018 ident: 10.1016/j.bbagen.2024.130693_bb0255 article-title: Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00281 – volume: 28 start-page: 3633 year: 2021 ident: 10.1016/j.bbagen.2024.130693_bb0135 article-title: Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929) publication-title: Saudi J. Bio. Sci. doi: 10.1016/j.sjbs.2021.05.007 – volume: 368 year: 2020 ident: 10.1016/j.bbagen.2024.130693_bb0175 article-title: Antimicrobial peptides: Application informed by evolution publication-title: Science doi: 10.1126/science.aau5480 – start-page: 33 year: 2019 ident: 10.1016/j.bbagen.2024.130693_bb0200 article-title: The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations publication-title: Antimicrob. Peptides: Basics Clin. Appl. doi: 10.1007/978-981-13-3588-4_4 – volume: 6 start-page: 35347 year: 2016 ident: 10.1016/j.bbagen.2024.130693_bb0110 article-title: Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy publication-title: Sci. Rep. doi: 10.1038/srep35347 – volume: 10 year: 2015 ident: 10.1016/j.bbagen.2024.130693_bb0260 article-title: The frog skin-derived antimicrobial peptide esculentin-1a (1−21) NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing? publication-title: PLoS One doi: 10.1371/journal.pone.0128663 – volume: 97 start-page: 3085 year: 2013 ident: 10.1016/j.bbagen.2024.130693_bb0270 article-title: The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4439-8 – volume: 25 start-page: 2850 year: 2020 ident: 10.1016/j.bbagen.2024.130693_bb0005 article-title: Antimicrobial peptides as anticancer agents: functional properties and biological activities publication-title: Molecules doi: 10.3390/molecules25122850 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2024.130693_bb0035 article-title: 1, 25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model publication-title: PLoS One doi: 10.1371/journal.pone.0111355 – volume: 2018 start-page: 2043 year: 1862 ident: 10.1016/j.bbagen.2024.130693_bb0050 article-title: Joker: an algorithm to insert patterns into sequences for designing antimicrobial peptides publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 4 start-page: 55 year: 2016 ident: 10.1016/j.bbagen.2024.130693_bb0225 article-title: Focal targeting of the bacterial envelope by antimicrobial peptides publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00055 – volume: 46 start-page: 2333 year: 2014 ident: 10.1016/j.bbagen.2024.130693_bb0165 article-title: Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection publication-title: Amino Acids doi: 10.1007/s00726-014-1780-5 – volume: 45 start-page: 519 year: 2015 ident: 10.1016/j.bbagen.2024.130693_bb0265 article-title: Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2014.12.015 – volume: 293 start-page: 9041 year: 2018 ident: 10.1016/j.bbagen.2024.130693_bb0155 article-title: Gating modifier toxins isolated from spider venom: modulation of voltage-gated sodium channels and the role of lipid membranes publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002553 – volume: 232 year: 2022 ident: 10.1016/j.bbagen.2024.130693_bb0245 article-title: Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology publication-title: Pharm. Therap. doi: 10.1016/j.pharmthera.2021.107990 – volume: 21 start-page: 323 year: 2015 ident: 10.1016/j.bbagen.2024.130693_bb0030 article-title: Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections publication-title: J. Pept. Sci. doi: 10.1002/psc.2708 – volume: 12 year: 2021 ident: 10.1016/j.bbagen.2024.130693_bb0045 article-title: The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.712781 – volume: 8 start-page: 29 year: 2018 ident: 10.1016/j.bbagen.2024.130693_bb0100 article-title: Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides publication-title: Biomol – start-page: 19 year: 2015 ident: 10.1016/j.bbagen.2024.130693_bb0075 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: J. Softax. – volume: 33 start-page: 444 year: 2017 ident: 10.1016/j.bbagen.2024.130693_bb0085 article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL publication-title: Bioinform doi: 10.1093/bioinformatics/btw638 – volume: 8 start-page: 264 year: 2017 ident: 10.1016/j.bbagen.2024.130693_bb0145 article-title: Hydroxysafflor yellow a suppresses MRC-5 cell activation induced by TGF-β1 by blocking TGF-β1 binding to TβRII publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00264 – volume: 1862 start-page: 183444 year: 2020 ident: 10.1016/j.bbagen.2024.130693_bb0230 article-title: Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2 publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2020.183444 |
SSID | ssj0000595 |
Score | 2.450879 |
Snippet | Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 130693 |
SubjectTerms | Acinetobacter baumannii - drug effects Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibacterial peptides Antimicrobial Peptides - chemistry Antimicrobial Peptides - pharmacology Biofilms - drug effects Escherichia coli - drug effects Humans Immunomodulatory peptides Microbial Sensitivity Tests Molecular Dynamics Simulation Peptide Fragments - chemistry Peptide Fragments - pharmacology Resistant bacteria Wound healing |
Title | Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence |
URI | https://dx.doi.org/10.1016/j.bbagen.2024.130693 https://www.ncbi.nlm.nih.gov/pubmed/39147109 https://www.proquest.com/docview/3093593803 |
Volume | 1868 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBOVVHpWRuJqNY8dOjmWhWkBUFaVSb9b4EQgSyWo3PfTC_-Df4onjVhwqJI527NjyN7Ennm9mCHktOHipWsHaIEomuVfMgrTMhlqXoeE1TEF9Ph-r1Zn8eF6d75Bl9oVBWuW896c9fdqt55rFvJqLddctTtGoF9WJClmQXCiM-CmlRil_8-ua5hHVhypZEiTD1tl9buJ4WRs_WoyCWkpMi6wacdPxdJP6OR1DR_fJvVl_pIdpig_ITuj3yO2UUfJyj9xZ5gRuD8nvE2Ss-EBP4N3bU_5F0e-wpeshaskjjQva2RSpOb4OvRswiQQdepp9Jen14y4KKOqksZenVwEmsEg79C8Zfg4e04ANm0u6ngdtN_ANbx4p3vR2seG4pZm3_YicHb3_ulyxORMDc4LzkXlQpS-ED3Vjq9YVQYdYAVq4AMo1Wmgng1QOExHJKrRcciilq1ohQIf4R_SY7PZDH54SWpehcjX4BqCVUEBdeNtW3GlonK-V2ycsA2DWKeCGyUy0HyYBZhAwkwDbJzqjZP4SHBPPhH_0fJVBNREZNJRAH4aLrZmsw42oi9jmSUL7ai6i4RL5q8_-e9zn5C6WkkPjC7I7bi7Cy6jZjPZgEt0Dcuvww6fV8R8eEfut |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIlQuCMpWViPB0UwcO3Zy4AAt1ZQuqmgr9Wa8BVKpyWgmFZoL_4PfwR_EL45bcaiQkHqMl8TyZz-_-C0fQm8Y1Y6LmpHas5xw6gQxmhtifClzX9FSD0l99g_E9IR_Pi1OV9DvFAsDbpWj7I8yfZDWY8lknM3JrGkmR2DUC-pEAV6QlInEYL3rlz_Cf9vi_c5WAPltnm9_Ot6ckpFagFhGaU-cFrnLmPNlZYraZl76UKAls14LW0kmLfdcWGDW4YWvKac657aoGdPSS6CKCHL_Fg_iAmgT3v288isJ-koRTRecwPBSvN7gVGZMkBKQdjXnwMMsKnbdeXidvjuce9v30N1RYcUf4pzcRyu-XUe3I4Xlch2tbSbGuAfo1yG4yDiPD_XWxyP6ReDveoFnXVDLexwQbExMDR1eB-EUwFqBuxan4Ex8Vd2EHQFKcOjl8GVGC3jEDQS0dOedA96xbr7Es_Gj9Vx_g6tODFfLTWjYL3ByFH-ITm4En0dote1a_wThMveFLbWrtK65znSZOVMX1EpdWVcKu4FIAkDNYoYPlVzfzlQETAFgKgK2gWRCSf21UlU4hP7R83UCVQVkwDKjW99dLNRgjq5YmYU2jyPal2NhFeXgMPv0v7_7Cq1Nj_f31N7Owe4zdAdqYjTlc7Tazy_8i6BW9eblsIwx-nrT--YPgcc4ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+PaDBS1R6+has+potent+antibacterial+activity+on+clinical+bacterial+isolates+and+integrates+an+immunomodulatory+peptide+fragment+within+its+sequence&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Rezende%2C+Samilla+B.&rft.au=Chan%2C+Lai+Yue&rft.au=Oshiro%2C+Karen+G.N.&rft.au=Buccini%2C+Danieli+F.&rft.date=2024-11-01&rft.issn=0304-4165&rft.volume=1868&rft.issue=11&rft.spage=130693&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2024_130693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |