Multivariate Time Series Feature Extraction and Clustering Framework for Multi-Function Radar Work Mode Recognition
Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The recognition of MFR work modes based on the intercepted pulse sequences plays an important role in interpreting the functional purpose and threa...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 8; p. 1412 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The recognition of MFR work modes based on the intercepted pulse sequences plays an important role in interpreting the functional purpose and threats of a non-cooperative MFRs. However, due to the increased flexibility of MFRs, radar work modes with emerging new modulations and control parameters always appear, and the supervised classification method suffers performance degradation or even failure. Unsupervised learning and clustering of MFR pulse sequences becomes urgent and important. This paper establishes a unified multivariate MFR time series feature extraction and clustering framework for MFR work mode recognition. At first, various features are collected to form the feature set. The feature set includes features extracted through deep learning based on recurrent auto-encoders, multidimensional time series toolkit features, and manually crafted features for radar inter-pulse modulations. Subsequently, several feature selection algorithms, combined with different clustering and classification methods, are used for the selection of an “optimal” feature subset. Finally, the effectiveness and superiority of the proposed framework and selected features are validated through simulated and measured datasets. In the simulated dataset containing 20 classes of work modes, under the most severe non-ideal conditions, we achieve a clustering purity of 73.46% and an NMI of 84.28%. In the measured dataset with seven classes of work modes, we achieve a clustering purity of 86.96% and an NMI of 90.10%. |
---|---|
AbstractList | Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The recognition of MFR work modes based on the intercepted pulse sequences plays an important role in interpreting the functional purpose and threats of a non-cooperative MFRs. However, due to the increased flexibility of MFRs, radar work modes with emerging new modulations and control parameters always appear, and the supervised classification method suffers performance degradation or even failure. Unsupervised learning and clustering of MFR pulse sequences becomes urgent and important. This paper establishes a unified multivariate MFR time series feature extraction and clustering framework for MFR work mode recognition. At first, various features are collected to form the feature set. The feature set includes features extracted through deep learning based on recurrent auto-encoders, multidimensional time series toolkit features, and manually crafted features for radar inter-pulse modulations. Subsequently, several feature selection algorithms, combined with different clustering and classification methods, are used for the selection of an “optimal” feature subset. Finally, the effectiveness and superiority of the proposed framework and selected features are validated through simulated and measured datasets. In the simulated dataset containing 20 classes of work modes, under the most severe non-ideal conditions, we achieve a clustering purity of 73.46% and an NMI of 84.28%. In the measured dataset with seven classes of work modes, we achieve a clustering purity of 86.96% and an NMI of 90.10%. |
Audience | Academic |
Author | Fan, Ruozhou Zhu, Mengtao Zhang, Xiongkui |
Author_xml | – sequence: 1 givenname: Ruozhou orcidid: 0009-0003-5377-8801 surname: Fan fullname: Fan, Ruozhou – sequence: 2 givenname: Mengtao orcidid: 0000-0003-0502-3386 surname: Zhu fullname: Zhu, Mengtao – sequence: 3 givenname: Xiongkui orcidid: 0009-0007-3021-8915 surname: Zhang fullname: Zhang, Xiongkui |
BookMark | eNptUctO7DAMjRBIPL-ATSTWhaRup80SjRgu0iAkHmJZuakzCnQSSNJ74e_JMCzuAnth65xjW7YP2a7zjhg7leIcQIkLGkmn4J3VUYJoZSXLHXZQikYVqlTl7n_5PjuJ8UVkUxJaEAcs3k5jsn8xWEzEH-2a-AMFS5EvCNMUiF99pIA6We84uoHPxymmrHArvgi4pn8-vHLjA_9uVCwmt9Xe44CBP2_YWz8QvyftV85uuGO2Z3CMdPITj9jT4upx_qdY3l3fzC-XhQYpU6EHQDCEStc4IxyMabCte1J1BkApbKGHqqaqol5VfaOMaEswtep72c5KgCN2tu37Fvz7RDF1L34KLo_sQFSzVjWqlVl1vlWtcKTOOuM3-2YfaG11PrWxGb9sFEBTKVnlAtgW6OBjDGS6t2DXGD47KbrNR7pfPgJfthmFbQ |
Cites_doi | 10.1016/j.patcog.2017.08.016 10.1109/PIERS.2017.8262194 10.1109/CompComm.2017.8322938 10.1109/CMC.2010.154 10.1016/j.enbuild.2019.05.021 10.1109/CCISP59915.2023.10355860 10.1016/j.knosys.2018.10.041 10.1162/neco.1997.9.8.1735 10.1109/MSP.2018.2822847 10.1016/j.neunet.2010.06.008 10.1109/ICEICT57916.2023.10245009 10.1016/j.jobe.2020.101996 10.1049/iet-rsn.2020.0060 10.3390/s130100848 10.1109/JSEN.2023.3303023 10.1016/j.neucom.2019.03.060 10.1109/ACCESS.2018.2882798 10.1109/JPROC.2012.2203089 10.1109/MAES.2019.2957847 10.1109/ICSPCC.2017.8242587 10.3390/electronics11091383 10.1109/ITNEC48623.2020.9084981 10.1109/4235.996017 10.1155/2014/312521 10.1109/TAES.2018.2874139 10.1109/TGRS.2017.2716935 10.1049/ip-rsn:20050067 10.1016/j.patcog.2021.107919 10.1109/JPROC.2015.2491179 10.1016/j.neucom.2012.12.006 10.1007/s11222-007-9033-z 10.1109/LCOMM.2018.2864725 10.1109/ICASSP.2007.366799 10.1109/TASE.2013.2285014 10.1109/ICMLA.2019.00057 10.1109/ISAP53582.2022.9998652 10.1016/j.softx.2020.100518 10.1109/MAES.2016.160071 10.1109/JPROC.2007.893252 10.1109/IAEAC47372.2019.8997658 10.1109/RadarConf2147009.2021.9455205 10.1109/TSP.2007.908949 10.1016/j.neucom.2013.04.003 10.1109/TNNLS.2016.2582924 10.1109/TAES.2021.3082660 10.1016/j.aap.2017.11.028 10.1145/2379776.2379788 10.1016/j.artmed.2020.101818 10.1016/j.is.2015.04.007 10.1109/MAES.2019.2953762 10.1016/j.patcog.2005.01.025 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics13081412 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A793374914 10_3390_electronics13081412 |
GroupedDBID | 5VS 8FE 8FG AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c311t-cd3a3fea9c5a6eadff7a85be95c5a399a83b345e44eb94b79f0823f59bb186233 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sun Nov 17 06:11:25 EST 2024 Tue May 14 05:35:30 EDT 2024 Fri Dec 06 04:02:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-cd3a3fea9c5a6eadff7a85be95c5a399a83b345e44eb94b79f0823f59bb186233 |
ORCID | 0009-0003-5377-8801 0000-0003-0502-3386 0009-0007-3021-8915 |
OpenAccessLink | https://www.proquest.com/docview/3046897981?pq-origsite=%requestingapplication% |
PQID | 3046897981 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3046897981 gale_infotracacademiconefile_A793374914 crossref_primary_10_3390_electronics13081412 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_20) 2018; 22 ref_50 Greco (ref_14) 2018; 35 Aghabozorgi (ref_38) 2015; 53 ref_57 ref_11 Gurbuz (ref_15) 2019; 34 Charlish (ref_30) 2020; 35 ref_19 ref_18 Guillaume (ref_35) 2018; 13 Palma (ref_47) 2020; 104 ref_17 Li (ref_55) 2018; 111 ref_59 Mir (ref_3) 2014; 11 Salles (ref_36) 2019; 164 Blunt (ref_13) 2016; 31 Zolhavarieh (ref_39) 2014; 2014 Zhang (ref_28) 2023; 23 ref_25 Li (ref_48) 2021; 115 Greff (ref_52) 2017; 28 ref_24 ref_23 Ahmadzadeh (ref_51) 2020; 12 ref_29 ref_27 ref_26 Guan (ref_32) 2018; 25 Han (ref_42) 2013; 110 Hochreiter (ref_53) 1997; 9 Zhou (ref_44) 2018; 6 Haykin (ref_12) 2012; 100 Stailey (ref_2) 2016; 104 Deb (ref_54) 2002; 6 Wang (ref_10) 2008; 56 Luxburg (ref_56) 2007; 17 Sanhudo (ref_49) 2021; 35 Kauppi (ref_16) 2010; 23 ref_33 ref_31 Weber (ref_1) 2017; 55 Boers (ref_4) 2006; 153 Visnevski (ref_6) 2007; 95 Guyon (ref_60) 2003; 3 Liu (ref_34) 2021; 10 Esling (ref_37) 2012; 45 Li (ref_46) 2019; 349 Liu (ref_21) 2019; 55 (ref_45) 2019; 196 Zhu (ref_22) 2021; 57 Liao (ref_40) 2005; 38 Tuncel (ref_43) 2018; 73 Yang (ref_58) 2013; 13 ref_9 ref_8 Chamroukhi (ref_41) 2013; 120 ref_5 ref_7 |
References_xml | – volume: 73 start-page: 202 year: 2018 ident: ref_43 article-title: Autoregressive forests for multivariate time series modeling publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.016 contributor: fullname: Tuncel – ident: ref_11 doi: 10.1109/PIERS.2017.8262194 – ident: ref_57 doi: 10.1109/CompComm.2017.8322938 – ident: ref_5 – ident: ref_18 doi: 10.1109/CMC.2010.154 – volume: 196 start-page: 71 year: 2019 ident: ref_45 article-title: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.05.021 – ident: ref_24 doi: 10.1109/CCISP59915.2023.10355860 – volume: 3 start-page: 1157 year: 2003 ident: ref_60 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. contributor: fullname: Guyon – volume: 164 start-page: 274 year: 2019 ident: ref_36 article-title: Nonstationary time series transformation methods: An experimental review publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.10.041 contributor: fullname: Salles – volume: 9 start-page: 1735 year: 1997 ident: ref_53 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – volume: 35 start-page: 112 year: 2018 ident: ref_14 article-title: Cognitive Radars: On the Road to Reality: Progress thus Far and Possibilities for the Future publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2822847 contributor: fullname: Greco – volume: 23 start-page: 1226 year: 2010 ident: ref_16 article-title: Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns publication-title: Neural Netw. doi: 10.1016/j.neunet.2010.06.008 contributor: fullname: Kauppi – ident: ref_26 doi: 10.1109/ICEICT57916.2023.10245009 – volume: 35 start-page: 101996 year: 2021 ident: ref_49 article-title: Multivariate time series clustering and forecasting for building energy analysis: Application to weather data quality control publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101996 contributor: fullname: Sanhudo – ident: ref_29 doi: 10.1049/iet-rsn.2020.0060 – volume: 13 start-page: 848 year: 2013 ident: ref_58 article-title: Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine publication-title: Sensors doi: 10.3390/s130100848 contributor: fullname: Yang – volume: 23 start-page: 21574 year: 2023 ident: ref_28 article-title: An Incremental Recognition Method for MFR Working Modes Based on Deep Feature Extension in Dynamic Observation Scenarios publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3303023 contributor: fullname: Zhang – volume: 349 start-page: 239 year: 2019 ident: ref_46 article-title: Multivariate time series clustering based on common principal component analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.060 contributor: fullname: Li – ident: ref_8 – volume: 6 start-page: 74747 year: 2018 ident: ref_44 article-title: Clustering Multivariate Time Series Data via Multi-Nonnegative Matrix Factorization in Multi-Relational Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882798 contributor: fullname: Zhou – volume: 100 start-page: 3102 year: 2012 ident: ref_12 article-title: Cognitive Radar: Step toward Bridging the Gap between Neuroscience and Engineering publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2203089 contributor: fullname: Haykin – volume: 35 start-page: 8 year: 2020 ident: ref_30 article-title: The Development from Adaptive to Cognitive Radar Resource Management publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2019.2957847 contributor: fullname: Charlish – ident: ref_17 doi: 10.1109/ICSPCC.2017.8242587 – ident: ref_23 doi: 10.3390/electronics11091383 – ident: ref_25 doi: 10.1109/ITNEC48623.2020.9084981 – volume: 6 start-page: 182 year: 2002 ident: ref_54 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 contributor: fullname: Deb – volume: 2014 start-page: 312521 year: 2014 ident: ref_39 article-title: A Review of Subsequence Time Series Clustering publication-title: Sci. World J. doi: 10.1155/2014/312521 contributor: fullname: Zolhavarieh – ident: ref_59 – volume: 55 start-page: 1624 year: 2019 ident: ref_21 article-title: Classification, Denoising and Deinterleaving of Pulse Streams with Recurrent Neural Networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2874139 contributor: fullname: Liu – volume: 55 start-page: 5899 year: 2017 ident: ref_1 article-title: Command and Control for Multifunction Phased Array Radar publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2716935 contributor: fullname: Weber – volume: 153 start-page: 2 year: 2006 ident: ref_4 article-title: Adaptive MFR parameter control: Fixed against variable probabilities of detection publication-title: IEE Proc.—Radar Sonar Navig. doi: 10.1049/ip-rsn:20050067 contributor: fullname: Boers – volume: 115 start-page: 107919 year: 2021 ident: ref_48 article-title: Multivariate time series clustering based on complex network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107919 contributor: fullname: Li – volume: 104 start-page: 649 year: 2016 ident: ref_2 article-title: Multifunction Phased Array Radar for Aircraft and Weather Surveillance publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2491179 contributor: fullname: Stailey – volume: 110 start-page: 29 year: 2013 ident: ref_42 article-title: Feature selection techniques with class separability for multivariate time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.006 contributor: fullname: Han – volume: 17 start-page: 395 year: 2007 ident: ref_56 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z contributor: fullname: Luxburg – volume: 22 start-page: 2286 year: 2018 ident: ref_20 article-title: Towards Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2864725 contributor: fullname: Li – ident: ref_9 doi: 10.1109/ICASSP.2007.366799 – volume: 11 start-page: 463 year: 2014 ident: ref_3 article-title: Variable Dwell Time Task Scheduling for Multifunction Radar publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2285014 contributor: fullname: Mir – ident: ref_7 doi: 10.1109/ICMLA.2019.00057 – ident: ref_27 doi: 10.1109/ISAP53582.2022.9998652 – volume: 12 start-page: 100518 year: 2020 ident: ref_51 article-title: MVTS-Data Toolkit: A Python package for preprocessing multivariate time series data publication-title: SoftwareX doi: 10.1016/j.softx.2020.100518 contributor: fullname: Ahmadzadeh – volume: 31 start-page: 2 year: 2016 ident: ref_13 article-title: Overview of radar waveform diversity publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2016.160071 contributor: fullname: Blunt – volume: 95 start-page: 1000 year: 2007 ident: ref_6 article-title: Syntactic Modeling and Signal Processing of Multifunction Radars: A Stochastic Context-Free Grammar Approach publication-title: Proc. IEEE doi: 10.1109/JPROC.2007.893252 contributor: fullname: Visnevski – ident: ref_33 doi: 10.1109/IAEAC47372.2019.8997658 – volume: 25 start-page: 84 year: 2018 ident: ref_32 article-title: Main pattern extraction of electronic scanning radar publication-title: Electron. Opt. Control. contributor: fullname: Guan – ident: ref_31 doi: 10.1109/RadarConf2147009.2021.9455205 – volume: 56 start-page: 1106 year: 2008 ident: ref_10 article-title: Signal Interpretation of Multifunction Radars: Modeling and Statistical Signal Processing With Stochastic Context Free Grammar publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.908949 contributor: fullname: Wang – volume: 120 start-page: 633 year: 2013 ident: ref_41 article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.003 contributor: fullname: Chamroukhi – ident: ref_50 – volume: 10 start-page: 559 year: 2021 ident: ref_34 article-title: Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train publication-title: J. Radars contributor: fullname: Liu – volume: 13 start-page: 128 year: 2018 ident: ref_35 article-title: Radar emitters classification and clustering with a scale mixture of Normal distributions publication-title: IET Radar Sonar Navig. contributor: fullname: Guillaume – volume: 28 start-page: 2222 year: 2017 ident: ref_52 article-title: LSTM: A Search Space Odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 contributor: fullname: Greff – volume: 57 start-page: 3673 year: 2021 ident: ref_22 article-title: Model-based Time Series Clustering and Inter-pulse Modulation Parameter Estimation of Multi-function Radar Pulse Sequences publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3082660 contributor: fullname: Zhu – volume: 111 start-page: 354 year: 2018 ident: ref_55 article-title: Identification of significant factors in fatal-injury highway crashes using genetic algorithm and neural network publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.11.028 contributor: fullname: Li – volume: 45 start-page: 1 year: 2012 ident: ref_37 article-title: Time-series data mining publication-title: ACM Comput. Surv. doi: 10.1145/2379776.2379788 contributor: fullname: Esling – volume: 104 start-page: 101818 year: 2020 ident: ref_47 article-title: Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101818 contributor: fullname: Palma – ident: ref_19 – volume: 53 start-page: 16 year: 2015 ident: ref_38 article-title: Time-series clustering—A decade review publication-title: Inf. Syst. doi: 10.1016/j.is.2015.04.007 contributor: fullname: Aghabozorgi – volume: 34 start-page: 6 year: 2019 ident: ref_15 article-title: An Overview of Cognitive Radar: Past, Present, and Future publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2019.2953762 contributor: fullname: Gurbuz – volume: 38 start-page: 1857 year: 2005 ident: ref_40 article-title: Clustering of time series data-a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.025 contributor: fullname: Liao |
SSID | ssj0000913830 |
Score | 2.3307598 |
Snippet | Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database |
StartPage | 1412 |
SubjectTerms | Algorithms Classification Clustering Datasets Deep learning Employee motivation Feature extraction Flexibility Machine learning Multivariate analysis Neural networks Parameters Performance degradation Purity Radar Radar systems Sequences Time series Unsupervised learning Waveforms |
Title | Multivariate Time Series Feature Extraction and Clustering Framework for Multi-Function Radar Work Mode Recognition |
URI | https://www.proquest.com/docview/3046897981 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V5UIPqKWgLlDkAxIXLPDaTuwTomgDQgJVK5C4RX7lhLKw2a164rczkwe0EuoxiZNIY3v8zesbgEMRvMp0ynguoucqWs-dM4prHytho4impV28uc2u7tX1g37oHW5Nn1Y56MRWUcd5IB_5CUXwjM2tEWdPz5y6RlF0tW-hsQbrEyGNGcH6z-ntr9mbl4VYL4087eiGJNr3J-_dZRpU30YoMfnnSPpYMbenTfEFNnuYyM67ef0Kn1K9BZ__Ig_8Bk1bO_sbbV2Ei4xKORi5ulLDCNatFolN_ywXXd0Cc3VkF48rYkXAl1kxpGQxxKys_RAv8IRrx85cdAtGXnRGndLYbMgxmtfbcF9M7y6ueN9CgQcpxJKHKJ2skrNBuwwXTVXlzmifrMYbiE2ckV4qnZRK3iqf24oib5W23gu0daTcgVE9r9N3YCllIQunNmaaOOiER8tPBxVwViZG5_kYjgcplk8dU0aJFgYJvfxA6GM4IkmXtI9IGK4vB8CfESNVeY6KQ-bKCjWG_WEyyn6DNeX7ctj9_-M92JggDumSbfZhtFys0g_EEUt_AGumuDzolwxe3bxMXwHGHM5i |
link.rule.ids | 314,780,784,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TgQxDI04CqBAnGI5UyDREEE2yUxSIYQYlrNAINGNck2FZpedXcTnY8_BISHaOSU7sZ8d-5mQQ-6dTFRMWMqDYzIYx6zVkikXCm4CD7qmXbx_SAbP8uZFvbQJt6otq-xsYm2ow9BjjvwET_C0SY3mZ6M3hlOj8HS1HaExS-alANeNneLZ1VeOBTkvtThtyIYERPcn37NlKjDemkve_-WQ_jbLta_JVshyCxLpeaPVVTITyzWy9IM6cJ1UdefsO0S6ABYpNnJQTHTFiiKom44jvfyYjJuuBWrLQC9ep8iJAC_TrCvIooBYaf0hloF_q599tMGOKebQKc5Jo49dhdGw3CDP2eXTxYC1AxSYF5xPmA_CiiJa45VNYMkURWq1ctEouADIxGrhhFRRyuiMdKkp8NytUMY5DpGOEJtkrhyWcYvQGBOf-FMTEoUMdNxB3Ke89KCTvlZp2iPHnRTzUcOTkUN8gULP_xB6jxyhpHPcRSgM2zYDwM-Qjyo_B7MhUmm47JHdThl5u72q_HsxbP9_-4AsDJ7u7_K764fbHbLYB0TSlN3skrnJeBr3AFFM3H69bD4BUILNxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELaASogeUEtBpKStD5V6qZU4tnftE0KQLY8SVahIua382hPahN2k6s9nZh-ESqjXfUrj8fib1zeEfOXeyUTFhKU8OCaDccxaLZlyoeAm8KAb2sXbWXJ5L6_nat7VP9VdWWVvExtDHRYeY-QjzOBpkxrNR0VXFvHrIjtdPjKcIIWZ1m6cxjZ5k8qxwPI-nf14jrcg_6UW45Z4SICnP9rMmanBkGsu-eSfw-l1E92cO9k7st8BRnrWrvB7shXLA_L2BY3gB1I3XbR_wOsF4EixqYNi0CvWFAHeuop0-ndVtR0M1JaBnj-skR8BXqZZX5xFAb3S5kMsg7OuefbOBltRjKdTnJlG7_pqo0V5SO6z6e_zS9YNU2BecL5iPggrimiNVzYB9SmK1GrlolFwAVCK1cIJqaKU0RnpUlNgDq5QxjkOXo8QR2SnXJTxmNAYE5_4sQmJQjY67sAHVF56WJ-JVmk6IN97KebLljMjB18DhZ6_IvQB-YaSznFHoTBs1xgAP0NuqvwMTIhIpeFyQIb9YuTdVqvzjWJ8_P_tL2QXNCb_eTW7OSF7EwAnbQXOkOysqnX8BOBi5T43WvMEnznR-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Time+Series+Feature+Extraction+and+Clustering+Framework+for+Multi-Function+Radar+Work+Mode+Recognition&rft.jtitle=Electronics+%28Basel%29&rft.au=Fan%2C+Ruozhou&rft.au=Zhu%2C+Mengtao&rft.au=Zhang%2C+Xiongkui&rft.date=2024-04-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=8&rft.spage=1412&rft_id=info:doi/10.3390%2Felectronics13081412&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13081412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |