Multivariate Time Series Feature Extraction and Clustering Framework for Multi-Function Radar Work Mode Recognition

Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The recognition of MFR work modes based on the intercepted pulse sequences plays an important role in interpreting the functional purpose and threa...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 8; p. 1412
Main Authors Fan, Ruozhou, Zhu, Mengtao, Zhang, Xiongkui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The recognition of MFR work modes based on the intercepted pulse sequences plays an important role in interpreting the functional purpose and threats of a non-cooperative MFRs. However, due to the increased flexibility of MFRs, radar work modes with emerging new modulations and control parameters always appear, and the supervised classification method suffers performance degradation or even failure. Unsupervised learning and clustering of MFR pulse sequences becomes urgent and important. This paper establishes a unified multivariate MFR time series feature extraction and clustering framework for MFR work mode recognition. At first, various features are collected to form the feature set. The feature set includes features extracted through deep learning based on recurrent auto-encoders, multidimensional time series toolkit features, and manually crafted features for radar inter-pulse modulations. Subsequently, several feature selection algorithms, combined with different clustering and classification methods, are used for the selection of an “optimal” feature subset. Finally, the effectiveness and superiority of the proposed framework and selected features are validated through simulated and measured datasets. In the simulated dataset containing 20 classes of work modes, under the most severe non-ideal conditions, we achieve a clustering purity of 73.46% and an NMI of 84.28%. In the measured dataset with seven classes of work modes, we achieve a clustering purity of 86.96% and an NMI of 90.10%.
AbstractList Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The recognition of MFR work modes based on the intercepted pulse sequences plays an important role in interpreting the functional purpose and threats of a non-cooperative MFRs. However, due to the increased flexibility of MFRs, radar work modes with emerging new modulations and control parameters always appear, and the supervised classification method suffers performance degradation or even failure. Unsupervised learning and clustering of MFR pulse sequences becomes urgent and important. This paper establishes a unified multivariate MFR time series feature extraction and clustering framework for MFR work mode recognition. At first, various features are collected to form the feature set. The feature set includes features extracted through deep learning based on recurrent auto-encoders, multidimensional time series toolkit features, and manually crafted features for radar inter-pulse modulations. Subsequently, several feature selection algorithms, combined with different clustering and classification methods, are used for the selection of an “optimal” feature subset. Finally, the effectiveness and superiority of the proposed framework and selected features are validated through simulated and measured datasets. In the simulated dataset containing 20 classes of work modes, under the most severe non-ideal conditions, we achieve a clustering purity of 73.46% and an NMI of 84.28%. In the measured dataset with seven classes of work modes, we achieve a clustering purity of 86.96% and an NMI of 90.10%.
Audience Academic
Author Fan, Ruozhou
Zhu, Mengtao
Zhang, Xiongkui
Author_xml – sequence: 1
  givenname: Ruozhou
  orcidid: 0009-0003-5377-8801
  surname: Fan
  fullname: Fan, Ruozhou
– sequence: 2
  givenname: Mengtao
  orcidid: 0000-0003-0502-3386
  surname: Zhu
  fullname: Zhu, Mengtao
– sequence: 3
  givenname: Xiongkui
  orcidid: 0009-0007-3021-8915
  surname: Zhang
  fullname: Zhang, Xiongkui
BookMark eNptUctO7DAMjRBIPL-ATSTWhaRup80SjRgu0iAkHmJZuakzCnQSSNJ74e_JMCzuAnth65xjW7YP2a7zjhg7leIcQIkLGkmn4J3VUYJoZSXLHXZQikYVqlTl7n_5PjuJ8UVkUxJaEAcs3k5jsn8xWEzEH-2a-AMFS5EvCNMUiF99pIA6We84uoHPxymmrHArvgi4pn8-vHLjA_9uVCwmt9Xe44CBP2_YWz8QvyftV85uuGO2Z3CMdPITj9jT4upx_qdY3l3fzC-XhQYpU6EHQDCEStc4IxyMabCte1J1BkApbKGHqqaqol5VfaOMaEswtep72c5KgCN2tu37Fvz7RDF1L34KLo_sQFSzVjWqlVl1vlWtcKTOOuM3-2YfaG11PrWxGb9sFEBTKVnlAtgW6OBjDGS6t2DXGD47KbrNR7pfPgJfthmFbQ
Cites_doi 10.1016/j.patcog.2017.08.016
10.1109/PIERS.2017.8262194
10.1109/CompComm.2017.8322938
10.1109/CMC.2010.154
10.1016/j.enbuild.2019.05.021
10.1109/CCISP59915.2023.10355860
10.1016/j.knosys.2018.10.041
10.1162/neco.1997.9.8.1735
10.1109/MSP.2018.2822847
10.1016/j.neunet.2010.06.008
10.1109/ICEICT57916.2023.10245009
10.1016/j.jobe.2020.101996
10.1049/iet-rsn.2020.0060
10.3390/s130100848
10.1109/JSEN.2023.3303023
10.1016/j.neucom.2019.03.060
10.1109/ACCESS.2018.2882798
10.1109/JPROC.2012.2203089
10.1109/MAES.2019.2957847
10.1109/ICSPCC.2017.8242587
10.3390/electronics11091383
10.1109/ITNEC48623.2020.9084981
10.1109/4235.996017
10.1155/2014/312521
10.1109/TAES.2018.2874139
10.1109/TGRS.2017.2716935
10.1049/ip-rsn:20050067
10.1016/j.patcog.2021.107919
10.1109/JPROC.2015.2491179
10.1016/j.neucom.2012.12.006
10.1007/s11222-007-9033-z
10.1109/LCOMM.2018.2864725
10.1109/ICASSP.2007.366799
10.1109/TASE.2013.2285014
10.1109/ICMLA.2019.00057
10.1109/ISAP53582.2022.9998652
10.1016/j.softx.2020.100518
10.1109/MAES.2016.160071
10.1109/JPROC.2007.893252
10.1109/IAEAC47372.2019.8997658
10.1109/RadarConf2147009.2021.9455205
10.1109/TSP.2007.908949
10.1016/j.neucom.2013.04.003
10.1109/TNNLS.2016.2582924
10.1109/TAES.2021.3082660
10.1016/j.aap.2017.11.028
10.1145/2379776.2379788
10.1016/j.artmed.2020.101818
10.1016/j.is.2015.04.007
10.1109/MAES.2019.2953762
10.1016/j.patcog.2005.01.025
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13081412
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A793374914
10_3390_electronics13081412
GroupedDBID 5VS
8FE
8FG
AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c311t-cd3a3fea9c5a6eadff7a85be95c5a399a83b345e44eb94b79f0823f59bb186233
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Nov 17 06:11:25 EST 2024
Tue May 14 05:35:30 EDT 2024
Fri Dec 06 04:02:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-cd3a3fea9c5a6eadff7a85be95c5a399a83b345e44eb94b79f0823f59bb186233
ORCID 0009-0003-5377-8801
0000-0003-0502-3386
0009-0007-3021-8915
OpenAccessLink https://www.proquest.com/docview/3046897981?pq-origsite=%requestingapplication%
PQID 3046897981
PQPubID 2032404
ParticipantIDs proquest_journals_3046897981
gale_infotracacademiconefile_A793374914
crossref_primary_10_3390_electronics13081412
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_20) 2018; 22
ref_50
Greco (ref_14) 2018; 35
Aghabozorgi (ref_38) 2015; 53
ref_57
ref_11
Gurbuz (ref_15) 2019; 34
Charlish (ref_30) 2020; 35
ref_19
ref_18
Guillaume (ref_35) 2018; 13
Palma (ref_47) 2020; 104
ref_17
Li (ref_55) 2018; 111
ref_59
Mir (ref_3) 2014; 11
Salles (ref_36) 2019; 164
Blunt (ref_13) 2016; 31
Zolhavarieh (ref_39) 2014; 2014
Zhang (ref_28) 2023; 23
ref_25
Li (ref_48) 2021; 115
Greff (ref_52) 2017; 28
ref_24
ref_23
Ahmadzadeh (ref_51) 2020; 12
ref_29
ref_27
ref_26
Guan (ref_32) 2018; 25
Han (ref_42) 2013; 110
Hochreiter (ref_53) 1997; 9
Zhou (ref_44) 2018; 6
Haykin (ref_12) 2012; 100
Stailey (ref_2) 2016; 104
Deb (ref_54) 2002; 6
Wang (ref_10) 2008; 56
Luxburg (ref_56) 2007; 17
Sanhudo (ref_49) 2021; 35
Kauppi (ref_16) 2010; 23
ref_33
ref_31
Weber (ref_1) 2017; 55
Boers (ref_4) 2006; 153
Visnevski (ref_6) 2007; 95
Guyon (ref_60) 2003; 3
Liu (ref_34) 2021; 10
Esling (ref_37) 2012; 45
Li (ref_46) 2019; 349
Liu (ref_21) 2019; 55
(ref_45) 2019; 196
Zhu (ref_22) 2021; 57
Liao (ref_40) 2005; 38
Tuncel (ref_43) 2018; 73
Yang (ref_58) 2013; 13
ref_9
ref_8
Chamroukhi (ref_41) 2013; 120
ref_5
ref_7
References_xml – volume: 73
  start-page: 202
  year: 2018
  ident: ref_43
  article-title: Autoregressive forests for multivariate time series modeling
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.016
  contributor:
    fullname: Tuncel
– ident: ref_11
  doi: 10.1109/PIERS.2017.8262194
– ident: ref_57
  doi: 10.1109/CompComm.2017.8322938
– ident: ref_5
– ident: ref_18
  doi: 10.1109/CMC.2010.154
– volume: 196
  start-page: 71
  year: 2019
  ident: ref_45
  article-title: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.021
– ident: ref_24
  doi: 10.1109/CCISP59915.2023.10355860
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_60
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Guyon
– volume: 164
  start-page: 274
  year: 2019
  ident: ref_36
  article-title: Nonstationary time series transformation methods: An experimental review
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.10.041
  contributor:
    fullname: Salles
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_53
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– volume: 35
  start-page: 112
  year: 2018
  ident: ref_14
  article-title: Cognitive Radars: On the Road to Reality: Progress thus Far and Possibilities for the Future
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2822847
  contributor:
    fullname: Greco
– volume: 23
  start-page: 1226
  year: 2010
  ident: ref_16
  article-title: Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.06.008
  contributor:
    fullname: Kauppi
– ident: ref_26
  doi: 10.1109/ICEICT57916.2023.10245009
– volume: 35
  start-page: 101996
  year: 2021
  ident: ref_49
  article-title: Multivariate time series clustering and forecasting for building energy analysis: Application to weather data quality control
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101996
  contributor:
    fullname: Sanhudo
– ident: ref_29
  doi: 10.1049/iet-rsn.2020.0060
– volume: 13
  start-page: 848
  year: 2013
  ident: ref_58
  article-title: Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine
  publication-title: Sensors
  doi: 10.3390/s130100848
  contributor:
    fullname: Yang
– volume: 23
  start-page: 21574
  year: 2023
  ident: ref_28
  article-title: An Incremental Recognition Method for MFR Working Modes Based on Deep Feature Extension in Dynamic Observation Scenarios
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3303023
  contributor:
    fullname: Zhang
– volume: 349
  start-page: 239
  year: 2019
  ident: ref_46
  article-title: Multivariate time series clustering based on common principal component analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.060
  contributor:
    fullname: Li
– ident: ref_8
– volume: 6
  start-page: 74747
  year: 2018
  ident: ref_44
  article-title: Clustering Multivariate Time Series Data via Multi-Nonnegative Matrix Factorization in Multi-Relational Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882798
  contributor:
    fullname: Zhou
– volume: 100
  start-page: 3102
  year: 2012
  ident: ref_12
  article-title: Cognitive Radar: Step toward Bridging the Gap between Neuroscience and Engineering
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2203089
  contributor:
    fullname: Haykin
– volume: 35
  start-page: 8
  year: 2020
  ident: ref_30
  article-title: The Development from Adaptive to Cognitive Radar Resource Management
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2019.2957847
  contributor:
    fullname: Charlish
– ident: ref_17
  doi: 10.1109/ICSPCC.2017.8242587
– ident: ref_23
  doi: 10.3390/electronics11091383
– ident: ref_25
  doi: 10.1109/ITNEC48623.2020.9084981
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_54
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
  contributor:
    fullname: Deb
– volume: 2014
  start-page: 312521
  year: 2014
  ident: ref_39
  article-title: A Review of Subsequence Time Series Clustering
  publication-title: Sci. World J.
  doi: 10.1155/2014/312521
  contributor:
    fullname: Zolhavarieh
– ident: ref_59
– volume: 55
  start-page: 1624
  year: 2019
  ident: ref_21
  article-title: Classification, Denoising and Deinterleaving of Pulse Streams with Recurrent Neural Networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2874139
  contributor:
    fullname: Liu
– volume: 55
  start-page: 5899
  year: 2017
  ident: ref_1
  article-title: Command and Control for Multifunction Phased Array Radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2716935
  contributor:
    fullname: Weber
– volume: 153
  start-page: 2
  year: 2006
  ident: ref_4
  article-title: Adaptive MFR parameter control: Fixed against variable probabilities of detection
  publication-title: IEE Proc.—Radar Sonar Navig.
  doi: 10.1049/ip-rsn:20050067
  contributor:
    fullname: Boers
– volume: 115
  start-page: 107919
  year: 2021
  ident: ref_48
  article-title: Multivariate time series clustering based on complex network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107919
  contributor:
    fullname: Li
– volume: 104
  start-page: 649
  year: 2016
  ident: ref_2
  article-title: Multifunction Phased Array Radar for Aircraft and Weather Surveillance
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2491179
  contributor:
    fullname: Stailey
– volume: 110
  start-page: 29
  year: 2013
  ident: ref_42
  article-title: Feature selection techniques with class separability for multivariate time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.006
  contributor:
    fullname: Han
– volume: 17
  start-page: 395
  year: 2007
  ident: ref_56
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
  contributor:
    fullname: Luxburg
– volume: 22
  start-page: 2286
  year: 2018
  ident: ref_20
  article-title: Towards Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2864725
  contributor:
    fullname: Li
– ident: ref_9
  doi: 10.1109/ICASSP.2007.366799
– volume: 11
  start-page: 463
  year: 2014
  ident: ref_3
  article-title: Variable Dwell Time Task Scheduling for Multifunction Radar
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2285014
  contributor:
    fullname: Mir
– ident: ref_7
  doi: 10.1109/ICMLA.2019.00057
– ident: ref_27
  doi: 10.1109/ISAP53582.2022.9998652
– volume: 12
  start-page: 100518
  year: 2020
  ident: ref_51
  article-title: MVTS-Data Toolkit: A Python package for preprocessing multivariate time series data
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100518
  contributor:
    fullname: Ahmadzadeh
– volume: 31
  start-page: 2
  year: 2016
  ident: ref_13
  article-title: Overview of radar waveform diversity
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2016.160071
  contributor:
    fullname: Blunt
– volume: 95
  start-page: 1000
  year: 2007
  ident: ref_6
  article-title: Syntactic Modeling and Signal Processing of Multifunction Radars: A Stochastic Context-Free Grammar Approach
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2007.893252
  contributor:
    fullname: Visnevski
– ident: ref_33
  doi: 10.1109/IAEAC47372.2019.8997658
– volume: 25
  start-page: 84
  year: 2018
  ident: ref_32
  article-title: Main pattern extraction of electronic scanning radar
  publication-title: Electron. Opt. Control.
  contributor:
    fullname: Guan
– ident: ref_31
  doi: 10.1109/RadarConf2147009.2021.9455205
– volume: 56
  start-page: 1106
  year: 2008
  ident: ref_10
  article-title: Signal Interpretation of Multifunction Radars: Modeling and Statistical Signal Processing With Stochastic Context Free Grammar
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.908949
  contributor:
    fullname: Wang
– volume: 120
  start-page: 633
  year: 2013
  ident: ref_41
  article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.003
  contributor:
    fullname: Chamroukhi
– ident: ref_50
– volume: 10
  start-page: 559
  year: 2021
  ident: ref_34
  article-title: Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train
  publication-title: J. Radars
  contributor:
    fullname: Liu
– volume: 13
  start-page: 128
  year: 2018
  ident: ref_35
  article-title: Radar emitters classification and clustering with a scale mixture of Normal distributions
  publication-title: IET Radar Sonar Navig.
  contributor:
    fullname: Guillaume
– volume: 28
  start-page: 2222
  year: 2017
  ident: ref_52
  article-title: LSTM: A Search Space Odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
  contributor:
    fullname: Greff
– volume: 57
  start-page: 3673
  year: 2021
  ident: ref_22
  article-title: Model-based Time Series Clustering and Inter-pulse Modulation Parameter Estimation of Multi-function Radar Pulse Sequences
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3082660
  contributor:
    fullname: Zhu
– volume: 111
  start-page: 354
  year: 2018
  ident: ref_55
  article-title: Identification of significant factors in fatal-injury highway crashes using genetic algorithm and neural network
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2017.11.028
  contributor:
    fullname: Li
– volume: 45
  start-page: 1
  year: 2012
  ident: ref_37
  article-title: Time-series data mining
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2379776.2379788
  contributor:
    fullname: Esling
– volume: 104
  start-page: 101818
  year: 2020
  ident: ref_47
  article-title: Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101818
  contributor:
    fullname: Palma
– ident: ref_19
– volume: 53
  start-page: 16
  year: 2015
  ident: ref_38
  article-title: Time-series clustering—A decade review
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2015.04.007
  contributor:
    fullname: Aghabozorgi
– volume: 34
  start-page: 6
  year: 2019
  ident: ref_15
  article-title: An Overview of Cognitive Radar: Past, Present, and Future
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2019.2953762
  contributor:
    fullname: Gurbuz
– volume: 38
  start-page: 1857
  year: 2005
  ident: ref_40
  article-title: Clustering of time series data-a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.01.025
  contributor:
    fullname: Liao
SSID ssj0000913830
Score 2.3307598
Snippet Multi-Function Radars (MFRs) are sophisticated sensors with great agility and flexibility in adapting their transmitted waveform and control parameters. The...
SourceID proquest
gale
crossref
SourceType Aggregation Database
StartPage 1412
SubjectTerms Algorithms
Classification
Clustering
Datasets
Deep learning
Employee motivation
Feature extraction
Flexibility
Machine learning
Multivariate analysis
Neural networks
Parameters
Performance degradation
Purity
Radar
Radar systems
Sequences
Time series
Unsupervised learning
Waveforms
Title Multivariate Time Series Feature Extraction and Clustering Framework for Multi-Function Radar Work Mode Recognition
URI https://www.proquest.com/docview/3046897981
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V5UIPqKWgLlDkAxIXLPDaTuwTomgDQgJVK5C4RX7lhLKw2a164rczkwe0EuoxiZNIY3v8zesbgEMRvMp0ynguoucqWs-dM4prHytho4impV28uc2u7tX1g37oHW5Nn1Y56MRWUcd5IB_5CUXwjM2tEWdPz5y6RlF0tW-hsQbrEyGNGcH6z-ntr9mbl4VYL4087eiGJNr3J-_dZRpU30YoMfnnSPpYMbenTfEFNnuYyM67ef0Kn1K9BZ__Ig_8Bk1bO_sbbV2Ei4xKORi5ulLDCNatFolN_ywXXd0Cc3VkF48rYkXAl1kxpGQxxKys_RAv8IRrx85cdAtGXnRGndLYbMgxmtfbcF9M7y6ueN9CgQcpxJKHKJ2skrNBuwwXTVXlzmifrMYbiE2ckV4qnZRK3iqf24oib5W23gu0daTcgVE9r9N3YCllIQunNmaaOOiER8tPBxVwViZG5_kYjgcplk8dU0aJFgYJvfxA6GM4IkmXtI9IGK4vB8CfESNVeY6KQ-bKCjWG_WEyyn6DNeX7ctj9_-M92JggDumSbfZhtFys0g_EEUt_AGumuDzolwxe3bxMXwHGHM5i
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TgQxDI04CqBAnGI5UyDREEE2yUxSIYQYlrNAINGNck2FZpedXcTnY8_BISHaOSU7sZ8d-5mQQ-6dTFRMWMqDYzIYx6zVkikXCm4CD7qmXbx_SAbP8uZFvbQJt6otq-xsYm2ow9BjjvwET_C0SY3mZ6M3hlOj8HS1HaExS-alANeNneLZ1VeOBTkvtThtyIYERPcn37NlKjDemkve_-WQ_jbLta_JVshyCxLpeaPVVTITyzWy9IM6cJ1UdefsO0S6ABYpNnJQTHTFiiKom44jvfyYjJuuBWrLQC9ep8iJAC_TrCvIooBYaf0hloF_q599tMGOKebQKc5Jo49dhdGw3CDP2eXTxYC1AxSYF5xPmA_CiiJa45VNYMkURWq1ctEouADIxGrhhFRRyuiMdKkp8NytUMY5DpGOEJtkrhyWcYvQGBOf-FMTEoUMdNxB3Ke89KCTvlZp2iPHnRTzUcOTkUN8gULP_xB6jxyhpHPcRSgM2zYDwM-Qjyo_B7MhUmm47JHdThl5u72q_HsxbP9_-4AsDJ7u7_K764fbHbLYB0TSlN3skrnJeBr3AFFM3H69bD4BUILNxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELaASogeUEtBpKStD5V6qZU4tnftE0KQLY8SVahIua382hPahN2k6s9nZh-ESqjXfUrj8fib1zeEfOXeyUTFhKU8OCaDccxaLZlyoeAm8KAb2sXbWXJ5L6_nat7VP9VdWWVvExtDHRYeY-QjzOBpkxrNR0VXFvHrIjtdPjKcIIWZ1m6cxjZ5k8qxwPI-nf14jrcg_6UW45Z4SICnP9rMmanBkGsu-eSfw-l1E92cO9k7st8BRnrWrvB7shXLA_L2BY3gB1I3XbR_wOsF4EixqYNi0CvWFAHeuop0-ndVtR0M1JaBnj-skR8BXqZZX5xFAb3S5kMsg7OuefbOBltRjKdTnJlG7_pqo0V5SO6z6e_zS9YNU2BecL5iPggrimiNVzYB9SmK1GrlolFwAVCK1cIJqaKU0RnpUlNgDq5QxjkOXo8QR2SnXJTxmNAYE5_4sQmJQjY67sAHVF56WJ-JVmk6IN97KebLljMjB18DhZ6_IvQB-YaSznFHoTBs1xgAP0NuqvwMTIhIpeFyQIb9YuTdVqvzjWJ8_P_tL2QXNCb_eTW7OSF7EwAnbQXOkOysqnX8BOBi5T43WvMEnznR-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Time+Series+Feature+Extraction+and+Clustering+Framework+for+Multi-Function+Radar+Work+Mode+Recognition&rft.jtitle=Electronics+%28Basel%29&rft.au=Fan%2C+Ruozhou&rft.au=Zhu%2C+Mengtao&rft.au=Zhang%2C+Xiongkui&rft.date=2024-04-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=8&rft.spage=1412&rft_id=info:doi/10.3390%2Felectronics13081412&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13081412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon