Nonlinear System Identification With Prior Knowledge on the Region of Attraction
We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We propose an identification method in the form of an optimization problem, minimizing the fitting error and guaranteeing the desired stability prop...
Saved in:
Published in | IEEE control systems letters Vol. 5; no. 3; pp. 1091 - 1096 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We propose an identification method in the form of an optimization problem, minimizing the fitting error and guaranteeing the desired stability property. The problem is approached by joint identification of the dynamics and a Lyapunov function verifying the stability property. In this setting, the hypothesis set is a reproducing kernel Hilbert space, and with respect to each point of the given subset of the ROA, the Lie derivative inequality of the Lyapunov function imposes a constraint. The problem is a non-convex infinite-dimensional optimization with an infinite number of constraints. To obtain a tractable formulation, only a suitably designed finite subset of the constraints are considered. The resulting problem admits a solution in form of a linear combination of the sections of the kernel and its derivatives. An equivalent finite dimension optimization problem with a quadratic cost function subject to linear and bilinear constraints is derived. A suitable change of variable gives a convex reformulation of the problem. The method is demonstrated by several examples. |
---|---|
AbstractList | We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We propose an identification method in the form of an optimization problem, minimizing the fitting error and guaranteeing the desired stability property. The problem is approached by joint identification of the dynamics and a Lyapunov function verifying the stability property. In this setting, the hypothesis set is a reproducing kernel Hilbert space, and with respect to each point of the given subset of the ROA, the Lie derivative inequality of the Lyapunov function imposes a constraint. The problem is a non-convex infinite-dimensional optimization with an infinite number of constraints. To obtain a tractable formulation, only a suitably designed finite subset of the constraints are considered. The resulting problem admits a solution in form of a linear combination of the sections of the kernel and its derivatives. An equivalent finite dimension optimization problem with a quadratic cost function subject to linear and bilinear constraints is derived. A suitable change of variable gives a convex reformulation of the problem. The method is demonstrated by several examples. |
Author | Khosravi, Mohammad Smith, Roy S. |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0002-4873-1115 surname: Khosravi fullname: Khosravi, Mohammad email: khosravm@control.ee.ethz.ch organization: Automatic Control Lab, ETH Zürich, Zürich, Switzerland – sequence: 2 givenname: Roy S. orcidid: 0000-0002-8139-4683 surname: Smith fullname: Smith, Roy S. email: rsmith@control.ee.ethz.ch organization: Automatic Control Lab, ETH Zürich, Zürich, Switzerland |
BookMark | eNp9kM1KAzEQgINUsNa-gF7yAlszSTe7eyzFn2LRYhXxtCTZSRvZZiUbkL693baIePA0wzDf_HznpOcbj4RcAhsBsOJ6Pl2-L0eccTYSjKUgxQnp83GWJjBOZe9XfkaGbfvBGIOcZ4wXfbJ4bHztPKpAl9s24obOKvTRWWdUdI2nby6u6SK4JtAH33zVWK2Q7upxjfQZV11LY-kkxqBMB1yQU6vqFofHOCCvtzcv0_tk_nQ3m07miREAMdEqQ0AtUxBYSZsxJgurjNZgQGspFRqbYsY5z3iuKstFwYUBoRVWTBdGDAg_zDWhaduAtvwMbqPCtgRWdlrKvZay01Ieteyg_A9kXNz_uTvf1f-jVwfUIeLPrgK4zMVYfAN0RXPa |
CODEN | ICSLBO |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2021_08_451 crossref_primary_10_1016_j_ifacol_2023_12_051 crossref_primary_10_1109_TAC_2023_3242325 crossref_primary_10_1137_23M1556095 crossref_primary_10_1109_TAC_2023_3243099 crossref_primary_10_1016_j_automatica_2022_110813 crossref_primary_10_1016_j_ejcon_2024_101128 crossref_primary_10_1016_j_automatica_2022_110728 crossref_primary_10_1109_OJCSYS_2022_3216545 |
Cites_doi | 10.1109/TRO.2011.2159412 10.1016/j.cam.2007.08.023 10.1162/NECO_a_00393 10.1109/TAC.2007.911328 10.1109/TAC.2017.2668380 10.1142/S0219530506000838 10.1007/978-3-319-13710-0 10.1007/s10514-015-9528-y 10.1109/MCS.2019.2938121 10.1016/j.robot.2014.03.001 10.1109/MRA.2010.936947 10.1109/CDC.2016.7798979 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2020.3005163 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 1096 |
ExternalDocumentID | 10_1109_LCSYS_2020_3005163 9126834 |
Genre | orig-research |
GrantInformation_xml | – fundername: Swiss Competence Center for Energy Research SCCER FEEB&D of the Swiss Innovation Agency Innosuisse |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c311t-ba7e1eb6513ed6f70069facbb1c1bb66aecf5e7222728adf23923c13baed0b9c3 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Tue Jul 01 04:06:35 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 Wed Aug 27 02:32:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-ba7e1eb6513ed6f70069facbb1c1bb66aecf5e7222728adf23923c13baed0b9c3 |
ORCID | 0000-0002-8139-4683 0000-0002-4873-1115 |
OpenAccessLink | http://hdl.handle.net/20.500.11850/461413 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9126834 crossref_citationtrail_10_1109_LCSYS_2020_3005163 crossref_primary_10_1109_LCSYS_2020_3005163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-July 2021-7-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-July |
PublicationDecade | 2020 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | peypouquet (ref16) 2015 ref14 ref11 ref10 schoukens (ref1) 2019; 39 sattar (ref2) 2020 ahmadi (ref12) 2020; 1 ref17 ref18 ref8 ref7 singh (ref3) 2019 sindhwani (ref9) 2018 ref4 ref6 ref5 richards (ref13) 2018; 87 wang (ref15) 2019; 20 |
References_xml | – ident: ref5 doi: 10.1109/TRO.2011.2159412 – ident: ref10 doi: 10.1016/j.cam.2007.08.023 – year: 2019 ident: ref3 publication-title: Learning stabilizable nonlinear dynamics with contraction-based regularization – ident: ref8 doi: 10.1162/NECO_a_00393 – ident: ref17 doi: 10.1109/TAC.2007.911328 – ident: ref18 doi: 10.1109/TAC.2017.2668380 – ident: ref11 doi: 10.1142/S0219530506000838 – year: 2020 ident: ref2 publication-title: Non-asymptotic and accurate learning of nonlinear dynamical systems – year: 2015 ident: ref16 publication-title: Convex Optimization in Normed Spaces Theory Methods and Examples doi: 10.1007/978-3-319-13710-0 – volume: 1 start-page: 10 year: 2020 ident: ref12 article-title: Learning dynamical systems with side information publication-title: Mach Learn Res – ident: ref7 doi: 10.1007/s10514-015-9528-y – volume: 39 start-page: 28 year: 2019 ident: ref1 article-title: Nonlinear system identification: A user-oriented road map publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2019.2938121 – volume: 87 start-page: 466 year: 2018 ident: ref13 article-title: The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems publication-title: Proc Conf Robot Learn – ident: ref6 doi: 10.1016/j.robot.2014.03.001 – ident: ref4 doi: 10.1109/MRA.2010.936947 – year: 2018 ident: ref9 publication-title: Learning contracting vector fields for stable imitation learning – ident: ref14 doi: 10.1109/CDC.2016.7798979 – volume: 20 start-page: 1 year: 2019 ident: ref15 article-title: Robust estimation of derivatives using locally weighted least absolute deviation regression publication-title: J Mach Learn Res |
SSID | ssj0001827029 |
Score | 2.313052 |
Snippet | We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1091 |
SubjectTerms | convex optimization Estimation Kernel Nonlinear dynamical systems Nonlinear system identification Optimization prior knowledge region of attraction Stability analysis |
Title | Nonlinear System Identification With Prior Knowledge on the Region of Attraction |
URI | https://ieeexplore.ieee.org/document/9126834 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anrz4QMX6Yg_eNG02m26SYymWorYUa7Gewj6xKI2E7cVf7z6S-kDEWxh2YZkZmPkm880AcMEiYaJmyoPEIK_AxGMasDAVAYuN0IQ8lbiC_nhCRvP4ZtFbNMDVhgsjpXTNZ7JjP92_fFHwtS2VdTMUkRTHTdA0wM1ztT7rKallVmU1LybMuneD2dPMIMDIAFPrewR_iz1flqm4WDLcAeP6Fb6F5KWz1qzD338MaPzvM3fBdpVUwr73gj3QkKt9MJ34KRi0hH4sOfSkXFVV6eDjUj_DabksSnhbV9agkZuUEN5L26cMCwX7Wpee_HAA5sPrh8EoqPYnBBwjpANGE4kkIz2EpSBG6yHJFOWMIY4YI4RKrnoysWzYKKVCRSZXwhxhRqUIWcbxIWitipU8AtAolCipCLdwUOGEcoFEjGKl7MIYlLYBqjWb82q4uN1x8Zo7kBFmubNGbq2RV9Zog8vNnTc_WuPP0_tW05uTlZKPfxefgK3INp-4vtpT0NLlWp6Z7EGzc-c2H92lwqc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qPejFB1Wszz1409RsNtkkx1Is1T4otsV6CrubXSxKIyG9-OvdR1IfiHgLwy4sMwPfzGS-GQAumZcq1Iy4E6rMy1F4TB3mRqnDfCVUkCdDU9Afjkhv5t_Pg3kNXK-5MEII03wmWvrT_MtPM77SpbKbGHkkwv4G2FS4H3iWrfVZUYk0tyqumDFufDPoTJ4mKgf0VGqqvY_gb-jzZZ2KQZPuLhhW77BNJC-tVcFa_P3HiMb_PnQP7JRhJWxbP9gHNbFsgPHIzsGgObSDyaGl5cqyTgcfF8UzHOeLLIf9qrYGlVwFhfBB6E5lmEnYLorc0h8OwKx7O-30nHKDgsMxQoXDaCiQYCRAWKRE6d0lsaScMcQRY4RQwWUgQs2H9SKaSk9FS5gjzKhIXRZzfAjqy2wpjgBUCiVSSMJ1QihxSHmKUh_5UuqVMShqAlRpNuHleHG95eI1MWmGGyfGGom2RlJaowmu1nfe7HCNP083tKbXJ0slH_8uvgBbvelwkAzuRv0TsO3pVhTTZXsK6kW-EmcqlijYuXGhDzMJxfE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+System+Identification+With+Prior+Knowledge+on+the+Region+of+Attraction&rft.jtitle=IEEE+control+systems+letters&rft.au=Khosravi%2C+Mohammad&rft.au=Smith%2C+Roy+S.&rft.date=2021-07-01&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=5&rft.issue=3&rft.spage=1091&rft.epage=1096&rft_id=info:doi/10.1109%2FLCSYS.2020.3005163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2020_3005163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |