Nonlinear System Identification With Prior Knowledge on the Region of Attraction

We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We propose an identification method in the form of an optimization problem, minimizing the fitting error and guaranteeing the desired stability prop...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 5; no. 3; pp. 1091 - 1096
Main Authors Khosravi, Mohammad, Smith, Roy S.
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We propose an identification method in the form of an optimization problem, minimizing the fitting error and guaranteeing the desired stability property. The problem is approached by joint identification of the dynamics and a Lyapunov function verifying the stability property. In this setting, the hypothesis set is a reproducing kernel Hilbert space, and with respect to each point of the given subset of the ROA, the Lie derivative inequality of the Lyapunov function imposes a constraint. The problem is a non-convex infinite-dimensional optimization with an infinite number of constraints. To obtain a tractable formulation, only a suitably designed finite subset of the constraints are considered. The resulting problem admits a solution in form of a linear combination of the sections of the kernel and its derivatives. An equivalent finite dimension optimization problem with a quadratic cost function subject to linear and bilinear constraints is derived. A suitable change of variable gives a convex reformulation of the problem. The method is demonstrated by several examples.
AbstractList We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We propose an identification method in the form of an optimization problem, minimizing the fitting error and guaranteeing the desired stability property. The problem is approached by joint identification of the dynamics and a Lyapunov function verifying the stability property. In this setting, the hypothesis set is a reproducing kernel Hilbert space, and with respect to each point of the given subset of the ROA, the Lie derivative inequality of the Lyapunov function imposes a constraint. The problem is a non-convex infinite-dimensional optimization with an infinite number of constraints. To obtain a tractable formulation, only a suitably designed finite subset of the constraints are considered. The resulting problem admits a solution in form of a linear combination of the sections of the kernel and its derivatives. An equivalent finite dimension optimization problem with a quadratic cost function subject to linear and bilinear constraints is derived. A suitable change of variable gives a convex reformulation of the problem. The method is demonstrated by several examples.
Author Khosravi, Mohammad
Smith, Roy S.
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-4873-1115
  surname: Khosravi
  fullname: Khosravi, Mohammad
  email: khosravm@control.ee.ethz.ch
  organization: Automatic Control Lab, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Roy S.
  orcidid: 0000-0002-8139-4683
  surname: Smith
  fullname: Smith, Roy S.
  email: rsmith@control.ee.ethz.ch
  organization: Automatic Control Lab, ETH Zürich, Zürich, Switzerland
BookMark eNp9kM1KAzEQgINUsNa-gF7yAlszSTe7eyzFn2LRYhXxtCTZSRvZZiUbkL693baIePA0wzDf_HznpOcbj4RcAhsBsOJ6Pl2-L0eccTYSjKUgxQnp83GWJjBOZe9XfkaGbfvBGIOcZ4wXfbJ4bHztPKpAl9s24obOKvTRWWdUdI2nby6u6SK4JtAH33zVWK2Q7upxjfQZV11LY-kkxqBMB1yQU6vqFofHOCCvtzcv0_tk_nQ3m07miREAMdEqQ0AtUxBYSZsxJgurjNZgQGspFRqbYsY5z3iuKstFwYUBoRVWTBdGDAg_zDWhaduAtvwMbqPCtgRWdlrKvZay01Ieteyg_A9kXNz_uTvf1f-jVwfUIeLPrgK4zMVYfAN0RXPa
CODEN ICSLBO
CitedBy_id crossref_primary_10_1016_j_ifacol_2021_08_451
crossref_primary_10_1016_j_ifacol_2023_12_051
crossref_primary_10_1109_TAC_2023_3242325
crossref_primary_10_1137_23M1556095
crossref_primary_10_1109_TAC_2023_3243099
crossref_primary_10_1016_j_automatica_2022_110813
crossref_primary_10_1016_j_ejcon_2024_101128
crossref_primary_10_1016_j_automatica_2022_110728
crossref_primary_10_1109_OJCSYS_2022_3216545
Cites_doi 10.1109/TRO.2011.2159412
10.1016/j.cam.2007.08.023
10.1162/NECO_a_00393
10.1109/TAC.2007.911328
10.1109/TAC.2017.2668380
10.1142/S0219530506000838
10.1007/978-3-319-13710-0
10.1007/s10514-015-9528-y
10.1109/MCS.2019.2938121
10.1016/j.robot.2014.03.001
10.1109/MRA.2010.936947
10.1109/CDC.2016.7798979
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2020.3005163
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 1096
ExternalDocumentID 10_1109_LCSYS_2020_3005163
9126834
Genre orig-research
GrantInformation_xml – fundername: Swiss Competence Center for Energy Research SCCER FEEB&D of the Swiss Innovation Agency Innosuisse
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c311t-ba7e1eb6513ed6f70069facbb1c1bb66aecf5e7222728adf23923c13baed0b9c3
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Tue Jul 01 04:06:35 EDT 2025
Thu Apr 24 22:55:07 EDT 2025
Wed Aug 27 02:32:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-ba7e1eb6513ed6f70069facbb1c1bb66aecf5e7222728adf23923c13baed0b9c3
ORCID 0000-0002-8139-4683
0000-0002-4873-1115
OpenAccessLink http://hdl.handle.net/20.500.11850/461413
PageCount 6
ParticipantIDs ieee_primary_9126834
crossref_citationtrail_10_1109_LCSYS_2020_3005163
crossref_primary_10_1109_LCSYS_2020_3005163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-July
2021-7-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References peypouquet (ref16) 2015
ref14
ref11
ref10
schoukens (ref1) 2019; 39
sattar (ref2) 2020
ahmadi (ref12) 2020; 1
ref17
ref18
ref8
ref7
singh (ref3) 2019
sindhwani (ref9) 2018
ref4
ref6
ref5
richards (ref13) 2018; 87
wang (ref15) 2019; 20
References_xml – ident: ref5
  doi: 10.1109/TRO.2011.2159412
– ident: ref10
  doi: 10.1016/j.cam.2007.08.023
– year: 2019
  ident: ref3
  publication-title: Learning stabilizable nonlinear dynamics with contraction-based regularization
– ident: ref8
  doi: 10.1162/NECO_a_00393
– ident: ref17
  doi: 10.1109/TAC.2007.911328
– ident: ref18
  doi: 10.1109/TAC.2017.2668380
– ident: ref11
  doi: 10.1142/S0219530506000838
– year: 2020
  ident: ref2
  publication-title: Non-asymptotic and accurate learning of nonlinear dynamical systems
– year: 2015
  ident: ref16
  publication-title: Convex Optimization in Normed Spaces Theory Methods and Examples
  doi: 10.1007/978-3-319-13710-0
– volume: 1
  start-page: 10
  year: 2020
  ident: ref12
  article-title: Learning dynamical systems with side information
  publication-title: Mach Learn Res
– ident: ref7
  doi: 10.1007/s10514-015-9528-y
– volume: 39
  start-page: 28
  year: 2019
  ident: ref1
  article-title: Nonlinear system identification: A user-oriented road map
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2019.2938121
– volume: 87
  start-page: 466
  year: 2018
  ident: ref13
  article-title: The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems
  publication-title: Proc Conf Robot Learn
– ident: ref6
  doi: 10.1016/j.robot.2014.03.001
– ident: ref4
  doi: 10.1109/MRA.2010.936947
– year: 2018
  ident: ref9
  publication-title: Learning contracting vector fields for stable imitation learning
– ident: ref14
  doi: 10.1109/CDC.2016.7798979
– volume: 20
  start-page: 1
  year: 2019
  ident: ref15
  article-title: Robust estimation of derivatives using locally weighted least absolute deviation regression
  publication-title: J Mach Learn Res
SSID ssj0001827029
Score 2.313052
Snippet We consider the problem of nonlinear system identification when prior knowledge is available on the region of attraction (ROA) of an equilibrium point. We...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1091
SubjectTerms convex optimization
Estimation
Kernel
Nonlinear dynamical systems
Nonlinear system identification
Optimization
prior knowledge
region of attraction
Stability analysis
Title Nonlinear System Identification With Prior Knowledge on the Region of Attraction
URI https://ieeexplore.ieee.org/document/9126834
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anrz4QMX6Yg_eNG02m26SYymWorYUa7Gewj6xKI2E7cVf7z6S-kDEWxh2YZkZmPkm880AcMEiYaJmyoPEIK_AxGMasDAVAYuN0IQ8lbiC_nhCRvP4ZtFbNMDVhgsjpXTNZ7JjP92_fFHwtS2VdTMUkRTHTdA0wM1ztT7rKallVmU1LybMuneD2dPMIMDIAFPrewR_iz1flqm4WDLcAeP6Fb6F5KWz1qzD338MaPzvM3fBdpVUwr73gj3QkKt9MJ34KRi0hH4sOfSkXFVV6eDjUj_DabksSnhbV9agkZuUEN5L26cMCwX7Wpee_HAA5sPrh8EoqPYnBBwjpANGE4kkIz2EpSBG6yHJFOWMIY4YI4RKrnoysWzYKKVCRSZXwhxhRqUIWcbxIWitipU8AtAolCipCLdwUOGEcoFEjGKl7MIYlLYBqjWb82q4uN1x8Zo7kBFmubNGbq2RV9Zog8vNnTc_WuPP0_tW05uTlZKPfxefgK3INp-4vtpT0NLlWp6Z7EGzc-c2H92lwqc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qPejFB1Wszz1409RsNtkkx1Is1T4otsV6CrubXSxKIyG9-OvdR1IfiHgLwy4sMwPfzGS-GQAumZcq1Iy4E6rMy1F4TB3mRqnDfCVUkCdDU9Afjkhv5t_Pg3kNXK-5MEII03wmWvrT_MtPM77SpbKbGHkkwv4G2FS4H3iWrfVZUYk0tyqumDFufDPoTJ4mKgf0VGqqvY_gb-jzZZ2KQZPuLhhW77BNJC-tVcFa_P3HiMb_PnQP7JRhJWxbP9gHNbFsgPHIzsGgObSDyaGl5cqyTgcfF8UzHOeLLIf9qrYGlVwFhfBB6E5lmEnYLorc0h8OwKx7O-30nHKDgsMxQoXDaCiQYCRAWKRE6d0lsaScMcQRY4RQwWUgQs2H9SKaSk9FS5gjzKhIXRZzfAjqy2wpjgBUCiVSSMJ1QihxSHmKUh_5UuqVMShqAlRpNuHleHG95eI1MWmGGyfGGom2RlJaowmu1nfe7HCNP083tKbXJ0slH_8uvgBbvelwkAzuRv0TsO3pVhTTZXsK6kW-EmcqlijYuXGhDzMJxfE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+System+Identification+With+Prior+Knowledge+on+the+Region+of+Attraction&rft.jtitle=IEEE+control+systems+letters&rft.au=Khosravi%2C+Mohammad&rft.au=Smith%2C+Roy+S.&rft.date=2021-07-01&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=5&rft.issue=3&rft.spage=1091&rft.epage=1096&rft_id=info:doi/10.1109%2FLCSYS.2020.3005163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2020_3005163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon