The excitation of high-order localized waves in (3+1)-dimensional Kudryashov-Sinelshchikov equation
The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to describe the dynamic of liquid with gas bubble. First of all, classical N -soliton solutions are constructed by means of Hirota bilinear form a...
Saved in:
Published in | Physica scripta Vol. 99; no. 3; pp. 35214 - 35228 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to describe the dynamic of liquid with gas bubble. First of all, classical N -soliton solutions are constructed by means of Hirota bilinear form and symbolic calculation. What’s more, the high-order breather waves are derived through the degeneration process of the N -soliton solutions with conjugate parameter. Then, high-order lump waves are constructed by taking long wave limit technique on N -soliton solutions. Finally, the high-order mixed localized waves involving resonant Y -type solitons, high-order breather waves and high-order lump waves are obtained by utilizing some comprehensive methods. Abundant dynamical and evolutionary behaviors of these results are investigated specifically, some figures are presented to shed light on the nonlinear phenomena hidden in the high-order localized waves vividly. |
---|---|
AbstractList | The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to describe the dynamic of liquid with gas bubble. First of all, classical N -soliton solutions are constructed by means of Hirota bilinear form and symbolic calculation. What’s more, the high-order breather waves are derived through the degeneration process of the N -soliton solutions with conjugate parameter. Then, high-order lump waves are constructed by taking long wave limit technique on N -soliton solutions. Finally, the high-order mixed localized waves involving resonant Y -type solitons, high-order breather waves and high-order lump waves are obtained by utilizing some comprehensive methods. Abundant dynamical and evolutionary behaviors of these results are investigated specifically, some figures are presented to shed light on the nonlinear phenomena hidden in the high-order localized waves vividly. |
Author | Cheng, Bitao Li, Longxing Dai, Zhengde |
Author_xml | – sequence: 1 givenname: Longxing orcidid: 0000-0003-2141-4475 surname: Li fullname: Li, Longxing organization: Qujing Normal University Key Laboratory of Analytical Mathematics and Intelligent Computing for Yunnan Provincial Department of Education and School of Mathematics and Statistics, Qujing 655011, People's Republic of China – sequence: 2 givenname: Bitao orcidid: 0000-0002-9115-7278 surname: Cheng fullname: Cheng, Bitao organization: Qujing Normal University Key Laboratory of Analytical Mathematics and Intelligent Computing for Yunnan Provincial Department of Education and School of Mathematics and Statistics, Qujing 655011, People's Republic of China – sequence: 3 givenname: Zhengde surname: Dai fullname: Dai, Zhengde organization: Yunnan University School of Mathematics and Statistics, Kunming 650091, People's Republic of China |
BookMark | eNp9kM9LwzAYhoNMcE7vHnMSReOSJk2bowx_4cCD8xyyJLWZXVOTbjr_ejunHkR2-uDlfV74nn3Qq31tATgi-ILgPB8ShhPEcsGHyiRE2x3Q_416oI8xJSgXTOyB_RhnGCc84aIP9KS00L5r16rW-Rr6ApbuuUQ-GBtg5bWq3Ic18E0tbYSuhif0jJwi4-a2jh2gKni_MGGlYumX6NHVtoqlLt2LX0L7uvgaPQC7haqiPfy-A_B0fTUZ3aLxw83d6HKMNCWkRVPMDc2MYcpqnTJmikJooVMyFWn3k-JJlhWpSYSiKdVCGaxYYYhmPFU8ZxkdALzZ1cHHGGwhm-DmKqwkwXItSa6NyLURuZHUIfwP8mOiDcpV28DzDeh8I2d-EToTcVv9-J96E6UQkkpM04Qw2ZiCfgLlu4s9 |
CODEN | PHSTBO |
CitedBy_id | crossref_primary_10_1007_s12648_024_03441_8 crossref_primary_10_1016_j_rinp_2024_107724 |
Cites_doi | 10.1088/1402-4896/ab9c51 10.1016/j.aml.2022.108408 10.1088/1402-4896/acf6e7 10.1007/s11071-020-05499-5 10.1016/j.physd.2021.132990 10.1142/S0217984916502171 10.1088/0031-8949/85/02/025402 10.1109/COMST.2021.3066117 10.1016/j.chaos.2021.111480 10.1088/1674-1056/abb3f3 10.1088/1572-9494/abdaa6 10.1016/j.physleta.2010.02.067 10.1098/rspa.2011.0640 10.1016/0375-9601(77)90875-1 10.1142/S0217984921504820 10.1140/epjp/s13360-023-03801-z 10.1016/j.physleta.2015.06.061 10.1126/science.286.5444.1523 10.1016/j.jestch.2018.07.018 10.1007/s11071-019-04873-2 10.1007/s11071-022-07647-5 10.1007/s11071-018-4211-4 10.1088/2399-6528/ab833e 10.1088/1402-4896/ac098b 10.1016/j.chaos.2021.111692 10.1063/1.523550 10.1016/j.wavemoti.2019.102425 10.1007/s11071-020-05514-9 10.1007/s11071-022-08045-7 10.1063/1.524208 10.1088/1402-4896/ab7f48 10.1016/j.cnsns.2019.105027 10.1007/s11071-022-07211-1 10.1007/s11071-022-08017-x 10.1007/s11071-022-07270-4 10.1007/s11071-022-07911-8 10.1016/j.cnsns.2021.106103 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1402-4896/ad21ce |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1402-4896 |
ExternalDocumentID | 10_1088_1402_4896_ad21ce psad21ce |
GrantInformation_xml | – fundername: Scientic and Technological Innovation Team of Nonlinear Analysis and Algebra – fundername: Scientific Research Fund Project of Education – fundername: Universities of Yunnan Province grantid: 2020CXTD25 – fundername: Yunnan Fundamental Research Projects grantid: 202001BA070001-32; 202101BA070001-280; 202105AC160087; 202201AT070018; 202305AC160005 – fundername: National Natural Science Foundation of China grantid: 12261075; 12261076 funderid: https://doi.org/10.13039/501100001809 – fundername: Department of Yunnan Province grantid: 2023J1031 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT LAP MV1 N5L N9A PJBAE RIN RNS ROL RPA SJN SY9 TN5 W28 WH7 XPP ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c311t-b06d37dd4aecc544dff9c9c51b95ad2a6277f5d29a353c9ad0a4fd1c465a68473 |
IEDL.DBID | IOP |
ISSN | 0031-8949 |
IngestDate | Thu Jul 31 00:30:17 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Tue Aug 20 22:15:35 EDT 2024 Tue Jul 29 22:11:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-b06d37dd4aecc544dff9c9c51b95ad2a6277f5d29a353c9ad0a4fd1c465a68473 |
Notes | PHYSSCR-125679.R2 |
ORCID | 0000-0003-2141-4475 0000-0002-9115-7278 |
PageCount | 15 |
ParticipantIDs | iop_journals_10_1088_1402_4896_ad21ce crossref_primary_10_1088_1402_4896_ad21ce crossref_citationtrail_10_1088_1402_4896_ad21ce |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica scripta |
PublicationTitleAbbrev | PS |
PublicationTitleAlternate | Phys. Scr |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ablowitz (psad21cebib1) 1991 Cotter (psad21cebib5) 1999; 286 Yuan (psad21cebib40) 2019; 83 Zhou (psad21cebib18) 2022; 108 Mller (psad21cebib2) 2005; 8 Kumar (psad21cebib19) 2020; 95 Chen (psad21cebib13) 2022; 109 Ma (psad21cebib28) 2015; 379 Yang (psad21cebib16) 2018; 93 Tang (psad21cebib36) 2020; 34 Tan (psad21cebib21) 2019; 96 Kharif (psad21cebib3) 2009 Bi (psad21cebib7) 2021; 23 Liu (psad21cebib20) 2023; 111 Li (psad21cebib41) 2023; 111 Guo (psad21cebib30) 2021; 426 Gao (psad21cebib37) 2016; 30 Liu (psad21cebib15) 2023; 111 Li (psad21cebib38) 2023; 138 Ablowitz (psad21cebib11) 1978; 19 Ye (psad21cebib17) 2020; 92 Xia (psad21cebib42) 2023; 135 Manakov (psad21cebib10) 1977; 63 Tian (psad21cebib27) 2023; 98 Ma (psad21cebib43) 2023; 111 Kumar (psad21cebib6) 2022; 110 Feng (psad21cebib33) 2021; 96 Li (psad21cebib22) 2022; 108 Cao (psad21cebib44) 2021; 73 Zhang (psad21cebib26) 2022; 403 Kudryashov (psad21cebib32) 2012; 85 Abd Elmaboud (psad21cebib8) 2019; 22 Ohta (psad21cebib29) 2012; 468 Jin (psad21cebib34) 2020; 95 Guo (psad21cebib23) 2020; 100 Wang (psad21cebib14) 2020; 100 Ma (psad21cebib25) 2021; 35 Kuo (psad21cebib35) 2021; 152 Lou (psad21cebib24) 2020; 4 Kudryashov (psad21cebib31) 2010; 374 Guo (psad21cebib4) 2018 Yue (psad21cebib39) 2021; 30 Satsum (psad21cebib12) 1979; 20 Hirota (psad21cebib9) 2004 |
References_xml | – year: 2018 ident: psad21cebib4 – volume: 95 year: 2020 ident: psad21cebib34 article-title: Resonant solitary wave and resonant periodic wave solutions of the Kudryashov-Sinelshchikov equation publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab9c51 – volume: 135 year: 2023 ident: psad21cebib42 article-title: Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2022.108408 – volume: 98 year: 2023 ident: psad21cebib27 article-title: Generalized ∂¯ -dressing method for coupled nonlocal NLS equation publication-title: Phys. Scr. doi: 10.1088/1402-4896/acf6e7 – volume: 100 start-page: 583 year: 2020 ident: psad21cebib14 article-title: General high-order localized waves to the Bogoyavlenskii-Kadomtsev-Petviashvili equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05499-5 – volume: 426 year: 2021 ident: psad21cebib30 article-title: Higher-order rogue wave solutions to the Kadomtsev-Petviashvili 1 equation publication-title: Physica D doi: 10.1016/j.physd.2021.132990 – volume: 30 year: 2016 ident: psad21cebib37 article-title: Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov-Sinelshchikov equation for a bubbly liquid with experimental support Modern publication-title: Phys. Lett. B doi: 10.1142/S0217984916502171 – volume: 85 year: 2012 ident: psad21cebib32 article-title: Equation for the three-dimensional nonlinear waves in liquid with gas bubbles publication-title: Phys. Scr. doi: 10.1088/0031-8949/85/02/025402 – volume: 23 start-page: 1494 year: 2021 ident: psad21cebib7 article-title: A survey of molecular communication in cell biology: establishing a new hierarchy for interdisciplinary applications publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/COMST.2021.3066117 – volume: 152 year: 2021 ident: psad21cebib35 article-title: A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov-Sinelshchikov equation Chaos publication-title: Solitons and Fractals doi: 10.1016/j.chaos.2021.111480 – volume: 34 year: 2020 ident: psad21cebib36 article-title: Lumps, breathers, rogue waves and interaction solutions to a (3+1)-dimensional Kudryashov-Sinelshchikov equation Modern publication-title: Phys. Lett. B – volume: 30 year: 2021 ident: psad21cebib39 article-title: High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abb3f3 – volume: 73 year: 2021 ident: psad21cebib44 article-title: High-order breather, M-kink lump and semi-rational solutions of potential Kadomtsev-Petviashvili equation publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/abdaa6 – volume: 374 start-page: 2011 year: 2010 ident: psad21cebib31 article-title: Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.02.067 – volume: 468 start-page: 1716 year: 2012 ident: psad21cebib29 article-title: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation publication-title: Proc. R Soc. A doi: 10.1098/rspa.2011.0640 – volume: 63 start-page: 205 year: 1977 ident: psad21cebib10 article-title: Analysis on lump, Two-dimensional solitons of the Kadomtsev Petviashvili equation and their interaction publication-title: Phys. Lett. A doi: 10.1016/0375-9601(77)90875-1 – volume: 35 year: 2021 ident: psad21cebib25 article-title: D’Alembert wave and soliton molecule of the generalized Nizhnik-Novikov-Veselov equation publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984921504820 – volume: 138 start-page: 207 year: 2023 ident: psad21cebib38 article-title: The generation mechanism of rouge wave for (3+1)-dimensional Kudryashov-Sinelshchikov equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-023-03801-z – volume: 379 start-page: 1975 year: 2015 ident: psad21cebib28 article-title: Lump solutions to the Kadomtsev-Petviashvili equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.06.061 – volume: 286 start-page: 1523 year: 1999 ident: psad21cebib5 article-title: Nonlinear optics for high-speed digital information processing publication-title: Science doi: 10.1126/science.286.5444.1523 – volume: 22 start-page: 237 year: 2019 ident: psad21cebib8 article-title: Electromagnetic flow for two-layer immiscible fluids publication-title: Eng. Sci. Technol. doi: 10.1016/j.jestch.2018.07.018 – volume: 96 start-page: 1605 year: 2019 ident: psad21cebib21 article-title: Dynamics of multi-breathers,N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04873-2 – volume: 110 start-page: 693 year: 2022 ident: psad21cebib6 article-title: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07647-5 – volume: 93 start-page: 585 year: 2018 ident: psad21cebib16 article-title: Higher-order rogue wave solutions of a general coupled nonlinear Fokas-Lenells system publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4211-4 – year: 2004 ident: psad21cebib9 – volume: 4 year: 2020 ident: psad21cebib24 article-title: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/ab833e – volume: 96 year: 2021 ident: psad21cebib33 article-title: Resonant multi-soliton and multiple rogue wave solutions of (3+1)-dimensional Kudryashov-Sinelshchikov equation publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac098b – volume: 403 year: 2022 ident: psad21cebib26 article-title: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111692 – volume: 19 start-page: 2180 year: 1978 ident: psad21cebib11 article-title: Solitons and rational solutions of nonlinear evolution equations publication-title: J. Math. Phys. doi: 10.1063/1.523550 – volume: 92 year: 2020 ident: psad21cebib17 article-title: Vector rational and semi-rational rogue wave solutions in the coupled complex modified Korteweg-de Vries equations publication-title: Wave Motion doi: 10.1016/j.wavemoti.2019.102425 – volume: 100 start-page: 601 year: 2020 ident: psad21cebib23 article-title: High-order lumps, high-order breathers and hybrid solutions for an extend (3+1)-dimensional Jimbo-Miwa equation in fluid dynamics publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05514-9 – volume: 111 start-page: 4645 year: 2023 ident: psad21cebib43 article-title: Novel y-type and hybrid solutions for the (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-08045-7 – volume: 8 start-page: 66 year: 2005 ident: psad21cebib2 article-title: Rogue waves publication-title: Oceanography – year: 2009 ident: psad21cebib3 – volume: 20 start-page: 1496 year: 1979 ident: psad21cebib12 article-title: Two-dimensional lumps in nonlinear dispersive system publication-title: J. Math. Phys. doi: 10.1063/1.524208 – volume: 95 year: 2020 ident: psad21cebib19 article-title: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab7f48 – volume: 83 year: 2019 ident: psad21cebib40 article-title: Degeneration of breathers in the Kadomtsev-Petviashvili I equation publication-title: Commu. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.105027 – year: 1991 ident: psad21cebib1 – volume: 108 start-page: 2417 year: 2022 ident: psad21cebib18 article-title: Painlevéanalysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07211-1 – volume: 111 start-page: 5681C92 year: 2023 ident: psad21cebib20 article-title: Pfaffian, soliton, breather and hybrid solutions for a (2+1)-dimensional combined potential Kadomtsev-Petviashvili-B-type Kadomtsev-Petviashvili equation in fluid mechanics Nonlinear Dyn publication-title: Nonlinear Dyn. – volume: 111 start-page: 3713 year: 2023 ident: psad21cebib15 article-title: Rogue-wave, rational and semi-rational solutions for a generalized (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer fluid publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-08017-x – volume: 108 start-page: 1627 year: 2022 ident: psad21cebib22 article-title: Degeneration of solitons for a (3+1)-dimensional generalized nonlinear evolution equation for shallow water waves publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07270-4 – volume: 111 start-page: 1667 year: 2023 ident: psad21cebib41 article-title: Degeneration of N-soliton solutions for a (3+1)-dimensional nonlinear model in shallow water waves publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07911-8 – volume: 109 year: 2022 ident: psad21cebib13 article-title: Lump and lump-multi-kink solutions in the (3+1)-dimensions publication-title: Commun. in Nonlinear Sci. and Numer. Simul. doi: 10.1016/j.cnsns.2021.106103 |
SSID | ssj0026269 |
Score | 2.3839312 |
Snippet | The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 35214 |
SubjectTerms | Bilinear representation hybrid wave Kudryashov-Sinelshchikov equation localized wave |
Title | The excitation of high-order localized waves in (3+1)-dimensional Kudryashov-Sinelshchikov equation |
URI | https://iopscience.iop.org/article/10.1088/1402-4896/ad21ce |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9qKfjSWqv4Vc2DQkVyd9kkuxv6JFIRxQ-ogg9CyNdyh3J7de-u6l_vZLN3aBEpfduH2dnZmWTnl83kNwhtUxu621tGhNeccO4cMdLBvMo0E144mpnwa-D0LD264sfX4noG_ZiehSkHzae_BZeRKDi6sCmIy9uwJEgIz2Xa1i6h1s-iDyyHxBlO751fTFdbgNQj9mWU5JLLZo_yLQ2vctIsPPdFijn8jG4mxsXKktvWaGha9ukv3sb_tH4BfWqgJ96Pol_QjO8voo91CaitviILIwb7B9uQduOywIHLmNTknLjOeb0n7_AfPfYV7vXxd7ZHd4kL7QEitQc-Gbn7R111yzH5Bej1rurabu-2HGP_OzKKL6Grw5-XB0ekacFALKN0SEwndSxzjmsItYBQFoW00gpqpAD7dZpkWSFcIiGyzErtOpoXjlqeCp1C4mPLaK5f9v0KwjYXJrcpdTY1XHY0KNAik0Xov24Axa2i9iQIavKqoU3Gnar3yfNcBdep4DoVXbeKdqd3DCI3xzuyOxAR1UzQ6h25rVdyg0pJqZgKtLGUq4Er1v5R0zqaTwAAxXq1DTQ3vB_5bwBghmazHqjPXTrpYA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RSAu_CPKX32gEhXy7jq2k_jAAVFWLQulElTqzTi2o1212izN7pb2pXgVHolxnF1RhCouPXDLYTIae2Y8M8n4G4AXzIbp9pZT6Y2gQjhHC-XQrzLDpZeOZUX4NPBxL905EO8P5eEK_Fjehakm7dHfwccIFBy3sG2Iy7tYEiRU5CrtGpcw67sTV7ZdlQN_doo1W_16dxsVvJkk_Xdf3u7QdqwAtZyxKS16qeOZc8Kg-BLFK0tllZWsUBI5mjTJslK6RKG03CrjekaUjlmRSpPiYc6R7ypckxxjdbgx-Gl_WeFhdRDzbc5oroRq_4v-TeoLcXAV1_pbWOvfhp-LDYndLEed2bTo2PM_sCL_ox27A7faFJu8ieLdhRU_vgfXm1ZXW98Hi55B_HfbgpOTqiQBs5k2IKSkie2jc-_IqZn7mozG5CV_xbaoC2MQIoQJGczcyZmph9WcfsYs_bge2uHoqJoT_y0ipz-AgytZ4UNYG1dj_wiIzWWR25Q5mxZC9QwyMDJTZZgzX2C2ug7dheL1YqlhHMixbvoB8lwHdemgLh3VtQ5byzcmEYPkEtpNtALdHkT1JXQbF-gmtVZKcx3gcZnQaCCP_5HTBtzY3-7rD7t7gydwM8GcL7boPYW16cnMP8OcbVo8b_yEwNerNrNfrVFK7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+excitation+of+high-order+localized+waves+in+%283%2B1%29-dimensional+Kudryashov-Sinelshchikov+equation&rft.jtitle=Physica+scripta&rft.au=Li%2C+Longxing&rft.au=Cheng%2C+Bitao&rft.au=Dai%2C+Zhengde&rft.date=2024-03-01&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=99&rft.issue=3&rft.spage=35214&rft_id=info:doi/10.1088%2F1402-4896%2Fad21ce&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1402_4896_ad21ce |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon |