The excitation of high-order localized waves in (3+1)-dimensional Kudryashov-Sinelshchikov equation

The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to describe the dynamic of liquid with gas bubble. First of all, classical N -soliton solutions are constructed by means of Hirota bilinear form a...

Full description

Saved in:
Bibliographic Details
Published inPhysica scripta Vol. 99; no. 3; pp. 35214 - 35228
Main Authors Li, Longxing, Cheng, Bitao, Dai, Zhengde
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to describe the dynamic of liquid with gas bubble. First of all, classical N -soliton solutions are constructed by means of Hirota bilinear form and symbolic calculation. What’s more, the high-order breather waves are derived through the degeneration process of the N -soliton solutions with conjugate parameter. Then, high-order lump waves are constructed by taking long wave limit technique on N -soliton solutions. Finally, the high-order mixed localized waves involving resonant Y -type solitons, high-order breather waves and high-order lump waves are obtained by utilizing some comprehensive methods. Abundant dynamical and evolutionary behaviors of these results are investigated specifically, some figures are presented to shed light on the nonlinear phenomena hidden in the high-order localized waves vividly.
AbstractList The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to describe the dynamic of liquid with gas bubble. First of all, classical N -soliton solutions are constructed by means of Hirota bilinear form and symbolic calculation. What’s more, the high-order breather waves are derived through the degeneration process of the N -soliton solutions with conjugate parameter. Then, high-order lump waves are constructed by taking long wave limit technique on N -soliton solutions. Finally, the high-order mixed localized waves involving resonant Y -type solitons, high-order breather waves and high-order lump waves are obtained by utilizing some comprehensive methods. Abundant dynamical and evolutionary behaviors of these results are investigated specifically, some figures are presented to shed light on the nonlinear phenomena hidden in the high-order localized waves vividly.
Author Cheng, Bitao
Li, Longxing
Dai, Zhengde
Author_xml – sequence: 1
  givenname: Longxing
  orcidid: 0000-0003-2141-4475
  surname: Li
  fullname: Li, Longxing
  organization: Qujing Normal University Key Laboratory of Analytical Mathematics and Intelligent Computing for Yunnan Provincial Department of Education and School of Mathematics and Statistics, Qujing 655011, People's Republic of China
– sequence: 2
  givenname: Bitao
  orcidid: 0000-0002-9115-7278
  surname: Cheng
  fullname: Cheng, Bitao
  organization: Qujing Normal University Key Laboratory of Analytical Mathematics and Intelligent Computing for Yunnan Provincial Department of Education and School of Mathematics and Statistics, Qujing 655011, People's Republic of China
– sequence: 3
  givenname: Zhengde
  surname: Dai
  fullname: Dai, Zhengde
  organization: Yunnan University School of Mathematics and Statistics, Kunming 650091, People's Republic of China
BookMark eNp9kM9LwzAYhoNMcE7vHnMSReOSJk2bowx_4cCD8xyyJLWZXVOTbjr_ejunHkR2-uDlfV74nn3Qq31tATgi-ILgPB8ShhPEcsGHyiRE2x3Q_416oI8xJSgXTOyB_RhnGCc84aIP9KS00L5r16rW-Rr6ApbuuUQ-GBtg5bWq3Ic18E0tbYSuhif0jJwi4-a2jh2gKni_MGGlYumX6NHVtoqlLt2LX0L7uvgaPQC7haqiPfy-A_B0fTUZ3aLxw83d6HKMNCWkRVPMDc2MYcpqnTJmikJooVMyFWn3k-JJlhWpSYSiKdVCGaxYYYhmPFU8ZxkdALzZ1cHHGGwhm-DmKqwkwXItSa6NyLURuZHUIfwP8mOiDcpV28DzDeh8I2d-EToTcVv9-J96E6UQkkpM04Qw2ZiCfgLlu4s9
CODEN PHSTBO
CitedBy_id crossref_primary_10_1007_s12648_024_03441_8
crossref_primary_10_1016_j_rinp_2024_107724
Cites_doi 10.1088/1402-4896/ab9c51
10.1016/j.aml.2022.108408
10.1088/1402-4896/acf6e7
10.1007/s11071-020-05499-5
10.1016/j.physd.2021.132990
10.1142/S0217984916502171
10.1088/0031-8949/85/02/025402
10.1109/COMST.2021.3066117
10.1016/j.chaos.2021.111480
10.1088/1674-1056/abb3f3
10.1088/1572-9494/abdaa6
10.1016/j.physleta.2010.02.067
10.1098/rspa.2011.0640
10.1016/0375-9601(77)90875-1
10.1142/S0217984921504820
10.1140/epjp/s13360-023-03801-z
10.1016/j.physleta.2015.06.061
10.1126/science.286.5444.1523
10.1016/j.jestch.2018.07.018
10.1007/s11071-019-04873-2
10.1007/s11071-022-07647-5
10.1007/s11071-018-4211-4
10.1088/2399-6528/ab833e
10.1088/1402-4896/ac098b
10.1016/j.chaos.2021.111692
10.1063/1.523550
10.1016/j.wavemoti.2019.102425
10.1007/s11071-020-05514-9
10.1007/s11071-022-08045-7
10.1063/1.524208
10.1088/1402-4896/ab7f48
10.1016/j.cnsns.2019.105027
10.1007/s11071-022-07211-1
10.1007/s11071-022-08017-x
10.1007/s11071-022-07270-4
10.1007/s11071-022-07911-8
10.1016/j.cnsns.2021.106103
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/ad21ce
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_ad21ce
psad21ce
GrantInformation_xml – fundername: Scientic and Technological Innovation Team of Nonlinear Analysis and Algebra
– fundername: Scientific Research Fund Project of Education
– fundername: Universities of Yunnan Province
  grantid: 2020CXTD25
– fundername: Yunnan Fundamental Research Projects
  grantid: 202001BA070001-32; 202101BA070001-280; 202105AC160087; 202201AT070018; 202305AC160005
– fundername: National Natural Science Foundation of China
  grantid: 12261075; 12261076
  funderid: https://doi.org/10.13039/501100001809
– fundername: Department of Yunnan Province
  grantid: 2023J1031
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
MV1
N5L
N9A
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c311t-b06d37dd4aecc544dff9c9c51b95ad2a6277f5d29a353c9ad0a4fd1c465a68473
IEDL.DBID IOP
ISSN 0031-8949
IngestDate Thu Jul 31 00:30:17 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Tue Aug 20 22:15:35 EDT 2024
Tue Jul 29 22:11:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-b06d37dd4aecc544dff9c9c51b95ad2a6277f5d29a353c9ad0a4fd1c465a68473
Notes PHYSSCR-125679.R2
ORCID 0000-0003-2141-4475
0000-0002-9115-7278
PageCount 15
ParticipantIDs iop_journals_10_1088_1402_4896_ad21ce
crossref_primary_10_1088_1402_4896_ad21ce
crossref_citationtrail_10_1088_1402_4896_ad21ce
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ablowitz (psad21cebib1) 1991
Cotter (psad21cebib5) 1999; 286
Yuan (psad21cebib40) 2019; 83
Zhou (psad21cebib18) 2022; 108
Mller (psad21cebib2) 2005; 8
Kumar (psad21cebib19) 2020; 95
Chen (psad21cebib13) 2022; 109
Ma (psad21cebib28) 2015; 379
Yang (psad21cebib16) 2018; 93
Tang (psad21cebib36) 2020; 34
Tan (psad21cebib21) 2019; 96
Kharif (psad21cebib3) 2009
Bi (psad21cebib7) 2021; 23
Liu (psad21cebib20) 2023; 111
Li (psad21cebib41) 2023; 111
Guo (psad21cebib30) 2021; 426
Gao (psad21cebib37) 2016; 30
Liu (psad21cebib15) 2023; 111
Li (psad21cebib38) 2023; 138
Ablowitz (psad21cebib11) 1978; 19
Ye (psad21cebib17) 2020; 92
Xia (psad21cebib42) 2023; 135
Manakov (psad21cebib10) 1977; 63
Tian (psad21cebib27) 2023; 98
Ma (psad21cebib43) 2023; 111
Kumar (psad21cebib6) 2022; 110
Feng (psad21cebib33) 2021; 96
Li (psad21cebib22) 2022; 108
Cao (psad21cebib44) 2021; 73
Zhang (psad21cebib26) 2022; 403
Kudryashov (psad21cebib32) 2012; 85
Abd Elmaboud (psad21cebib8) 2019; 22
Ohta (psad21cebib29) 2012; 468
Jin (psad21cebib34) 2020; 95
Guo (psad21cebib23) 2020; 100
Wang (psad21cebib14) 2020; 100
Ma (psad21cebib25) 2021; 35
Kuo (psad21cebib35) 2021; 152
Lou (psad21cebib24) 2020; 4
Kudryashov (psad21cebib31) 2010; 374
Guo (psad21cebib4) 2018
Yue (psad21cebib39) 2021; 30
Satsum (psad21cebib12) 1979; 20
Hirota (psad21cebib9) 2004
References_xml – year: 2018
  ident: psad21cebib4
– volume: 95
  year: 2020
  ident: psad21cebib34
  article-title: Resonant solitary wave and resonant periodic wave solutions of the Kudryashov-Sinelshchikov equation
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab9c51
– volume: 135
  year: 2023
  ident: psad21cebib42
  article-title: Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2022.108408
– volume: 98
  year: 2023
  ident: psad21cebib27
  article-title: Generalized ∂¯ -dressing method for coupled nonlocal NLS equation
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/acf6e7
– volume: 100
  start-page: 583
  year: 2020
  ident: psad21cebib14
  article-title: General high-order localized waves to the Bogoyavlenskii-Kadomtsev-Petviashvili equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05499-5
– volume: 426
  year: 2021
  ident: psad21cebib30
  article-title: Higher-order rogue wave solutions to the Kadomtsev-Petviashvili 1 equation
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.132990
– volume: 30
  year: 2016
  ident: psad21cebib37
  article-title: Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov-Sinelshchikov equation for a bubbly liquid with experimental support Modern
  publication-title: Phys. Lett. B
  doi: 10.1142/S0217984916502171
– volume: 85
  year: 2012
  ident: psad21cebib32
  article-title: Equation for the three-dimensional nonlinear waves in liquid with gas bubbles
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/85/02/025402
– volume: 23
  start-page: 1494
  year: 2021
  ident: psad21cebib7
  article-title: A survey of molecular communication in cell biology: establishing a new hierarchy for interdisciplinary applications
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/COMST.2021.3066117
– volume: 152
  year: 2021
  ident: psad21cebib35
  article-title: A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov-Sinelshchikov equation Chaos
  publication-title: Solitons and Fractals
  doi: 10.1016/j.chaos.2021.111480
– volume: 34
  year: 2020
  ident: psad21cebib36
  article-title: Lumps, breathers, rogue waves and interaction solutions to a (3+1)-dimensional Kudryashov-Sinelshchikov equation Modern
  publication-title: Phys. Lett. B
– volume: 30
  year: 2021
  ident: psad21cebib39
  article-title: High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/abb3f3
– volume: 73
  year: 2021
  ident: psad21cebib44
  article-title: High-order breather, M-kink lump and semi-rational solutions of potential Kadomtsev-Petviashvili equation
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/abdaa6
– volume: 374
  start-page: 2011
  year: 2010
  ident: psad21cebib31
  article-title: Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.02.067
– volume: 468
  start-page: 1716
  year: 2012
  ident: psad21cebib29
  article-title: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation
  publication-title: Proc. R Soc. A
  doi: 10.1098/rspa.2011.0640
– volume: 63
  start-page: 205
  year: 1977
  ident: psad21cebib10
  article-title: Analysis on lump, Two-dimensional solitons of the Kadomtsev Petviashvili equation and their interaction
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(77)90875-1
– volume: 35
  year: 2021
  ident: psad21cebib25
  article-title: D’Alembert wave and soliton molecule of the generalized Nizhnik-Novikov-Veselov equation
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984921504820
– volume: 138
  start-page: 207
  year: 2023
  ident: psad21cebib38
  article-title: The generation mechanism of rouge wave for (3+1)-dimensional Kudryashov-Sinelshchikov equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-023-03801-z
– volume: 379
  start-page: 1975
  year: 2015
  ident: psad21cebib28
  article-title: Lump solutions to the Kadomtsev-Petviashvili equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.06.061
– volume: 286
  start-page: 1523
  year: 1999
  ident: psad21cebib5
  article-title: Nonlinear optics for high-speed digital information processing
  publication-title: Science
  doi: 10.1126/science.286.5444.1523
– volume: 22
  start-page: 237
  year: 2019
  ident: psad21cebib8
  article-title: Electromagnetic flow for two-layer immiscible fluids
  publication-title: Eng. Sci. Technol.
  doi: 10.1016/j.jestch.2018.07.018
– volume: 96
  start-page: 1605
  year: 2019
  ident: psad21cebib21
  article-title: Dynamics of multi-breathers,N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04873-2
– volume: 110
  start-page: 693
  year: 2022
  ident: psad21cebib6
  article-title: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07647-5
– volume: 93
  start-page: 585
  year: 2018
  ident: psad21cebib16
  article-title: Higher-order rogue wave solutions of a general coupled nonlinear Fokas-Lenells system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4211-4
– year: 2004
  ident: psad21cebib9
– volume: 4
  year: 2020
  ident: psad21cebib24
  article-title: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance
  publication-title: J. Phys. Commun.
  doi: 10.1088/2399-6528/ab833e
– volume: 96
  year: 2021
  ident: psad21cebib33
  article-title: Resonant multi-soliton and multiple rogue wave solutions of (3+1)-dimensional Kudryashov-Sinelshchikov equation
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac098b
– volume: 403
  year: 2022
  ident: psad21cebib26
  article-title: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111692
– volume: 19
  start-page: 2180
  year: 1978
  ident: psad21cebib11
  article-title: Solitons and rational solutions of nonlinear evolution equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523550
– volume: 92
  year: 2020
  ident: psad21cebib17
  article-title: Vector rational and semi-rational rogue wave solutions in the coupled complex modified Korteweg-de Vries equations
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2019.102425
– volume: 100
  start-page: 601
  year: 2020
  ident: psad21cebib23
  article-title: High-order lumps, high-order breathers and hybrid solutions for an extend (3+1)-dimensional Jimbo-Miwa equation in fluid dynamics
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05514-9
– volume: 111
  start-page: 4645
  year: 2023
  ident: psad21cebib43
  article-title: Novel y-type and hybrid solutions for the (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08045-7
– volume: 8
  start-page: 66
  year: 2005
  ident: psad21cebib2
  article-title: Rogue waves
  publication-title: Oceanography
– year: 2009
  ident: psad21cebib3
– volume: 20
  start-page: 1496
  year: 1979
  ident: psad21cebib12
  article-title: Two-dimensional lumps in nonlinear dispersive system
  publication-title: J. Math. Phys.
  doi: 10.1063/1.524208
– volume: 95
  year: 2020
  ident: psad21cebib19
  article-title: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab7f48
– volume: 83
  year: 2019
  ident: psad21cebib40
  article-title: Degeneration of breathers in the Kadomtsev-Petviashvili I equation
  publication-title: Commu. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.105027
– year: 1991
  ident: psad21cebib1
– volume: 108
  start-page: 2417
  year: 2022
  ident: psad21cebib18
  article-title: Painlevéanalysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07211-1
– volume: 111
  start-page: 5681C92
  year: 2023
  ident: psad21cebib20
  article-title: Pfaffian, soliton, breather and hybrid solutions for a (2+1)-dimensional combined potential Kadomtsev-Petviashvili-B-type Kadomtsev-Petviashvili equation in fluid mechanics Nonlinear Dyn
  publication-title: Nonlinear Dyn.
– volume: 111
  start-page: 3713
  year: 2023
  ident: psad21cebib15
  article-title: Rogue-wave, rational and semi-rational solutions for a generalized (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer fluid
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08017-x
– volume: 108
  start-page: 1627
  year: 2022
  ident: psad21cebib22
  article-title: Degeneration of solitons for a (3+1)-dimensional generalized nonlinear evolution equation for shallow water waves
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07270-4
– volume: 111
  start-page: 1667
  year: 2023
  ident: psad21cebib41
  article-title: Degeneration of N-soliton solutions for a (3+1)-dimensional nonlinear model in shallow water waves
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07911-8
– volume: 109
  year: 2022
  ident: psad21cebib13
  article-title: Lump and lump-multi-kink solutions in the (3+1)-dimensions
  publication-title: Commun. in Nonlinear Sci. and Numer. Simul.
  doi: 10.1016/j.cnsns.2021.106103
SSID ssj0026269
Score 2.3839312
Snippet The aim of this work is to explore the excitation of high-order localized waves in the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which is used to...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 35214
SubjectTerms Bilinear representation
hybrid wave
Kudryashov-Sinelshchikov equation
localized wave
Title The excitation of high-order localized waves in (3+1)-dimensional Kudryashov-Sinelshchikov equation
URI https://iopscience.iop.org/article/10.1088/1402-4896/ad21ce
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9qKfjSWqv4Vc2DQkVyd9kkuxv6JFIRxQ-ogg9CyNdyh3J7de-u6l_vZLN3aBEpfduH2dnZmWTnl83kNwhtUxu621tGhNeccO4cMdLBvMo0E144mpnwa-D0LD264sfX4noG_ZiehSkHzae_BZeRKDi6sCmIy9uwJEgIz2Xa1i6h1s-iDyyHxBlO751fTFdbgNQj9mWU5JLLZo_yLQ2vctIsPPdFijn8jG4mxsXKktvWaGha9ukv3sb_tH4BfWqgJ96Pol_QjO8voo91CaitviILIwb7B9uQduOywIHLmNTknLjOeb0n7_AfPfYV7vXxd7ZHd4kL7QEitQc-Gbn7R111yzH5Bej1rurabu-2HGP_OzKKL6Grw5-XB0ekacFALKN0SEwndSxzjmsItYBQFoW00gpqpAD7dZpkWSFcIiGyzErtOpoXjlqeCp1C4mPLaK5f9v0KwjYXJrcpdTY1XHY0KNAik0Xov24Axa2i9iQIavKqoU3Gnar3yfNcBdep4DoVXbeKdqd3DCI3xzuyOxAR1UzQ6h25rVdyg0pJqZgKtLGUq4Er1v5R0zqaTwAAxXq1DTQ3vB_5bwBghmazHqjPXTrpYA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RSAu_CPKX32gEhXy7jq2k_jAAVFWLQulElTqzTi2o1212izN7pb2pXgVHolxnF1RhCouPXDLYTIae2Y8M8n4G4AXzIbp9pZT6Y2gQjhHC-XQrzLDpZeOZUX4NPBxL905EO8P5eEK_Fjehakm7dHfwccIFBy3sG2Iy7tYEiRU5CrtGpcw67sTV7ZdlQN_doo1W_16dxsVvJkk_Xdf3u7QdqwAtZyxKS16qeOZc8Kg-BLFK0tllZWsUBI5mjTJslK6RKG03CrjekaUjlmRSpPiYc6R7ypckxxjdbgx-Gl_WeFhdRDzbc5oroRq_4v-TeoLcXAV1_pbWOvfhp-LDYndLEed2bTo2PM_sCL_ox27A7faFJu8ieLdhRU_vgfXm1ZXW98Hi55B_HfbgpOTqiQBs5k2IKSkie2jc-_IqZn7mozG5CV_xbaoC2MQIoQJGczcyZmph9WcfsYs_bge2uHoqJoT_y0ipz-AgytZ4UNYG1dj_wiIzWWR25Q5mxZC9QwyMDJTZZgzX2C2ug7dheL1YqlhHMixbvoB8lwHdemgLh3VtQ5byzcmEYPkEtpNtALdHkT1JXQbF-gmtVZKcx3gcZnQaCCP_5HTBtzY3-7rD7t7gydwM8GcL7boPYW16cnMP8OcbVo8b_yEwNerNrNfrVFK7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+excitation+of+high-order+localized+waves+in+%283%2B1%29-dimensional+Kudryashov-Sinelshchikov+equation&rft.jtitle=Physica+scripta&rft.au=Li%2C+Longxing&rft.au=Cheng%2C+Bitao&rft.au=Dai%2C+Zhengde&rft.date=2024-03-01&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=99&rft.issue=3&rft.spage=35214&rft_id=info:doi/10.1088%2F1402-4896%2Fad21ce&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1402_4896_ad21ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon