When bipartite graph learning meets anomaly detection in attributed networks: Understand abnormalities from each attribute
Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidim...
Saved in:
Published in | Neural networks Vol. 185; p. 107194 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2025.107194 |
Cover
Abstract | Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations. |
---|---|
AbstractList | Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations. Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations.Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations. |
ArticleNumber | 107194 |
Author | Peng, Zhen Lin, Qika Wang, Yunfan Shen, Chao Dong, Bo |
Author_xml | – sequence: 1 givenname: Zhen surname: Peng fullname: Peng, Zhen email: zhenpeng@xjtu.edu.cn organization: School of Computer Science and Technology, Xi’an Jiaotong University, China – sequence: 2 givenname: Yunfan orcidid: 0000-0002-1040-5293 surname: Wang fullname: Wang, Yunfan email: abe6fq@virginia.edu organization: School of Computer Science and Technology, Xi’an Jiaotong University, China – sequence: 3 givenname: Qika surname: Lin fullname: Lin, Qika email: linqika@nus.edu.sg organization: Saw Swee Hock School of Public Health, National University of Singapore, Singapore – sequence: 4 givenname: Bo surname: Dong fullname: Dong, Bo email: dong.bo@xjtu.edu.cn organization: School of Distance Education, Xi’an Jiaotong University, China – sequence: 5 givenname: Chao surname: Shen fullname: Shen, Chao email: chaoshen@xjtu.edu.cn organization: School of Cyber Science and Engineering, Xi’an Jiaotong University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39862530$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3TAQhUVISG7S_oNStOzGN3rZlrsolNAXBLJJyFKMpXGubm3pVpJb0l9fB6fNrquB4TuHmXPOyXGIAQl5w9mWM95c7rcB54BlK5iol1XLO3VENly3XSVaLY7JhulOVg3T7Iyc57xnjDVayVNyJjvdiFqyDfl9v8NAe3-AVHxB-pDgsKMjQgo-PNAJsWQKIU4wPlKHBW3xMVAfKJSSfD8XdHS54ldM3_N7ehccplwgOAp9iGmR-eIx0yHFiSLY3YvuFTkZYMz4-nlekLvPn26vvlbXN1--XX28rqzkvFTtoLRSHReISrYIrncgHDTgZNsI57StYbBaALpBwcAYbxV3NW9qx5VUKC_Iu9X3kOKPGXMxk88WxxECxjkbyetOM9XU7YK-fUbnfkJnDslPkB7N37wWQK2ATTHnhMM_hDPzVIvZm7UW81SLWWtZZB9WGS5__vSYTLYeg0Xn05KocdH_3-APUmiahQ |
Cites_doi | 10.1007/s13278-023-01058-z 10.1109/TKDE.2021.3118815 10.1016/j.neunet.2022.03.008 10.1007/s00607-023-01158-w 10.1109/TNNLS.2021.3068344 10.1016/j.neunet.2020.04.011 10.1093/bib/bbae102 10.1109/TPAMI.2022.3147886 10.14778/3579075.3579088 10.1007/s40747-023-01038-y 10.1109/TKDE.2007.1009 10.1093/bib/bbad216 10.1016/j.ins.2023.01.067 10.1016/j.patcog.2021.108119 10.1016/j.neunet.2023.01.051 10.1145/3446374 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2025.107194 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
ExternalDocumentID | 39862530 10_1016_j_neunet_2025_107194 S0893608025000735 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSH SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AAYXX CITATION AACTN CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG |
ID | FETCH-LOGICAL-c311t-7f4844912ee437eadbda2da6ad3762dd8c5afc82aedf4af001741d5165d1434e3 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Sep 05 07:41:07 EDT 2025 Tue May 06 01:31:25 EDT 2025 Tue Jul 01 04:58:46 EDT 2025 Sat Jun 07 17:02:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph anomaly detection Self-supervised learning Bipartite graph modeling |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-7f4844912ee437eadbda2da6ad3762dd8c5afc82aedf4af001741d5165d1434e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1040-5293 |
PMID | 39862530 |
PQID | 3159804657 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3159804657 pubmed_primary_39862530 crossref_primary_10_1016_j_neunet_2025_107194 elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 2025-May 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fang, Feng, Gui, Feng, Hu (b12) 2023; 16 Huang, Li, Fang, Fan, Yang (b21) 2020 Chen, You, He, Lin, Peng, Wu, Zhu (b5) 2023; 161 Roy, Shu, Li, Yang, Elshocht, Smeets, Li (b47) 2024 Kingma, Ba (b27) 2014 Yuan, Zhou, Yu, Huang, Chen, Xia (b61) 2021 Yang, Shi, Huang, Xiao (b59) 2022 Fan, Zhang, Li (b11) 2020 Wu, Wang, Li, Liu (b56) 2023; 105 Ma, Wu, Xue, Yang, Zhou, Sheng, Xiong, Akoglu (b38) 2023; 35 Li, Dani, Hu, Liu (b29) 2017 Cao, Lin, Guo, Liu, Liu, Wang (b3) 2021 Liu, Ding, Lu, Li, Zhang, Pan (b33) 2023 Hsu, Tsai, Li (b18) 2021; 35 Chen, Sun (b4) 2020 Zheng, Zhou, Wu, Pan, Shi, Guo (b64) 2018 He, Xie, Rong, Huang, Huang, Ren, Shahabi (b17) 2019 Yang, Rahardja, Fränti (b58) 2019 Skillicorn (b50) 2007 Lv, Zhang, Li, Hu (b37) 2023; 9 Sánchez, Müller, Irmler, Böhm (b48) 2014 Huang, Pei, Menkovski, Pechenizkiy (b22) 2022 Huang, Shen, Cao, Tao, Cheng (b23) 2021 Hu, Liang, Dong, Wang, Zhao, He (b19) 2024; 25 Zhang, Liu, Zhao, Yang, Zheng, Wang (b62) 2023 Jin, Liu, Zheng, Chi, Li, Pan (b25) 2021 Liu, Li, Pan, Gong, Zhou, Karypis (b34) 2021; 33 Zhao, Deng, Yu, Jiang, Wang, Jiang (b63) 2020 Vaculík, Popelínskỳ (b52) 2016 Luo, Wu, Beheshti, Yang, Zhang, Wang, Xue (b36) 2022 Peng, Luo, Li, Liu, Zheng (b43) 2018 Müller, Sánchez, Mülle, Böhm (b39) 2013 Li, Huang, Li, Du, Zou (b30) 2019 Pei, Lyu, Van Ipenburg, Pechenizkiy (b41) 2020 Zhou, Paffenroth (b65) 2017 Duan, Wang, Zhang, Zhu, Hu, Jin, Liu, Dong (b10) 2023 Berg, Kipf, Welling (b2) 2017 Jing, Yan, Ding, Park, Zhu, Liu, Tong (b26) 2024; vol. 38 You, Ma, Ding, Kochenderfer, Leskovec (b60) 2020; 33 Pei, Huang, van Ipenburg, Pechenizkiy (b40) 2021 Hamilton, Ying, Leskovec (b16) 2017; vol. 30 Ding, Li, Bhanushali, Liu (b8) 2019 Li, Wei, Liu, Liu, Jiang, Du (b32) 2024 Javaheri, Gorgin, Lee, Masdari (b24) 2023 Ding, Li, Agarwal, Liu (b7) 2021 Fernando, Denman, Ahmedt-Aristizabal, Sridharan, Laurens, Johnston, Fookes (b14) 2020; 127 Song, Wu, Jermaine, Ranka (b51) 2007; 19 Cong, Ramezani, Mahdavi (b6) 2021; 34 Li, Lei, Wu, He, Jiang, Chua (b31) 2021; 39 Rong, Huang, Xu, Huang (b46) 2019 Feng, Xu, Zuo, Chen, Lin, XiaHou (b13) 2022; 121 Peng, Luo, Huang, Li, Zheng, Sun, Huang (b42) 2022; 45 Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b53) 2018 Giamphy, Guillaume, Doucet, Sanchis (b15) 2023; 13 Xu, Huang, Zhao, Dong, Li (b57) 2022 Rassil, Chougrad, Zouaki (b45) 2022; 150 Duan, Tong, Li, Lu, Shi, Zhang (b9) 2020 Lu, Tsai, Li (b35) 2024 Kipf, Welling (b28) 2017 Qiao, Pang (b44) 2023 Wang, Zhou, Wu, Dang, Zhu, Wang (b55) 2018 Bei, Zhou, Tan, Xu, Chen, Li, Bu (b1) 2023 Wang, He, Wang, Feng, Chua (b54) 2019 Hu, Liang, Zhou, Tu, Liu, Liu (b20) 2023; 24 Saxena, Cao (b49) 2021; 54 Roy (10.1016/j.neunet.2025.107194_b47) 2024 Liu (10.1016/j.neunet.2025.107194_b34) 2021; 33 Javaheri (10.1016/j.neunet.2025.107194_b24) 2023 Fang (10.1016/j.neunet.2025.107194_b12) 2023; 16 Giamphy (10.1016/j.neunet.2025.107194_b15) 2023; 13 Ma (10.1016/j.neunet.2025.107194_b38) 2023; 35 Cao (10.1016/j.neunet.2025.107194_b3) 2021 Lu (10.1016/j.neunet.2025.107194_b35) 2024 Yang (10.1016/j.neunet.2025.107194_b58) 2019 Yang (10.1016/j.neunet.2025.107194_b59) 2022 Zhang (10.1016/j.neunet.2025.107194_b62) 2023 Ding (10.1016/j.neunet.2025.107194_b8) 2019 Berg (10.1016/j.neunet.2025.107194_b2) 2017 Wang (10.1016/j.neunet.2025.107194_b55) 2018 Jing (10.1016/j.neunet.2025.107194_b26) 2024; vol. 38 Cong (10.1016/j.neunet.2025.107194_b6) 2021; 34 Huang (10.1016/j.neunet.2025.107194_b22) 2022 Li (10.1016/j.neunet.2025.107194_b30) 2019 Zhao (10.1016/j.neunet.2025.107194_b63) 2020 Hamilton (10.1016/j.neunet.2025.107194_b16) 2017; vol. 30 Fan (10.1016/j.neunet.2025.107194_b11) 2020 Hu (10.1016/j.neunet.2025.107194_b19) 2024; 25 You (10.1016/j.neunet.2025.107194_b60) 2020; 33 Chen (10.1016/j.neunet.2025.107194_b5) 2023; 161 Veličković (10.1016/j.neunet.2025.107194_b53) 2018 Li (10.1016/j.neunet.2025.107194_b32) 2024 Xu (10.1016/j.neunet.2025.107194_b57) 2022 Jin (10.1016/j.neunet.2025.107194_b25) 2021 He (10.1016/j.neunet.2025.107194_b17) 2019 Huang (10.1016/j.neunet.2025.107194_b23) 2021 Wang (10.1016/j.neunet.2025.107194_b54) 2019 Qiao (10.1016/j.neunet.2025.107194_b44) 2023 Saxena (10.1016/j.neunet.2025.107194_b49) 2021; 54 Liu (10.1016/j.neunet.2025.107194_b33) 2023 Luo (10.1016/j.neunet.2025.107194_b36) 2022 Wu (10.1016/j.neunet.2025.107194_b56) 2023; 105 Huang (10.1016/j.neunet.2025.107194_b21) 2020 Fernando (10.1016/j.neunet.2025.107194_b14) 2020; 127 Peng (10.1016/j.neunet.2025.107194_b43) 2018 Song (10.1016/j.neunet.2025.107194_b51) 2007; 19 Pei (10.1016/j.neunet.2025.107194_b40) 2021 Li (10.1016/j.neunet.2025.107194_b29) 2017 Yuan (10.1016/j.neunet.2025.107194_b61) 2021 Ding (10.1016/j.neunet.2025.107194_b7) 2021 Sánchez (10.1016/j.neunet.2025.107194_b48) 2014 Rassil (10.1016/j.neunet.2025.107194_b45) 2022; 150 Zheng (10.1016/j.neunet.2025.107194_b64) 2018 Chen (10.1016/j.neunet.2025.107194_b4) 2020 Duan (10.1016/j.neunet.2025.107194_b10) 2023 Skillicorn (10.1016/j.neunet.2025.107194_b50) 2007 Bei (10.1016/j.neunet.2025.107194_b1) 2023 Lv (10.1016/j.neunet.2025.107194_b37) 2023; 9 Müller (10.1016/j.neunet.2025.107194_b39) 2013 Zhou (10.1016/j.neunet.2025.107194_b65) 2017 Kipf (10.1016/j.neunet.2025.107194_b28) 2017 Peng (10.1016/j.neunet.2025.107194_b42) 2022; 45 Duan (10.1016/j.neunet.2025.107194_b9) 2020 Kingma (10.1016/j.neunet.2025.107194_b27) 2014 Li (10.1016/j.neunet.2025.107194_b31) 2021; 39 Hu (10.1016/j.neunet.2025.107194_b20) 2023; 24 Vaculík (10.1016/j.neunet.2025.107194_b52) 2016 Pei (10.1016/j.neunet.2025.107194_b41) 2020 Rong (10.1016/j.neunet.2025.107194_b46) 2019 Hsu (10.1016/j.neunet.2025.107194_b18) 2021; 35 Feng (10.1016/j.neunet.2025.107194_b13) 2022; 121 |
References_xml | – year: 2019 ident: b17 article-title: Cascade-bgnn: Toward efficient self-supervised representation learning on large-scale bipartite graphs – start-page: 444 year: 2022 end-page: 457 ident: b57 article-title: Contrastive attributed network anomaly detection with data augmentation publication-title: PAKDD – start-page: 3122 year: 2021 end-page: 3126 ident: b25 article-title: Anemone: Graph anomaly detection with multi-scale contrastive learning publication-title: CIKM – start-page: 1 year: 2021 end-page: 2 ident: b40 article-title: Resgcn: attention-based deep residual modeling for anomaly detection on attributed networks publication-title: DSAA – volume: 35 start-page: 469 year: 2021 end-page: 481 ident: b18 article-title: Fingat: Financial graph attention networks for recommending top- publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 2233 year: 2019 end-page: 2236 ident: b30 article-title: Specae: Spectral autoencoder for anomaly detection in attributed networks publication-title: CIKM – year: 2017 ident: b2 article-title: Graph convolutional matrix completion – start-page: 2691 year: 2021 end-page: 2700 ident: b61 article-title: Higher-order structure based anomaly detection on attributed networks publication-title: IEEE big data – start-page: 1 year: 2014 end-page: 12 ident: b48 article-title: Local context selection for outlier ranking in graphs with multiple numeric node attributes publication-title: SSDBM – volume: 121 year: 2022 ident: b13 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recognition – start-page: 3513 year: 2018 end-page: 3519 ident: b43 article-title: ANOMALOUS: A joint modeling approach for anomaly detection on attributed networks publication-title: IJCAI – volume: 35 start-page: 12012 year: 2023 end-page: 12038 ident: b38 article-title: A comprehensive survey on graph anomaly detection with deep learning publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 576 year: 2024 end-page: 585 ident: b47 article-title: Gad-nr: Graph anomaly detection via neighborhood reconstruction publication-title: WSDM – start-page: 2152 year: 2017 end-page: 2158 ident: b29 article-title: Radar: Residual analysis for anomaly detection in attributed networks publication-title: IJCAI – volume: 25 start-page: bbae102 year: 2024 ident: b19 article-title: Effective multi-modal clustering method via skip aggregation network for parallel scRNA-seq and scATAC-seq data publication-title: Briefings in Bioinformatics – start-page: 1 year: 2020 end-page: 8 ident: b41 article-title: Subgraph anomaly detection in financial transaction networks publication-title: ICAIF – volume: 19 start-page: 631 year: 2007 end-page: 645 ident: b51 article-title: Conditional anomaly detection publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1 year: 2018 end-page: 8 ident: b64 article-title: Fraudne: a joint embedding approach for fraud detection publication-title: IJCNN – volume: vol. 38 start-page: 12976 year: 2024 end-page: 12984 ident: b26 article-title: Sterling: Synergistic representation learning on bipartite graphs publication-title: AAAI – volume: 45 start-page: 722 year: 2022 end-page: 737 ident: b42 article-title: Learning representations by graphical mutual information estimation and maximization publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 740 year: 2021 end-page: 749 ident: b23 article-title: Signed bipartite graph neural networks publication-title: CIKM – start-page: 216 year: 2013 end-page: 222 ident: b39 article-title: Ranking outlier nodes in subspaces of attributed graphs publication-title: ICDEW – volume: vol. 30 start-page: 1025 year: 2017 end-page: 1035 ident: b16 article-title: Inductive representation learning on large graphs publication-title: NeurIPS – year: 2023 ident: b24 article-title: Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives publication-title: Information Sciences – volume: 13 start-page: 54 year: 2023 ident: b15 article-title: A survey on bipartite graphs embedding publication-title: Social Network Analysis and Mining – volume: 105 start-page: 1647 year: 2023 end-page: 1671 ident: b56 article-title: Signed directed attention network publication-title: Computing – volume: 39 start-page: 1 year: 2021 end-page: 29 ident: b31 article-title: Seamlessly unifying attributes and items: Conversational recommendation for cold-start users publication-title: ACM Transactions on Information Systems – start-page: 8975 year: 2023 end-page: 8987 ident: b33 article-title: Towards self-interpretable graph-level anomaly detection publication-title: NeurIPS – start-page: 1873 year: 2020 end-page: 1882 ident: b63 article-title: Error-bounded graph anomaly loss for gnns publication-title: CIKM – start-page: 834 year: 2024 end-page: 837 ident: b35 article-title: Burstiness-aware bipartite graph neural networks for fraudulent user detection on rating platforms publication-title: WWW – volume: 33 start-page: 19075 year: 2020 end-page: 19087 ident: b60 article-title: Handling missing data with graph representation learning publication-title: NeurIPS – start-page: 635 year: 2021 end-page: 643 ident: b3 article-title: Bipartite graph embedding via mutual information maximization publication-title: WSDM – year: 2014 ident: b27 article-title: Adam: A method for stochastic optimization – volume: 150 start-page: 149 year: 2022 end-page: 166 ident: b45 article-title: Augmented graph neural network with hierarchical global-based residual connections publication-title: Neural Networks – start-page: 657 year: 2022 end-page: 665 ident: b36 article-title: Comga: Community-aware attributed graph anomaly detection publication-title: WSDM – start-page: 567 year: 2018 end-page: 576 ident: b55 article-title: Deep structure learning for fraud detection publication-title: ICDM – start-page: 966 year: 2020 end-page: 971 ident: b4 article-title: Anomaly detection on dynamic bipartite graph with burstiness publication-title: ICDM – start-page: 7459 year: 2023 end-page: 7467 ident: b10 article-title: Graph anomaly detection via multi-scale contrastive learning networks with augmented view publication-title: AAAI – start-page: 209 year: 2007 end-page: 216 ident: b50 article-title: Detecting anomalies in graphs publication-title: ISI – volume: 33 start-page: 2378 year: 2021 end-page: 2392 ident: b34 article-title: Anomaly detection on attributed networks via contrastive self-supervised learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2018 ident: b53 article-title: Graph attention networks publication-title: ICLR – start-page: 665 year: 2017 end-page: 674 ident: b65 article-title: Anomaly detection with robust deep autoencoders publication-title: KDD – year: 2017 ident: b28 article-title: Semi-supervised classification with graph convolutional networks publication-title: ICLR – start-page: 594 year: 2019 end-page: 602 ident: b8 article-title: Deep anomaly detection on attributed networks publication-title: SDM – start-page: 49490 year: 2023 end-page: 49512 ident: b44 article-title: Truncated affinity maximization: one-class homophily modeling for graph anomaly detection publication-title: NeurIPS – start-page: 1288 year: 2021 end-page: 1294 ident: b7 article-title: Inductive anomaly detection on attributed networks publication-title: IJCAI – volume: 9 start-page: 5851 year: 2023 end-page: 5863 ident: b37 article-title: Construction and analysis of multi-relationship bipartite network model publication-title: Complex & Intelligent Systems – volume: 34 start-page: 9936 year: 2021 end-page: 9949 ident: b6 article-title: On provable benefits of depth in training graph convolutional networks publication-title: NeurIPS – start-page: 149 year: 2020 end-page: 158 ident: b21 article-title: Biane: Bipartite attributed network embedding publication-title: SIGIR – start-page: 1629 year: 2023 end-page: 1638 ident: b62 article-title: Contrastive learning for signed bipartite graphs publication-title: SIGIR – start-page: 1649 year: 2024 end-page: 1658 ident: b32 article-title: Intent distribution based bipartite graph representation learning publication-title: SIGIR – start-page: 5685 year: 2020 end-page: 5689 ident: b11 article-title: Anomalydae: Dual autoencoder for anomaly detection on attributed networks publication-title: ICASSP – start-page: 11 year: 2023 end-page: 20 ident: b1 article-title: Reinforcement neighborhood selection for unsupervised graph anomaly detection publication-title: ICDM – year: 2019 ident: b46 article-title: DropEdge: Towards deep graph convolutional networks on node classification publication-title: ICLR – volume: 127 start-page: 67 year: 2020 end-page: 81 ident: b14 article-title: Neural memory plasticity for medical anomaly detection publication-title: Neural Networks – start-page: 308 year: 2016 end-page: 319 ident: b52 article-title: DGRMiner: Anomaly detection and explanation in dynamic graphs publication-title: IDA – start-page: 165 year: 2019 end-page: 174 ident: b54 article-title: Neural graph collaborative filtering publication-title: SIGIR – start-page: 1002 year: 2020 end-page: 1007 ident: b9 article-title: Aane: Anomaly aware network embedding for anomalous link detection publication-title: ICDM – volume: 54 start-page: 1 year: 2021 end-page: 42 ident: b49 article-title: Generative adversarial networks (GANs) challenges, solutions, and future directions publication-title: CSUR – volume: 24 start-page: bbad216 year: 2023 ident: b20 article-title: scDFC: A deep fusion clustering method for single-cell RNA-seq data publication-title: Briefings in Bioinformatics – volume: 161 start-page: 505 year: 2023 end-page: 514 ident: b5 article-title: SP-GNN: Learning structure and position information from graphs publication-title: Neural Networks – volume: 16 start-page: 1154 year: 2023 end-page: 1167 ident: b12 article-title: Anonymous edge representation for inductive anomaly detection in dynamic bipartite graph publication-title: Proceedings of the VLDB Endowment – start-page: 1 year: 2019 end-page: 6 ident: b58 article-title: Outlier detection: how to threshold outlier scores? publication-title: AIIPCC – start-page: 225 year: 2022 end-page: 241 ident: b22 article-title: Hop-count based self-supervised anomaly detection on attributed networks publication-title: ECML pKDD – start-page: 1977 year: 2022 end-page: 1991 ident: b59 article-title: Scalable and effective bipartite network embedding publication-title: SIGMOD – volume: 33 start-page: 19075 year: 2020 ident: 10.1016/j.neunet.2025.107194_b60 article-title: Handling missing data with graph representation learning publication-title: NeurIPS – volume: 13 start-page: 54 issue: 1 year: 2023 ident: 10.1016/j.neunet.2025.107194_b15 article-title: A survey on bipartite graphs embedding publication-title: Social Network Analysis and Mining doi: 10.1007/s13278-023-01058-z – volume: 35 start-page: 12012 issue: 12 year: 2023 ident: 10.1016/j.neunet.2025.107194_b38 article-title: A comprehensive survey on graph anomaly detection with deep learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2021.3118815 – start-page: 576 year: 2024 ident: 10.1016/j.neunet.2025.107194_b47 article-title: Gad-nr: Graph anomaly detection via neighborhood reconstruction – start-page: 225 year: 2022 ident: 10.1016/j.neunet.2025.107194_b22 article-title: Hop-count based self-supervised anomaly detection on attributed networks – year: 2017 ident: 10.1016/j.neunet.2025.107194_b2 – start-page: 7459 year: 2023 ident: 10.1016/j.neunet.2025.107194_b10 article-title: Graph anomaly detection via multi-scale contrastive learning networks with augmented view – volume: vol. 38 start-page: 12976 year: 2024 ident: 10.1016/j.neunet.2025.107194_b26 article-title: Sterling: Synergistic representation learning on bipartite graphs – start-page: 2233 year: 2019 ident: 10.1016/j.neunet.2025.107194_b30 article-title: Specae: Spectral autoencoder for anomaly detection in attributed networks – volume: 150 start-page: 149 year: 2022 ident: 10.1016/j.neunet.2025.107194_b45 article-title: Augmented graph neural network with hierarchical global-based residual connections publication-title: Neural Networks doi: 10.1016/j.neunet.2022.03.008 – start-page: 308 year: 2016 ident: 10.1016/j.neunet.2025.107194_b52 article-title: DGRMiner: Anomaly detection and explanation in dynamic graphs – start-page: 834 year: 2024 ident: 10.1016/j.neunet.2025.107194_b35 article-title: Burstiness-aware bipartite graph neural networks for fraudulent user detection on rating platforms – year: 2019 ident: 10.1016/j.neunet.2025.107194_b46 article-title: DropEdge: Towards deep graph convolutional networks on node classification – volume: 105 start-page: 1647 issue: 8 year: 2023 ident: 10.1016/j.neunet.2025.107194_b56 article-title: Signed directed attention network publication-title: Computing doi: 10.1007/s00607-023-01158-w – volume: vol. 30 start-page: 1025 year: 2017 ident: 10.1016/j.neunet.2025.107194_b16 article-title: Inductive representation learning on large graphs – start-page: 2691 year: 2021 ident: 10.1016/j.neunet.2025.107194_b61 article-title: Higher-order structure based anomaly detection on attributed networks – year: 2018 ident: 10.1016/j.neunet.2025.107194_b53 article-title: Graph attention networks – volume: 33 start-page: 2378 issue: 6 year: 2021 ident: 10.1016/j.neunet.2025.107194_b34 article-title: Anomaly detection on attributed networks via contrastive self-supervised learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3068344 – start-page: 1629 year: 2023 ident: 10.1016/j.neunet.2025.107194_b62 article-title: Contrastive learning for signed bipartite graphs – start-page: 149 year: 2020 ident: 10.1016/j.neunet.2025.107194_b21 article-title: Biane: Bipartite attributed network embedding – volume: 127 start-page: 67 year: 2020 ident: 10.1016/j.neunet.2025.107194_b14 article-title: Neural memory plasticity for medical anomaly detection publication-title: Neural Networks doi: 10.1016/j.neunet.2020.04.011 – volume: 25 start-page: bbae102 issue: 2 year: 2024 ident: 10.1016/j.neunet.2025.107194_b19 article-title: Effective multi-modal clustering method via skip aggregation network for parallel scRNA-seq and scATAC-seq data publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbae102 – start-page: 657 year: 2022 ident: 10.1016/j.neunet.2025.107194_b36 article-title: Comga: Community-aware attributed graph anomaly detection – start-page: 11 year: 2023 ident: 10.1016/j.neunet.2025.107194_b1 article-title: Reinforcement neighborhood selection for unsupervised graph anomaly detection – start-page: 1 year: 2014 ident: 10.1016/j.neunet.2025.107194_b48 article-title: Local context selection for outlier ranking in graphs with multiple numeric node attributes – year: 2017 ident: 10.1016/j.neunet.2025.107194_b28 article-title: Semi-supervised classification with graph convolutional networks – volume: 45 start-page: 722 issue: 1 year: 2022 ident: 10.1016/j.neunet.2025.107194_b42 article-title: Learning representations by graphical mutual information estimation and maximization publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2022.3147886 – start-page: 1977 year: 2022 ident: 10.1016/j.neunet.2025.107194_b59 article-title: Scalable and effective bipartite network embedding – start-page: 665 year: 2017 ident: 10.1016/j.neunet.2025.107194_b65 article-title: Anomaly detection with robust deep autoencoders – volume: 16 start-page: 1154 issue: 5 year: 2023 ident: 10.1016/j.neunet.2025.107194_b12 article-title: Anonymous edge representation for inductive anomaly detection in dynamic bipartite graph publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3579075.3579088 – volume: 9 start-page: 5851 issue: 5 year: 2023 ident: 10.1016/j.neunet.2025.107194_b37 article-title: Construction and analysis of multi-relationship bipartite network model publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-023-01038-y – start-page: 1 year: 2021 ident: 10.1016/j.neunet.2025.107194_b40 article-title: Resgcn: attention-based deep residual modeling for anomaly detection on attributed networks – volume: 19 start-page: 631 issue: 5 year: 2007 ident: 10.1016/j.neunet.2025.107194_b51 article-title: Conditional anomaly detection publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.1009 – start-page: 444 year: 2022 ident: 10.1016/j.neunet.2025.107194_b57 article-title: Contrastive attributed network anomaly detection with data augmentation – start-page: 594 year: 2019 ident: 10.1016/j.neunet.2025.107194_b8 article-title: Deep anomaly detection on attributed networks – start-page: 5685 year: 2020 ident: 10.1016/j.neunet.2025.107194_b11 article-title: Anomalydae: Dual autoencoder for anomaly detection on attributed networks – start-page: 635 year: 2021 ident: 10.1016/j.neunet.2025.107194_b3 article-title: Bipartite graph embedding via mutual information maximization – start-page: 567 year: 2018 ident: 10.1016/j.neunet.2025.107194_b55 article-title: Deep structure learning for fraud detection – start-page: 966 year: 2020 ident: 10.1016/j.neunet.2025.107194_b4 article-title: Anomaly detection on dynamic bipartite graph with burstiness – year: 2019 ident: 10.1016/j.neunet.2025.107194_b17 – volume: 35 start-page: 469 issue: 1 year: 2021 ident: 10.1016/j.neunet.2025.107194_b18 article-title: Fingat: Financial graph attention networks for recommending top-k k profitable stocks publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 209 year: 2007 ident: 10.1016/j.neunet.2025.107194_b50 article-title: Detecting anomalies in graphs – volume: 34 start-page: 9936 year: 2021 ident: 10.1016/j.neunet.2025.107194_b6 article-title: On provable benefits of depth in training graph convolutional networks publication-title: NeurIPS – start-page: 165 year: 2019 ident: 10.1016/j.neunet.2025.107194_b54 article-title: Neural graph collaborative filtering – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2025.107194_b58 article-title: Outlier detection: how to threshold outlier scores? – start-page: 1 year: 2020 ident: 10.1016/j.neunet.2025.107194_b41 article-title: Subgraph anomaly detection in financial transaction networks – start-page: 216 year: 2013 ident: 10.1016/j.neunet.2025.107194_b39 article-title: Ranking outlier nodes in subspaces of attributed graphs – start-page: 2152 year: 2017 ident: 10.1016/j.neunet.2025.107194_b29 article-title: Radar: Residual analysis for anomaly detection in attributed networks – start-page: 3513 year: 2018 ident: 10.1016/j.neunet.2025.107194_b43 article-title: ANOMALOUS: A joint modeling approach for anomaly detection on attributed networks – volume: 24 start-page: bbad216 issue: 4 year: 2023 ident: 10.1016/j.neunet.2025.107194_b20 article-title: scDFC: A deep fusion clustering method for single-cell RNA-seq data publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbad216 – year: 2014 ident: 10.1016/j.neunet.2025.107194_b27 – year: 2023 ident: 10.1016/j.neunet.2025.107194_b24 article-title: Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives publication-title: Information Sciences doi: 10.1016/j.ins.2023.01.067 – volume: 121 year: 2022 ident: 10.1016/j.neunet.2025.107194_b13 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108119 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2025.107194_b64 article-title: Fraudne: a joint embedding approach for fraud detection – start-page: 1649 year: 2024 ident: 10.1016/j.neunet.2025.107194_b32 article-title: Intent distribution based bipartite graph representation learning – start-page: 1288 year: 2021 ident: 10.1016/j.neunet.2025.107194_b7 article-title: Inductive anomaly detection on attributed networks – start-page: 8975 year: 2023 ident: 10.1016/j.neunet.2025.107194_b33 article-title: Towards self-interpretable graph-level anomaly detection – volume: 161 start-page: 505 year: 2023 ident: 10.1016/j.neunet.2025.107194_b5 article-title: SP-GNN: Learning structure and position information from graphs publication-title: Neural Networks doi: 10.1016/j.neunet.2023.01.051 – start-page: 1002 year: 2020 ident: 10.1016/j.neunet.2025.107194_b9 article-title: Aane: Anomaly aware network embedding for anomalous link detection – start-page: 49490 year: 2023 ident: 10.1016/j.neunet.2025.107194_b44 article-title: Truncated affinity maximization: one-class homophily modeling for graph anomaly detection – start-page: 1873 year: 2020 ident: 10.1016/j.neunet.2025.107194_b63 article-title: Error-bounded graph anomaly loss for gnns – volume: 54 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.neunet.2025.107194_b49 article-title: Generative adversarial networks (GANs) challenges, solutions, and future directions publication-title: CSUR doi: 10.1145/3446374 – start-page: 3122 year: 2021 ident: 10.1016/j.neunet.2025.107194_b25 article-title: Anemone: Graph anomaly detection with multi-scale contrastive learning – volume: 39 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.neunet.2025.107194_b31 article-title: Seamlessly unifying attributes and items: Conversational recommendation for cold-start users publication-title: ACM Transactions on Information Systems – start-page: 740 year: 2021 ident: 10.1016/j.neunet.2025.107194_b23 article-title: Signed bipartite graph neural networks |
SSID | ssj0006843 |
Score | 2.4538379 |
Snippet | Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 107194 |
SubjectTerms | Algorithms Bipartite graph modeling Deep Learning Graph anomaly detection Humans Machine Learning Neural Networks, Computer Self-supervised learning |
Title | When bipartite graph learning meets anomaly detection in attributed networks: Understand abnormalities from each attribute |
URI | https://dx.doi.org/10.1016/j.neunet.2025.107194 https://www.ncbi.nlm.nih.gov/pubmed/39862530 https://www.proquest.com/docview/3159804657 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BuXCB_QK6yyIj7dW0ScZ2wg0hUHdXcIFK3CynnqCi4lY0PcBhfzt2nBTtAa20x1ix7HjsNy_ymxmAHyKvPGdTyBGN4liR5YVBwcuQ-FaG7CtNjaWrazka4687cbcB510sTJBVttgfMb1B67Zl0K7mYDGdDm6G3tXKECoqmvsmsQlbaVZI0YOts5-_R9drQJZ5FM_593no0EXQNTIvRytHQVSZCt-kkgLf81DvMdDGE11-gJ2WQrKzOMuPsEHuE-x25RlYe1o_w4sHWsfK6SJ8T02syU3N2jIR9-yRqF4y4-aPZvbMLNWNKMuxqWOmjnWwyDIXZeLLUzZeh8EwU7pAdWdNNlYWIlRYEGW-9fsC48uL2_MRb0st8EmWJDVXFeaIRZISYab87iqtSa2RxnoASq3NJ8JUkzw1ZCs0VfBtmFiRSGE94ULK9qDn5o4OgFmZG5RVEVLbocLSWJmQUbYoU1FKnPSBd8urFzGjhu6kZg86mkMHc-hojj6ozgb6r52hPej_o-dxZzLtD024CTGO5qulzjyJy4coherDfrTlei5Z4X_yRDb8-t_jfoPt8BRlkYfQq59W9N1Tl7o8gs2TP8lRu0FfAW7K7-Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPZRLobTA0g9cqVd3N8nYTnqrEGjbApeyEjfLWU_QIvCuutlDe-C3448E1ANC6tWxFcdjv3mR38wAfBZl4zmbQo5oFMeGLK8MCl6HxLcyZF-JNZbOzuV4gj8uxeUaHPWxMEFW2WF_wvSI1l3LsFvN4WI2G_4aeVcrQ6ioiPdNYh1eoChU0PV9uXvUecgySed8bx669_FzUeTlaOUoSCpz4ZtUVuFT_ukp_hn90Mk2vOoIJPuW5vga1sjtwFZfnIF1Z_UN_PUw61g9W4SvaYnFzNSsKxJxxW6J2iUzbn5rbv4wS22UZDk2c8y0qQoWWeaSSHz5lU0egmCYqV0gujcxFysL8SksSDIfx72FycnxxdGYd4UW-LTIsparBkvEKsuJsFB-b9XW5NZIYz385NaWU2GaaZkbsg2aJng2zKzIpLCebiEVu7Dh5o72gVlZGpRNFRLbocLaWJmRUbaqc1FLnA6A98urFymfhu6FZtc6mUMHc-hkjgGo3gb6n32hPeQ_M_JTbzLtj0y4BzGO5qulLjyFK0cohRrAXrLlw1yKyv_iiWJ08N_vPYSX44uzU336_fznO9gMT5JA8j1stL9X9MGTmLb-GDfpPXsi8LE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+bipartite+graph+learning+meets+anomaly+detection+in+attributed+networks%3A+Understand+abnormalities+from+each+attribute&rft.jtitle=Neural+networks&rft.au=Peng%2C+Zhen&rft.au=Wang%2C+Yunfan&rft.au=Lin%2C+Qika&rft.au=Dong%2C+Bo&rft.date=2025-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=185&rft.spage=107194&rft_id=info:doi/10.1016%2Fj.neunet.2025.107194&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |