When bipartite graph learning meets anomaly detection in attributed networks: Understand abnormalities from each attribute

Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidim...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 185; p. 107194
Main Authors Peng, Zhen, Wang, Yunfan, Lin, Qika, Dong, Bo, Shen, Chao
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2025.107194

Cover

Abstract Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations.
AbstractList Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations.
Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations.Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection. Specifically, we disentangle instances and attributes as two disjoint and independent node sets, then formulate the input attributed network as an intra-connected bipartite graph that involves two different relations: edges across two types of nodes described by attribute values, and links between nodes of the same type recorded in the network topology. By learning a self-supervised edge-level prediction task, named affinity inference, Eagle has good physical sense in explaining abnormal deviations from each attribute. Experiments corroborate the effectiveness of Eagle under transductive and inductive task settings. Moreover, case studies illustrate that Eagle is more user-friendly as it opens the door for humans to understand abnormalities from the perspective of different feature combinations.
ArticleNumber 107194
Author Peng, Zhen
Lin, Qika
Wang, Yunfan
Shen, Chao
Dong, Bo
Author_xml – sequence: 1
  givenname: Zhen
  surname: Peng
  fullname: Peng, Zhen
  email: zhenpeng@xjtu.edu.cn
  organization: School of Computer Science and Technology, Xi’an Jiaotong University, China
– sequence: 2
  givenname: Yunfan
  orcidid: 0000-0002-1040-5293
  surname: Wang
  fullname: Wang, Yunfan
  email: abe6fq@virginia.edu
  organization: School of Computer Science and Technology, Xi’an Jiaotong University, China
– sequence: 3
  givenname: Qika
  surname: Lin
  fullname: Lin, Qika
  email: linqika@nus.edu.sg
  organization: Saw Swee Hock School of Public Health, National University of Singapore, Singapore
– sequence: 4
  givenname: Bo
  surname: Dong
  fullname: Dong, Bo
  email: dong.bo@xjtu.edu.cn
  organization: School of Distance Education, Xi’an Jiaotong University, China
– sequence: 5
  givenname: Chao
  surname: Shen
  fullname: Shen, Chao
  email: chaoshen@xjtu.edu.cn
  organization: School of Cyber Science and Engineering, Xi’an Jiaotong University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39862530$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3TAQhUVISG7S_oNStOzGN3rZlrsolNAXBLJJyFKMpXGubm3pVpJb0l9fB6fNrquB4TuHmXPOyXGIAQl5w9mWM95c7rcB54BlK5iol1XLO3VENly3XSVaLY7JhulOVg3T7Iyc57xnjDVayVNyJjvdiFqyDfl9v8NAe3-AVHxB-pDgsKMjQgo-PNAJsWQKIU4wPlKHBW3xMVAfKJSSfD8XdHS54ldM3_N7ehccplwgOAp9iGmR-eIx0yHFiSLY3YvuFTkZYMz4-nlekLvPn26vvlbXN1--XX28rqzkvFTtoLRSHReISrYIrncgHDTgZNsI57StYbBaALpBwcAYbxV3NW9qx5VUKC_Iu9X3kOKPGXMxk88WxxECxjkbyetOM9XU7YK-fUbnfkJnDslPkB7N37wWQK2ATTHnhMM_hDPzVIvZm7UW81SLWWtZZB9WGS5__vSYTLYeg0Xn05KocdH_3-APUmiahQ
Cites_doi 10.1007/s13278-023-01058-z
10.1109/TKDE.2021.3118815
10.1016/j.neunet.2022.03.008
10.1007/s00607-023-01158-w
10.1109/TNNLS.2021.3068344
10.1016/j.neunet.2020.04.011
10.1093/bib/bbae102
10.1109/TPAMI.2022.3147886
10.14778/3579075.3579088
10.1007/s40747-023-01038-y
10.1109/TKDE.2007.1009
10.1093/bib/bbad216
10.1016/j.ins.2023.01.067
10.1016/j.patcog.2021.108119
10.1016/j.neunet.2023.01.051
10.1145/3446374
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2025.107194
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39862530
10_1016_j_neunet_2025_107194
S0893608025000735
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSH
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAYXX
CITATION
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c311t-7f4844912ee437eadbda2da6ad3762dd8c5afc82aedf4af001741d5165d1434e3
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Fri Sep 05 07:41:07 EDT 2025
Tue May 06 01:31:25 EDT 2025
Tue Jul 01 04:58:46 EDT 2025
Sat Jun 07 17:02:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph anomaly detection
Self-supervised learning
Bipartite graph modeling
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-7f4844912ee437eadbda2da6ad3762dd8c5afc82aedf4af001741d5165d1434e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1040-5293
PMID 39862530
PQID 3159804657
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3159804657
pubmed_primary_39862530
crossref_primary_10_1016_j_neunet_2025_107194
elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
2025-May
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fang, Feng, Gui, Feng, Hu (b12) 2023; 16
Huang, Li, Fang, Fan, Yang (b21) 2020
Chen, You, He, Lin, Peng, Wu, Zhu (b5) 2023; 161
Roy, Shu, Li, Yang, Elshocht, Smeets, Li (b47) 2024
Kingma, Ba (b27) 2014
Yuan, Zhou, Yu, Huang, Chen, Xia (b61) 2021
Yang, Shi, Huang, Xiao (b59) 2022
Fan, Zhang, Li (b11) 2020
Wu, Wang, Li, Liu (b56) 2023; 105
Ma, Wu, Xue, Yang, Zhou, Sheng, Xiong, Akoglu (b38) 2023; 35
Li, Dani, Hu, Liu (b29) 2017
Cao, Lin, Guo, Liu, Liu, Wang (b3) 2021
Liu, Ding, Lu, Li, Zhang, Pan (b33) 2023
Hsu, Tsai, Li (b18) 2021; 35
Chen, Sun (b4) 2020
Zheng, Zhou, Wu, Pan, Shi, Guo (b64) 2018
He, Xie, Rong, Huang, Huang, Ren, Shahabi (b17) 2019
Yang, Rahardja, Fränti (b58) 2019
Skillicorn (b50) 2007
Lv, Zhang, Li, Hu (b37) 2023; 9
Sánchez, Müller, Irmler, Böhm (b48) 2014
Huang, Pei, Menkovski, Pechenizkiy (b22) 2022
Huang, Shen, Cao, Tao, Cheng (b23) 2021
Hu, Liang, Dong, Wang, Zhao, He (b19) 2024; 25
Zhang, Liu, Zhao, Yang, Zheng, Wang (b62) 2023
Jin, Liu, Zheng, Chi, Li, Pan (b25) 2021
Liu, Li, Pan, Gong, Zhou, Karypis (b34) 2021; 33
Zhao, Deng, Yu, Jiang, Wang, Jiang (b63) 2020
Vaculík, Popelínskỳ (b52) 2016
Luo, Wu, Beheshti, Yang, Zhang, Wang, Xue (b36) 2022
Peng, Luo, Li, Liu, Zheng (b43) 2018
Müller, Sánchez, Mülle, Böhm (b39) 2013
Li, Huang, Li, Du, Zou (b30) 2019
Pei, Lyu, Van Ipenburg, Pechenizkiy (b41) 2020
Zhou, Paffenroth (b65) 2017
Duan, Wang, Zhang, Zhu, Hu, Jin, Liu, Dong (b10) 2023
Berg, Kipf, Welling (b2) 2017
Jing, Yan, Ding, Park, Zhu, Liu, Tong (b26) 2024; vol. 38
You, Ma, Ding, Kochenderfer, Leskovec (b60) 2020; 33
Pei, Huang, van Ipenburg, Pechenizkiy (b40) 2021
Hamilton, Ying, Leskovec (b16) 2017; vol. 30
Ding, Li, Bhanushali, Liu (b8) 2019
Li, Wei, Liu, Liu, Jiang, Du (b32) 2024
Javaheri, Gorgin, Lee, Masdari (b24) 2023
Ding, Li, Agarwal, Liu (b7) 2021
Fernando, Denman, Ahmedt-Aristizabal, Sridharan, Laurens, Johnston, Fookes (b14) 2020; 127
Song, Wu, Jermaine, Ranka (b51) 2007; 19
Cong, Ramezani, Mahdavi (b6) 2021; 34
Li, Lei, Wu, He, Jiang, Chua (b31) 2021; 39
Rong, Huang, Xu, Huang (b46) 2019
Feng, Xu, Zuo, Chen, Lin, XiaHou (b13) 2022; 121
Peng, Luo, Huang, Li, Zheng, Sun, Huang (b42) 2022; 45
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b53) 2018
Giamphy, Guillaume, Doucet, Sanchis (b15) 2023; 13
Xu, Huang, Zhao, Dong, Li (b57) 2022
Rassil, Chougrad, Zouaki (b45) 2022; 150
Duan, Tong, Li, Lu, Shi, Zhang (b9) 2020
Lu, Tsai, Li (b35) 2024
Kipf, Welling (b28) 2017
Qiao, Pang (b44) 2023
Wang, Zhou, Wu, Dang, Zhu, Wang (b55) 2018
Bei, Zhou, Tan, Xu, Chen, Li, Bu (b1) 2023
Wang, He, Wang, Feng, Chua (b54) 2019
Hu, Liang, Zhou, Tu, Liu, Liu (b20) 2023; 24
Saxena, Cao (b49) 2021; 54
Roy (10.1016/j.neunet.2025.107194_b47) 2024
Liu (10.1016/j.neunet.2025.107194_b34) 2021; 33
Javaheri (10.1016/j.neunet.2025.107194_b24) 2023
Fang (10.1016/j.neunet.2025.107194_b12) 2023; 16
Giamphy (10.1016/j.neunet.2025.107194_b15) 2023; 13
Ma (10.1016/j.neunet.2025.107194_b38) 2023; 35
Cao (10.1016/j.neunet.2025.107194_b3) 2021
Lu (10.1016/j.neunet.2025.107194_b35) 2024
Yang (10.1016/j.neunet.2025.107194_b58) 2019
Yang (10.1016/j.neunet.2025.107194_b59) 2022
Zhang (10.1016/j.neunet.2025.107194_b62) 2023
Ding (10.1016/j.neunet.2025.107194_b8) 2019
Berg (10.1016/j.neunet.2025.107194_b2) 2017
Wang (10.1016/j.neunet.2025.107194_b55) 2018
Jing (10.1016/j.neunet.2025.107194_b26) 2024; vol. 38
Cong (10.1016/j.neunet.2025.107194_b6) 2021; 34
Huang (10.1016/j.neunet.2025.107194_b22) 2022
Li (10.1016/j.neunet.2025.107194_b30) 2019
Zhao (10.1016/j.neunet.2025.107194_b63) 2020
Hamilton (10.1016/j.neunet.2025.107194_b16) 2017; vol. 30
Fan (10.1016/j.neunet.2025.107194_b11) 2020
Hu (10.1016/j.neunet.2025.107194_b19) 2024; 25
You (10.1016/j.neunet.2025.107194_b60) 2020; 33
Chen (10.1016/j.neunet.2025.107194_b5) 2023; 161
Veličković (10.1016/j.neunet.2025.107194_b53) 2018
Li (10.1016/j.neunet.2025.107194_b32) 2024
Xu (10.1016/j.neunet.2025.107194_b57) 2022
Jin (10.1016/j.neunet.2025.107194_b25) 2021
He (10.1016/j.neunet.2025.107194_b17) 2019
Huang (10.1016/j.neunet.2025.107194_b23) 2021
Wang (10.1016/j.neunet.2025.107194_b54) 2019
Qiao (10.1016/j.neunet.2025.107194_b44) 2023
Saxena (10.1016/j.neunet.2025.107194_b49) 2021; 54
Liu (10.1016/j.neunet.2025.107194_b33) 2023
Luo (10.1016/j.neunet.2025.107194_b36) 2022
Wu (10.1016/j.neunet.2025.107194_b56) 2023; 105
Huang (10.1016/j.neunet.2025.107194_b21) 2020
Fernando (10.1016/j.neunet.2025.107194_b14) 2020; 127
Peng (10.1016/j.neunet.2025.107194_b43) 2018
Song (10.1016/j.neunet.2025.107194_b51) 2007; 19
Pei (10.1016/j.neunet.2025.107194_b40) 2021
Li (10.1016/j.neunet.2025.107194_b29) 2017
Yuan (10.1016/j.neunet.2025.107194_b61) 2021
Ding (10.1016/j.neunet.2025.107194_b7) 2021
Sánchez (10.1016/j.neunet.2025.107194_b48) 2014
Rassil (10.1016/j.neunet.2025.107194_b45) 2022; 150
Zheng (10.1016/j.neunet.2025.107194_b64) 2018
Chen (10.1016/j.neunet.2025.107194_b4) 2020
Duan (10.1016/j.neunet.2025.107194_b10) 2023
Skillicorn (10.1016/j.neunet.2025.107194_b50) 2007
Bei (10.1016/j.neunet.2025.107194_b1) 2023
Lv (10.1016/j.neunet.2025.107194_b37) 2023; 9
Müller (10.1016/j.neunet.2025.107194_b39) 2013
Zhou (10.1016/j.neunet.2025.107194_b65) 2017
Kipf (10.1016/j.neunet.2025.107194_b28) 2017
Peng (10.1016/j.neunet.2025.107194_b42) 2022; 45
Duan (10.1016/j.neunet.2025.107194_b9) 2020
Kingma (10.1016/j.neunet.2025.107194_b27) 2014
Li (10.1016/j.neunet.2025.107194_b31) 2021; 39
Hu (10.1016/j.neunet.2025.107194_b20) 2023; 24
Vaculík (10.1016/j.neunet.2025.107194_b52) 2016
Pei (10.1016/j.neunet.2025.107194_b41) 2020
Rong (10.1016/j.neunet.2025.107194_b46) 2019
Hsu (10.1016/j.neunet.2025.107194_b18) 2021; 35
Feng (10.1016/j.neunet.2025.107194_b13) 2022; 121
References_xml – year: 2019
  ident: b17
  article-title: Cascade-bgnn: Toward efficient self-supervised representation learning on large-scale bipartite graphs
– start-page: 444
  year: 2022
  end-page: 457
  ident: b57
  article-title: Contrastive attributed network anomaly detection with data augmentation
  publication-title: PAKDD
– start-page: 3122
  year: 2021
  end-page: 3126
  ident: b25
  article-title: Anemone: Graph anomaly detection with multi-scale contrastive learning
  publication-title: CIKM
– start-page: 1
  year: 2021
  end-page: 2
  ident: b40
  article-title: Resgcn: attention-based deep residual modeling for anomaly detection on attributed networks
  publication-title: DSAA
– volume: 35
  start-page: 469
  year: 2021
  end-page: 481
  ident: b18
  article-title: Fingat: Financial graph attention networks for recommending top-
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 2233
  year: 2019
  end-page: 2236
  ident: b30
  article-title: Specae: Spectral autoencoder for anomaly detection in attributed networks
  publication-title: CIKM
– year: 2017
  ident: b2
  article-title: Graph convolutional matrix completion
– start-page: 2691
  year: 2021
  end-page: 2700
  ident: b61
  article-title: Higher-order structure based anomaly detection on attributed networks
  publication-title: IEEE big data
– start-page: 1
  year: 2014
  end-page: 12
  ident: b48
  article-title: Local context selection for outlier ranking in graphs with multiple numeric node attributes
  publication-title: SSDBM
– volume: 121
  year: 2022
  ident: b13
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recognition
– start-page: 3513
  year: 2018
  end-page: 3519
  ident: b43
  article-title: ANOMALOUS: A joint modeling approach for anomaly detection on attributed networks
  publication-title: IJCAI
– volume: 35
  start-page: 12012
  year: 2023
  end-page: 12038
  ident: b38
  article-title: A comprehensive survey on graph anomaly detection with deep learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 576
  year: 2024
  end-page: 585
  ident: b47
  article-title: Gad-nr: Graph anomaly detection via neighborhood reconstruction
  publication-title: WSDM
– start-page: 2152
  year: 2017
  end-page: 2158
  ident: b29
  article-title: Radar: Residual analysis for anomaly detection in attributed networks
  publication-title: IJCAI
– volume: 25
  start-page: bbae102
  year: 2024
  ident: b19
  article-title: Effective multi-modal clustering method via skip aggregation network for parallel scRNA-seq and scATAC-seq data
  publication-title: Briefings in Bioinformatics
– start-page: 1
  year: 2020
  end-page: 8
  ident: b41
  article-title: Subgraph anomaly detection in financial transaction networks
  publication-title: ICAIF
– volume: 19
  start-page: 631
  year: 2007
  end-page: 645
  ident: b51
  article-title: Conditional anomaly detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1
  year: 2018
  end-page: 8
  ident: b64
  article-title: Fraudne: a joint embedding approach for fraud detection
  publication-title: IJCNN
– volume: vol. 38
  start-page: 12976
  year: 2024
  end-page: 12984
  ident: b26
  article-title: Sterling: Synergistic representation learning on bipartite graphs
  publication-title: AAAI
– volume: 45
  start-page: 722
  year: 2022
  end-page: 737
  ident: b42
  article-title: Learning representations by graphical mutual information estimation and maximization
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 740
  year: 2021
  end-page: 749
  ident: b23
  article-title: Signed bipartite graph neural networks
  publication-title: CIKM
– start-page: 216
  year: 2013
  end-page: 222
  ident: b39
  article-title: Ranking outlier nodes in subspaces of attributed graphs
  publication-title: ICDEW
– volume: vol. 30
  start-page: 1025
  year: 2017
  end-page: 1035
  ident: b16
  article-title: Inductive representation learning on large graphs
  publication-title: NeurIPS
– year: 2023
  ident: b24
  article-title: Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives
  publication-title: Information Sciences
– volume: 13
  start-page: 54
  year: 2023
  ident: b15
  article-title: A survey on bipartite graphs embedding
  publication-title: Social Network Analysis and Mining
– volume: 105
  start-page: 1647
  year: 2023
  end-page: 1671
  ident: b56
  article-title: Signed directed attention network
  publication-title: Computing
– volume: 39
  start-page: 1
  year: 2021
  end-page: 29
  ident: b31
  article-title: Seamlessly unifying attributes and items: Conversational recommendation for cold-start users
  publication-title: ACM Transactions on Information Systems
– start-page: 8975
  year: 2023
  end-page: 8987
  ident: b33
  article-title: Towards self-interpretable graph-level anomaly detection
  publication-title: NeurIPS
– start-page: 1873
  year: 2020
  end-page: 1882
  ident: b63
  article-title: Error-bounded graph anomaly loss for gnns
  publication-title: CIKM
– start-page: 834
  year: 2024
  end-page: 837
  ident: b35
  article-title: Burstiness-aware bipartite graph neural networks for fraudulent user detection on rating platforms
  publication-title: WWW
– volume: 33
  start-page: 19075
  year: 2020
  end-page: 19087
  ident: b60
  article-title: Handling missing data with graph representation learning
  publication-title: NeurIPS
– start-page: 635
  year: 2021
  end-page: 643
  ident: b3
  article-title: Bipartite graph embedding via mutual information maximization
  publication-title: WSDM
– year: 2014
  ident: b27
  article-title: Adam: A method for stochastic optimization
– volume: 150
  start-page: 149
  year: 2022
  end-page: 166
  ident: b45
  article-title: Augmented graph neural network with hierarchical global-based residual connections
  publication-title: Neural Networks
– start-page: 657
  year: 2022
  end-page: 665
  ident: b36
  article-title: Comga: Community-aware attributed graph anomaly detection
  publication-title: WSDM
– start-page: 567
  year: 2018
  end-page: 576
  ident: b55
  article-title: Deep structure learning for fraud detection
  publication-title: ICDM
– start-page: 966
  year: 2020
  end-page: 971
  ident: b4
  article-title: Anomaly detection on dynamic bipartite graph with burstiness
  publication-title: ICDM
– start-page: 7459
  year: 2023
  end-page: 7467
  ident: b10
  article-title: Graph anomaly detection via multi-scale contrastive learning networks with augmented view
  publication-title: AAAI
– start-page: 209
  year: 2007
  end-page: 216
  ident: b50
  article-title: Detecting anomalies in graphs
  publication-title: ISI
– volume: 33
  start-page: 2378
  year: 2021
  end-page: 2392
  ident: b34
  article-title: Anomaly detection on attributed networks via contrastive self-supervised learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2018
  ident: b53
  article-title: Graph attention networks
  publication-title: ICLR
– start-page: 665
  year: 2017
  end-page: 674
  ident: b65
  article-title: Anomaly detection with robust deep autoencoders
  publication-title: KDD
– year: 2017
  ident: b28
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: ICLR
– start-page: 594
  year: 2019
  end-page: 602
  ident: b8
  article-title: Deep anomaly detection on attributed networks
  publication-title: SDM
– start-page: 49490
  year: 2023
  end-page: 49512
  ident: b44
  article-title: Truncated affinity maximization: one-class homophily modeling for graph anomaly detection
  publication-title: NeurIPS
– start-page: 1288
  year: 2021
  end-page: 1294
  ident: b7
  article-title: Inductive anomaly detection on attributed networks
  publication-title: IJCAI
– volume: 9
  start-page: 5851
  year: 2023
  end-page: 5863
  ident: b37
  article-title: Construction and analysis of multi-relationship bipartite network model
  publication-title: Complex & Intelligent Systems
– volume: 34
  start-page: 9936
  year: 2021
  end-page: 9949
  ident: b6
  article-title: On provable benefits of depth in training graph convolutional networks
  publication-title: NeurIPS
– start-page: 149
  year: 2020
  end-page: 158
  ident: b21
  article-title: Biane: Bipartite attributed network embedding
  publication-title: SIGIR
– start-page: 1629
  year: 2023
  end-page: 1638
  ident: b62
  article-title: Contrastive learning for signed bipartite graphs
  publication-title: SIGIR
– start-page: 1649
  year: 2024
  end-page: 1658
  ident: b32
  article-title: Intent distribution based bipartite graph representation learning
  publication-title: SIGIR
– start-page: 5685
  year: 2020
  end-page: 5689
  ident: b11
  article-title: Anomalydae: Dual autoencoder for anomaly detection on attributed networks
  publication-title: ICASSP
– start-page: 11
  year: 2023
  end-page: 20
  ident: b1
  article-title: Reinforcement neighborhood selection for unsupervised graph anomaly detection
  publication-title: ICDM
– year: 2019
  ident: b46
  article-title: DropEdge: Towards deep graph convolutional networks on node classification
  publication-title: ICLR
– volume: 127
  start-page: 67
  year: 2020
  end-page: 81
  ident: b14
  article-title: Neural memory plasticity for medical anomaly detection
  publication-title: Neural Networks
– start-page: 308
  year: 2016
  end-page: 319
  ident: b52
  article-title: DGRMiner: Anomaly detection and explanation in dynamic graphs
  publication-title: IDA
– start-page: 165
  year: 2019
  end-page: 174
  ident: b54
  article-title: Neural graph collaborative filtering
  publication-title: SIGIR
– start-page: 1002
  year: 2020
  end-page: 1007
  ident: b9
  article-title: Aane: Anomaly aware network embedding for anomalous link detection
  publication-title: ICDM
– volume: 54
  start-page: 1
  year: 2021
  end-page: 42
  ident: b49
  article-title: Generative adversarial networks (GANs) challenges, solutions, and future directions
  publication-title: CSUR
– volume: 24
  start-page: bbad216
  year: 2023
  ident: b20
  article-title: scDFC: A deep fusion clustering method for single-cell RNA-seq data
  publication-title: Briefings in Bioinformatics
– volume: 161
  start-page: 505
  year: 2023
  end-page: 514
  ident: b5
  article-title: SP-GNN: Learning structure and position information from graphs
  publication-title: Neural Networks
– volume: 16
  start-page: 1154
  year: 2023
  end-page: 1167
  ident: b12
  article-title: Anonymous edge representation for inductive anomaly detection in dynamic bipartite graph
  publication-title: Proceedings of the VLDB Endowment
– start-page: 1
  year: 2019
  end-page: 6
  ident: b58
  article-title: Outlier detection: how to threshold outlier scores?
  publication-title: AIIPCC
– start-page: 225
  year: 2022
  end-page: 241
  ident: b22
  article-title: Hop-count based self-supervised anomaly detection on attributed networks
  publication-title: ECML pKDD
– start-page: 1977
  year: 2022
  end-page: 1991
  ident: b59
  article-title: Scalable and effective bipartite network embedding
  publication-title: SIGMOD
– volume: 33
  start-page: 19075
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b60
  article-title: Handling missing data with graph representation learning
  publication-title: NeurIPS
– volume: 13
  start-page: 54
  issue: 1
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b15
  article-title: A survey on bipartite graphs embedding
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-023-01058-z
– volume: 35
  start-page: 12012
  issue: 12
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b38
  article-title: A comprehensive survey on graph anomaly detection with deep learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3118815
– start-page: 576
  year: 2024
  ident: 10.1016/j.neunet.2025.107194_b47
  article-title: Gad-nr: Graph anomaly detection via neighborhood reconstruction
– start-page: 225
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b22
  article-title: Hop-count based self-supervised anomaly detection on attributed networks
– year: 2017
  ident: 10.1016/j.neunet.2025.107194_b2
– start-page: 7459
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b10
  article-title: Graph anomaly detection via multi-scale contrastive learning networks with augmented view
– volume: vol. 38
  start-page: 12976
  year: 2024
  ident: 10.1016/j.neunet.2025.107194_b26
  article-title: Sterling: Synergistic representation learning on bipartite graphs
– start-page: 2233
  year: 2019
  ident: 10.1016/j.neunet.2025.107194_b30
  article-title: Specae: Spectral autoencoder for anomaly detection in attributed networks
– volume: 150
  start-page: 149
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b45
  article-title: Augmented graph neural network with hierarchical global-based residual connections
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.03.008
– start-page: 308
  year: 2016
  ident: 10.1016/j.neunet.2025.107194_b52
  article-title: DGRMiner: Anomaly detection and explanation in dynamic graphs
– start-page: 834
  year: 2024
  ident: 10.1016/j.neunet.2025.107194_b35
  article-title: Burstiness-aware bipartite graph neural networks for fraudulent user detection on rating platforms
– year: 2019
  ident: 10.1016/j.neunet.2025.107194_b46
  article-title: DropEdge: Towards deep graph convolutional networks on node classification
– volume: 105
  start-page: 1647
  issue: 8
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b56
  article-title: Signed directed attention network
  publication-title: Computing
  doi: 10.1007/s00607-023-01158-w
– volume: vol. 30
  start-page: 1025
  year: 2017
  ident: 10.1016/j.neunet.2025.107194_b16
  article-title: Inductive representation learning on large graphs
– start-page: 2691
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b61
  article-title: Higher-order structure based anomaly detection on attributed networks
– year: 2018
  ident: 10.1016/j.neunet.2025.107194_b53
  article-title: Graph attention networks
– volume: 33
  start-page: 2378
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b34
  article-title: Anomaly detection on attributed networks via contrastive self-supervised learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3068344
– start-page: 1629
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b62
  article-title: Contrastive learning for signed bipartite graphs
– start-page: 149
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b21
  article-title: Biane: Bipartite attributed network embedding
– volume: 127
  start-page: 67
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b14
  article-title: Neural memory plasticity for medical anomaly detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.04.011
– volume: 25
  start-page: bbae102
  issue: 2
  year: 2024
  ident: 10.1016/j.neunet.2025.107194_b19
  article-title: Effective multi-modal clustering method via skip aggregation network for parallel scRNA-seq and scATAC-seq data
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbae102
– start-page: 657
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b36
  article-title: Comga: Community-aware attributed graph anomaly detection
– start-page: 11
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b1
  article-title: Reinforcement neighborhood selection for unsupervised graph anomaly detection
– start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2025.107194_b48
  article-title: Local context selection for outlier ranking in graphs with multiple numeric node attributes
– year: 2017
  ident: 10.1016/j.neunet.2025.107194_b28
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 45
  start-page: 722
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b42
  article-title: Learning representations by graphical mutual information estimation and maximization
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2022.3147886
– start-page: 1977
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b59
  article-title: Scalable and effective bipartite network embedding
– start-page: 665
  year: 2017
  ident: 10.1016/j.neunet.2025.107194_b65
  article-title: Anomaly detection with robust deep autoencoders
– volume: 16
  start-page: 1154
  issue: 5
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b12
  article-title: Anonymous edge representation for inductive anomaly detection in dynamic bipartite graph
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3579075.3579088
– volume: 9
  start-page: 5851
  issue: 5
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b37
  article-title: Construction and analysis of multi-relationship bipartite network model
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-023-01038-y
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b40
  article-title: Resgcn: attention-based deep residual modeling for anomaly detection on attributed networks
– volume: 19
  start-page: 631
  issue: 5
  year: 2007
  ident: 10.1016/j.neunet.2025.107194_b51
  article-title: Conditional anomaly detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.1009
– start-page: 444
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b57
  article-title: Contrastive attributed network anomaly detection with data augmentation
– start-page: 594
  year: 2019
  ident: 10.1016/j.neunet.2025.107194_b8
  article-title: Deep anomaly detection on attributed networks
– start-page: 5685
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b11
  article-title: Anomalydae: Dual autoencoder for anomaly detection on attributed networks
– start-page: 635
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b3
  article-title: Bipartite graph embedding via mutual information maximization
– start-page: 567
  year: 2018
  ident: 10.1016/j.neunet.2025.107194_b55
  article-title: Deep structure learning for fraud detection
– start-page: 966
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b4
  article-title: Anomaly detection on dynamic bipartite graph with burstiness
– year: 2019
  ident: 10.1016/j.neunet.2025.107194_b17
– volume: 35
  start-page: 469
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b18
  article-title: Fingat: Financial graph attention networks for recommending top-k k profitable stocks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 209
  year: 2007
  ident: 10.1016/j.neunet.2025.107194_b50
  article-title: Detecting anomalies in graphs
– volume: 34
  start-page: 9936
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b6
  article-title: On provable benefits of depth in training graph convolutional networks
  publication-title: NeurIPS
– start-page: 165
  year: 2019
  ident: 10.1016/j.neunet.2025.107194_b54
  article-title: Neural graph collaborative filtering
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2025.107194_b58
  article-title: Outlier detection: how to threshold outlier scores?
– start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b41
  article-title: Subgraph anomaly detection in financial transaction networks
– start-page: 216
  year: 2013
  ident: 10.1016/j.neunet.2025.107194_b39
  article-title: Ranking outlier nodes in subspaces of attributed graphs
– start-page: 2152
  year: 2017
  ident: 10.1016/j.neunet.2025.107194_b29
  article-title: Radar: Residual analysis for anomaly detection in attributed networks
– start-page: 3513
  year: 2018
  ident: 10.1016/j.neunet.2025.107194_b43
  article-title: ANOMALOUS: A joint modeling approach for anomaly detection on attributed networks
– volume: 24
  start-page: bbad216
  issue: 4
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b20
  article-title: scDFC: A deep fusion clustering method for single-cell RNA-seq data
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbad216
– year: 2014
  ident: 10.1016/j.neunet.2025.107194_b27
– year: 2023
  ident: 10.1016/j.neunet.2025.107194_b24
  article-title: Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.01.067
– volume: 121
  year: 2022
  ident: 10.1016/j.neunet.2025.107194_b13
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108119
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2025.107194_b64
  article-title: Fraudne: a joint embedding approach for fraud detection
– start-page: 1649
  year: 2024
  ident: 10.1016/j.neunet.2025.107194_b32
  article-title: Intent distribution based bipartite graph representation learning
– start-page: 1288
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b7
  article-title: Inductive anomaly detection on attributed networks
– start-page: 8975
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b33
  article-title: Towards self-interpretable graph-level anomaly detection
– volume: 161
  start-page: 505
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b5
  article-title: SP-GNN: Learning structure and position information from graphs
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.01.051
– start-page: 1002
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b9
  article-title: Aane: Anomaly aware network embedding for anomalous link detection
– start-page: 49490
  year: 2023
  ident: 10.1016/j.neunet.2025.107194_b44
  article-title: Truncated affinity maximization: one-class homophily modeling for graph anomaly detection
– start-page: 1873
  year: 2020
  ident: 10.1016/j.neunet.2025.107194_b63
  article-title: Error-bounded graph anomaly loss for gnns
– volume: 54
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b49
  article-title: Generative adversarial networks (GANs) challenges, solutions, and future directions
  publication-title: CSUR
  doi: 10.1145/3446374
– start-page: 3122
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b25
  article-title: Anemone: Graph anomaly detection with multi-scale contrastive learning
– volume: 39
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b31
  article-title: Seamlessly unifying attributes and items: Conversational recommendation for cold-start users
  publication-title: ACM Transactions on Information Systems
– start-page: 740
  year: 2021
  ident: 10.1016/j.neunet.2025.107194_b23
  article-title: Signed bipartite graph neural networks
SSID ssj0006843
Score 2.4538379
Snippet Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107194
SubjectTerms Algorithms
Bipartite graph modeling
Deep Learning
Graph anomaly detection
Humans
Machine Learning
Neural Networks, Computer
Self-supervised learning
Title When bipartite graph learning meets anomaly detection in attributed networks: Understand abnormalities from each attribute
URI https://dx.doi.org/10.1016/j.neunet.2025.107194
https://www.ncbi.nlm.nih.gov/pubmed/39862530
https://www.proquest.com/docview/3159804657
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BuXCB_QK6yyIj7dW0ScZ2wg0hUHdXcIFK3CynnqCi4lY0PcBhfzt2nBTtAa20x1ix7HjsNy_ymxmAHyKvPGdTyBGN4liR5YVBwcuQ-FaG7CtNjaWrazka4687cbcB510sTJBVttgfMb1B67Zl0K7mYDGdDm6G3tXKECoqmvsmsQlbaVZI0YOts5-_R9drQJZ5FM_593no0EXQNTIvRytHQVSZCt-kkgLf81DvMdDGE11-gJ2WQrKzOMuPsEHuE-x25RlYe1o_w4sHWsfK6SJ8T02syU3N2jIR9-yRqF4y4-aPZvbMLNWNKMuxqWOmjnWwyDIXZeLLUzZeh8EwU7pAdWdNNlYWIlRYEGW-9fsC48uL2_MRb0st8EmWJDVXFeaIRZISYab87iqtSa2RxnoASq3NJ8JUkzw1ZCs0VfBtmFiRSGE94ULK9qDn5o4OgFmZG5RVEVLbocLSWJmQUbYoU1FKnPSBd8urFzGjhu6kZg86mkMHc-hojj6ozgb6r52hPej_o-dxZzLtD024CTGO5qulzjyJy4coherDfrTlei5Z4X_yRDb8-t_jfoPt8BRlkYfQq59W9N1Tl7o8gs2TP8lRu0FfAW7K7-Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPZRLobTA0g9cqVd3N8nYTnqrEGjbApeyEjfLWU_QIvCuutlDe-C3448E1ANC6tWxFcdjv3mR38wAfBZl4zmbQo5oFMeGLK8MCl6HxLcyZF-JNZbOzuV4gj8uxeUaHPWxMEFW2WF_wvSI1l3LsFvN4WI2G_4aeVcrQ6ioiPdNYh1eoChU0PV9uXvUecgySed8bx669_FzUeTlaOUoSCpz4ZtUVuFT_ukp_hn90Mk2vOoIJPuW5vga1sjtwFZfnIF1Z_UN_PUw61g9W4SvaYnFzNSsKxJxxW6J2iUzbn5rbv4wS22UZDk2c8y0qQoWWeaSSHz5lU0egmCYqV0gujcxFysL8SksSDIfx72FycnxxdGYd4UW-LTIsparBkvEKsuJsFB-b9XW5NZIYz385NaWU2GaaZkbsg2aJng2zKzIpLCebiEVu7Dh5o72gVlZGpRNFRLbocLaWJmRUbaqc1FLnA6A98urFymfhu6FZtc6mUMHc-hkjgGo3gb6n32hPeQ_M_JTbzLtj0y4BzGO5qulLjyFK0cohRrAXrLlw1yKyv_iiWJ08N_vPYSX44uzU336_fznO9gMT5JA8j1stL9X9MGTmLb-GDfpPXsi8LE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+bipartite+graph+learning+meets+anomaly+detection+in+attributed+networks%3A+Understand+abnormalities+from+each+attribute&rft.jtitle=Neural+networks&rft.au=Peng%2C+Zhen&rft.au=Wang%2C+Yunfan&rft.au=Lin%2C+Qika&rft.au=Dong%2C+Bo&rft.date=2025-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=185&rft.spage=107194&rft_id=info:doi/10.1016%2Fj.neunet.2025.107194&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon