N6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental...
Saved in:
Published in | The Science of the total environment Vol. 881; p. 163428 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
[Display omitted]
•m6A in arsenic carcinogenesis is enriched in the genes regulating ribosome biogenesis.•m6A promotes ribosome biogenesis by affecting ribosomal proteins and non-coding RNAs.•m6A transmits proliferative signals to ribosome biogenesis by activating key node AKT.•m6A also upregulates ribosome biogenesis in chromium or nickel-induced transformation.•Inhibiting m6A-upregulated ribosome biogenesis blocks environmental carcinogenesis. |
---|---|
AbstractList | Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens. Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N⁶-methyladenosine (m⁶A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m⁶A microarray assay and a series of experiments, we found for the first time that the elevated m⁶A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m⁶A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m⁶A and ribosome biogenesis in arsenic carcinogenesis. m⁶A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m⁶A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m⁶A reduces ribosome biogenesis. Targeted inhibition of m⁶A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m⁶A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens. Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens. [Display omitted] •m6A in arsenic carcinogenesis is enriched in the genes regulating ribosome biogenesis.•m6A promotes ribosome biogenesis by affecting ribosomal proteins and non-coding RNAs.•m6A transmits proliferative signals to ribosome biogenesis by activating key node AKT.•m6A also upregulates ribosome biogenesis in chromium or nickel-induced transformation.•Inhibiting m6A-upregulated ribosome biogenesis blocks environmental carcinogenesis. |
ArticleNumber | 163428 |
Author | Lemos, Bernardo Zhao, Manyu Man, Jin Zhang, Zunzhen Long, Keyan Sun, Donglei Zhang, Qian Zhao, Tianhe |
Author_xml | – sequence: 1 givenname: Tianhe surname: Zhao fullname: Zhao, Tianhe organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China – sequence: 2 givenname: Donglei surname: Sun fullname: Sun, Donglei organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China – sequence: 3 givenname: Keyan surname: Long fullname: Long, Keyan organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China – sequence: 4 givenname: Bernardo surname: Lemos fullname: Lemos, Bernardo organization: Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA – sequence: 5 givenname: Qian surname: Zhang fullname: Zhang, Qian organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China – sequence: 6 givenname: Jin surname: Man fullname: Man, Jin organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China – sequence: 7 givenname: Manyu surname: Zhao fullname: Zhao, Manyu organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China – sequence: 8 givenname: Zunzhen surname: Zhang fullname: Zhang, Zunzhen email: zhangzz@scu.edu.cn organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China |
BookMark | eNqNkD1PwzAQhi1UJErhN5CRJeXspLYzMFQVX1IFEoLZcpxLcZXYxXaR-u9JVWBggVtuuOd9T3pOych5h4RcUJhSoPxqPY3GJp_QfUwZsGJKeVEyeUTGVIoqp8D4iIwBSplXvBIn5DTGNQwjJB2T50ee95jedp1u0PloHWbbTcDVttMJYxZs7aPvMautX6HDaGNmXTY8s8G7Hl3SXWZ0MNZ938_Icau7iOdfe0Jeb29eFvf58unuYTFf5qagNOUCGdZVyWtmYGaE4dAUBQMjZqxq65Kzoq6g1MAbWRoQpjRCVtDyknPZzjgUE3J56N0E_77FmFRvo8Gu0w79NiomBw_FYET-AwVaScoYHdDrA2qCjzFgqwa7OlnvUtC2UxTUXrtaqx_taq9dHbQPefErvwm212H3j-T8kMRB2ofFsOfQGWxsQJNU4-2fHZ8fv6U9 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40473 crossref_primary_10_1016_j_heliyon_2024_e28165 crossref_primary_10_1016_j_jhazmat_2024_136243 crossref_primary_10_1016_j_jhazmat_2023_133329 crossref_primary_10_1186_s40779_024_00509_8 crossref_primary_10_1016_j_cbi_2024_111352 crossref_primary_10_1007_s40572_024_00468_1 crossref_primary_10_1016_j_ecoenv_2024_116372 crossref_primary_10_1002_ctm2_1644 |
Cites_doi | 10.1016/j.scitotenv.2011.05.008 10.1016/j.etap.2019.04.005 10.1038/s41467-019-13317-9 10.1186/s12943-019-1109-9 10.1038/nmeth.3453 10.1038/cddis.2014.496 10.1016/j.jhazmat.2022.130468 10.1371/journal.pgen.1006994 10.1186/s12943-018-0847-4 10.1371/journal.pgen.1006771 10.1038/nrc.2017.104 10.1093/nar/gkz1147 10.1038/s41467-021-22469-6 10.3390/cells9041061 10.1074/jbc.M116.715607 10.1016/j.toxlet.2017.07.215 10.1016/j.cell.2017.04.001 10.1186/s13045-018-0590-8 10.1016/j.envpol.2019.113908 10.1016/j.scitotenv.2016.06.166 10.1016/j.molcel.2018.01.019 10.3961/jpmph.14.035 10.3390/ijms19092515 10.1093/toxsci/kfr184 10.1101/gad.262766.115 10.1016/j.tiv.2019.01.010 10.1016/j.envint.2020.105593 10.1074/jbc.M115.684969 10.1124/dmd.107.019034 10.1016/j.taap.2005.04.008 10.3389/fbioe.2018.00089 10.1002/ijc.28216 10.1038/s41586-018-0538-8 10.1016/j.gene.2013.10.072 10.1016/j.envres.2019.108700 10.1007/s11373-006-9092-8 10.1007/s00432-018-2796-0 10.1002/jcp.28014 10.1111/1346-8138.13058 10.1038/s41568-020-00306-0 10.1002/jcb.26234 10.1016/j.toxlet.2018.04.018 10.1126/scisignal.2001754 10.1158/0008-5472.CAN-07-0867 10.1093/nar/gkz619 10.1016/j.envint.2021.106525 10.1038/nature24678 10.1016/j.molcel.2016.03.021 10.1093/gbe/evz172 10.1146/annurev-biochem-060614-033917 10.3390/ijms20112718 10.1098/rsob.160003 10.1016/j.trecan.2020.08.003 10.1016/j.celrep.2020.108544 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2023.163428 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2023_163428 S0048969723020478 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW WUQ XPP ZXP ZY4 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c311t-7e2eb946b2c05c7c60d3320c7529fb4623b904a06d84c07c4c7890f64668f5603 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Wed Jul 02 04:49:48 EDT 2025 Fri Jul 11 07:50:12 EDT 2025 Tue Jul 01 02:08:44 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 Sun Apr 06 06:54:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | m6A AKT1 Arsenic Ribosomal proteins Carcinogenicity Heavy metal contaminants |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-7e2eb946b2c05c7c60d3320c7529fb4623b904a06d84c07c4c7890f64668f5603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2801981221 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834230238 proquest_miscellaneous_2801981221 crossref_citationtrail_10_1016_j_scitotenv_2023_163428 crossref_primary_10_1016_j_scitotenv_2023_163428 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_163428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-10 |
PublicationDateYYYYMMDD | 2023-07-10 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Zhao, Sun, Wu, Zhang (bb0050) 2019; 56 Bursać, Prodan, Pullen, Bartek, Volarević (bb0025) 2021; 7 de la Cruz, Karbstein, Woolford (bb0085) 2015; 84 Manning, Toker (bb0180) 2017; 169 Kolachi, Kazi, Wadhwa, Afridi, Baig, Khan, Shah (bb0150) 2011; 409 Chen, Jiang, Gu, Zhang (bb0045) 2017; 278 Guerra-Moreno, Isasa, Bhanu, Waterman, Eapen, Gygi, Hanna (bb0120) 2015; 290 Pinto, Vågbø, Jakobsson, Kim, Baltissen, O'Donohue, Guzmán, Małecki, Wu, Kirpekar, Olsen, Gleizes, Vermeulen, Leidel, Slupphaug, Falnes (bb0210) 2020; 48 Rong, Zhang, Wan, Xing, Dai, Li, Cai, Xie, Song, Chen, Zhang, Yan, Zhang, Gao, Han, Qu, Ma, Tian, Lan (bb0225) 2020; 33 Zimta, Schitcu, Gurzau, Stavaru, Manda, Szedlacsek, Berindan-Neagoe (bb0305) 2019; 178 Chowdhury, Mazumder, Al-Attas, Husain (bb0075) 2016; 569–570 Cao, Li, Yin, Flavell (bb0030) 2016; 6 Hughes, Beck, Chen, Lewis, Thomas (bb0135) 2011; 123 Feng, Du, Yao, Jiang, Li, Zhang, Guo, Yu, Xia, Shi, Jia, Tong, Ju, Liu, Lou, Lemos (bb0095) 2020; 138 Zhao, Sun, Zhao, Lai, Liu, Zhang (bb0290) 2020; 259 Pelletier, Thomas, Volarević (bb0200) 2018; 18 Wang, Chai, Jia, Jia (bb0255) 2018; 17 Chang, Bhatia, Zhang, Meighan, Castranova, Shi, Chen (bb0040) 2007; 67 Barbieri, Tzelepis, Pandolfini, Shi, Millán-Zambrano, Robson, Aspris, Migliori, Bannister, Han, De Braekeleer, Ponstingl, Hendrick, Vakoc, Vassiliou, Kouzarides (bb0015) 2017; 552 Geng, Xhabija, Knuckle, Bonham, Vacratsis (bb0105) 2017; 292 Zhou, Wan, Shu, Mao, Liu, Yuan, Zhang, Hess, Brüning, Qian (bb0300) 2018; 69 Rehman, Fatima, Waheed, Akash (bb0220) 2018; 119 Dopp, von Recklinghausen, Hartmann, Stueckradt, Pollok, Rabieh, Hao, Nussler, Katier, Hirner, Rettenmeier (bb0090) 2008; 36 Noreault, Jacobs, Nichols, Trask, Wrighton, Sinclair, Evans, Sinclair (bb0190) 2005; 209 Yang, Lin, Cui (bb0265) 2014; 535 van Tran, Ernst, Hawley, Zorbas, Ulryck, Hackert, Bohnsack, Bohnsack, Jaffrey, Graille, Lafontaine (bb0240) 2019; 47 An, Chen, Liu, Zhao, Chen (bb0005) 2005; 18 Pan, Ma, Liu, Li, Shu (bb0195) 2018; 11 (bb0140) 2012 Yu, Liao, Chai (bb0270) 2006; 13 Cui, Yang, Wei, Shea, Zhong, Wang, Shah, Kibriya, Cui, Ahsan, He, He (bb0080) 2021; 12 Lin, Choe, Du, Triboulet, Gregory (bb0155) 2016; 62 Lou, Yu, Feng, Guo, Wang, Branco, Li, Lemos (bb0170) 2021; 153 Linder, Grozhik, Olarerin-George, Meydan, Mason, Jaffrey (bb0160) 2015; 12 Xu, Li, Perry, Singh, Unruh, Yu, Zakari, McDowell, Li, Gerton (bb0260) 2017; 13 Surdu, Fitzgerald, Bloom, Boscoe, Carpenter, Haase, Gurzau, Rudnai, Koppova, Févotte, Vahter, Leonardi, Goessler, Kumar, Fletcher (bb0235) 2013; 133 Chan, Hannan, Riddell, Ng, Peck, Lee, Hung, Astle, Bywater, Wall, Poortinga, Jastrzebski, Sheppard, Hemmings, Hall, Johnstone, McArthur, Hannan, Pearson (bb0035) 2011; 4 Zhang, Liu, Mi, Liang, Li, Huang (bb0280) 2014; 5 Choe, Lin, Zhang, Liu, Wang, Ramirez-Moya, Du, Kim, Tang, Sliz, Santisteban, George, Richards, Wong, Locker, Slack, Gregory (bb0070) 2018; 561 Luo, Liu, Luan, He, Li (bb0175) 2018; 19 Bi, Liu, Zhao, Yao, Wu, Liu, Wang, Wang (bb0020) 2019; 234 Zhao, Sun, Xiong, Man, Zhang, Zhao, Zhang (bb0295) 2023; 445 Zhao, Li, Sun, Zhang (bb0285) 2019; 69 Gu, Sun, Dai, Zhang (bb0115) 2018; 292 He, Li, Wu, Peng, Shu, Yin (bb0125) 2019; 18 Liu, Li, Sun, Liu (bb0165) 2018; 6 Chen, Du (bb0055) 2019; 145 Goodall, Wickramasinghe (bb0110) 2021; 21 (bb0010) 2021 Sergeeva, Sergeev, Melnikov, Prikazchikova, Dontsova, Zatsepin (bb0230) 2020; 9 Piazzi, Bavelloni, Gallo, Faenza, Blalock (bb0205) 2019; 20 Wang, Lemos (bb0250) 2017; 13 Vicuña, Fernandez, Vial, Valdebenito, Chaparro, Espinoza, Ziegler, Bustamante, Eyheramendy (bb0245) 2019; 11 Hong, Song, Chung (bb0130) 2014; 47 Mao, Dong, Liu, Guo, Ma, Shen, Qian (bb0185) 2019; 10 Cheng, Weng, Chiang, Lai (bb0060) 2016; 43 Yue, Liu, He (bb0275) 2015; 29 He (10.1016/j.scitotenv.2023.163428_bb0125) 2019; 18 Wang (10.1016/j.scitotenv.2023.163428_bb0250) 2017; 13 Hughes (10.1016/j.scitotenv.2023.163428_bb0135) 2011; 123 Sergeeva (10.1016/j.scitotenv.2023.163428_bb0230) 2020; 9 Yang (10.1016/j.scitotenv.2023.163428_bb0265) 2014; 535 Chen (10.1016/j.scitotenv.2023.163428_bb0045) 2017; 278 Liu (10.1016/j.scitotenv.2023.163428_bb0165) 2018; 6 Zhao (10.1016/j.scitotenv.2023.163428_bb0295) 2023; 445 Geng (10.1016/j.scitotenv.2023.163428_bb0105) 2017; 292 Dopp (10.1016/j.scitotenv.2023.163428_bb0090) 2008; 36 Pinto (10.1016/j.scitotenv.2023.163428_bb0210) 2020; 48 Luo (10.1016/j.scitotenv.2023.163428_bb0175) 2018; 19 Pelletier (10.1016/j.scitotenv.2023.163428_bb0200) 2018; 18 Mao (10.1016/j.scitotenv.2023.163428_bb0185) 2019; 10 Guerra-Moreno (10.1016/j.scitotenv.2023.163428_bb0120) 2015; 290 Chowdhury (10.1016/j.scitotenv.2023.163428_bb0075) 2016; 569–570 Gu (10.1016/j.scitotenv.2023.163428_bb0115) 2018; 292 Vicuña (10.1016/j.scitotenv.2023.163428_bb0245) 2019; 11 de la Cruz (10.1016/j.scitotenv.2023.163428_bb0085) 2015; 84 Zhang (10.1016/j.scitotenv.2023.163428_bb0280) 2014; 5 Lin (10.1016/j.scitotenv.2023.163428_bb0155) 2016; 62 Kolachi (10.1016/j.scitotenv.2023.163428_bb0150) 2011; 409 Yu (10.1016/j.scitotenv.2023.163428_bb0270) 2006; 13 Barbieri (10.1016/j.scitotenv.2023.163428_bb0015) 2017; 552 Rong (10.1016/j.scitotenv.2023.163428_bb0225) 2020; 33 Piazzi (10.1016/j.scitotenv.2023.163428_bb0205) 2019; 20 Cui (10.1016/j.scitotenv.2023.163428_bb0080) 2021; 12 Manning (10.1016/j.scitotenv.2023.163428_bb0180) 2017; 169 Zhao (10.1016/j.scitotenv.2023.163428_bb0290) 2020; 259 Choe (10.1016/j.scitotenv.2023.163428_bb0070) 2018; 561 Hong (10.1016/j.scitotenv.2023.163428_bb0130) 2014; 47 Chen (10.1016/j.scitotenv.2023.163428_bb0055) 2019; 145 Surdu (10.1016/j.scitotenv.2023.163428_bb0235) 2013; 133 van Tran (10.1016/j.scitotenv.2023.163428_bb0240) 2019; 47 Chang (10.1016/j.scitotenv.2023.163428_bb0040) 2007; 67 Lou (10.1016/j.scitotenv.2023.163428_bb0170) 2021; 153 Wang (10.1016/j.scitotenv.2023.163428_bb0255) 2018; 17 Yue (10.1016/j.scitotenv.2023.163428_bb0275) 2015; 29 Pan (10.1016/j.scitotenv.2023.163428_bb0195) 2018; 11 Xu (10.1016/j.scitotenv.2023.163428_bb0260) 2017; 13 Chan (10.1016/j.scitotenv.2023.163428_bb0035) 2011; 4 Bi (10.1016/j.scitotenv.2023.163428_bb0020) 2019; 234 Zhao (10.1016/j.scitotenv.2023.163428_bb0285) 2019; 69 An (10.1016/j.scitotenv.2023.163428_bb0005) 2005; 18 Linder (10.1016/j.scitotenv.2023.163428_bb0160) 2015; 12 Chen (10.1016/j.scitotenv.2023.163428_bb0050) 2019; 56 Rehman (10.1016/j.scitotenv.2023.163428_bb0220) 2018; 119 Cao (10.1016/j.scitotenv.2023.163428_bb0030) 2016; 6 Noreault (10.1016/j.scitotenv.2023.163428_bb0190) 2005; 209 Cheng (10.1016/j.scitotenv.2023.163428_bb0060) 2016; 43 Bursać (10.1016/j.scitotenv.2023.163428_bb0025) 2021; 7 Zhou (10.1016/j.scitotenv.2023.163428_bb0300) 2018; 69 Feng (10.1016/j.scitotenv.2023.163428_bb0095) 2020; 138 Goodall (10.1016/j.scitotenv.2023.163428_bb0110) 2021; 21 (10.1016/j.scitotenv.2023.163428_bb0140) 2012 Zimta (10.1016/j.scitotenv.2023.163428_bb0305) 2019; 178 |
References_xml | – volume: 11 start-page: 48 year: 2018 ident: bb0195 article-title: Multiple functions of m6A RNA methylation in cancer publication-title: J. Hematol. Oncol. – volume: 292 start-page: 539 year: 2017 end-page: 550 ident: bb0105 article-title: The atypical dual specificity phosphatase hYVH1 associates with multiple ribonucleoprotein particles publication-title: J. Biol. Chem. – year: 2021 ident: bb0010 – volume: 17 start-page: 101 year: 2018 ident: bb0255 article-title: Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword publication-title: Mol. Cancer – volume: 178 year: 2019 ident: bb0305 article-title: Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development publication-title: Environ. Res. – volume: 29 start-page: 1343 year: 2015 end-page: 1355 ident: bb0275 article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation publication-title: Genes Dev. – volume: 13 year: 2017 ident: bb0250 article-title: Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation publication-title: PLoS Genet. – volume: 18 start-page: 302 year: 2005 end-page: 306 ident: bb0005 article-title: Over-expressed genes detected by suppression subtractive hybridization in carcinoma derived from transformed 16HBE cells induced by BPDE publication-title: Biomed. Environ. Sci. – volume: 234 start-page: 7948 year: 2019 end-page: 7956 ident: bb0020 article-title: A dynamic reversible RNA N6-methyladenosine modification: current status and perspectives publication-title: J. Cell. Physiol. – volume: 278 start-page: 38 year: 2017 end-page: 47 ident: bb0045 article-title: MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells publication-title: Toxicol. Lett. – volume: 569–570 start-page: 476 year: 2016 end-page: 488 ident: bb0075 article-title: Heavy metals in drinking water: occurrences, implications, and future needs in developing countries publication-title: Sci. Total Environ. – volume: 138 year: 2020 ident: bb0095 article-title: Ribosomal DNA copy number is associated with P53 status and levels of heavy metals in gastrectomy specimens from gastric cancer patients publication-title: Environ. Int. – volume: 123 start-page: 305 year: 2011 end-page: 332 ident: bb0135 article-title: Arsenic exposure and toxicology: a historical perspective publication-title: Toxicol. Sci. – volume: 12 start-page: 767 year: 2015 end-page: 772 ident: bb0160 article-title: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome publication-title: Nat. Methods – volume: 21 start-page: 22 year: 2021 end-page: 36 ident: bb0110 article-title: RNA in cancer publication-title: Nat. Rev. Cancer – volume: 133 start-page: 2182 year: 2013 end-page: 2191 ident: bb0235 article-title: Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational european study publication-title: Int. J. Cancer – volume: 11 start-page: 2468 year: 2019 end-page: 2479 ident: bb0245 article-title: Adaptation to extreme environments in an admixed human population from the Atacama Desert publication-title: Genome Biol. Evol. – volume: 12 start-page: 2183 year: 2021 ident: bb0080 article-title: Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis publication-title: Nat. Commun. – volume: 13 start-page: 657 year: 2006 end-page: 666 ident: bb0270 article-title: Arsenic carcinogenesis in the skin publication-title: J. Biomed. Sci. – volume: 84 start-page: 93 year: 2015 end-page: 129 ident: bb0085 article-title: Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo publication-title: Annu. Rev. Biochem. – year: 2012 ident: bb0140 article-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres, and Dusts – volume: 69 start-page: 95 year: 2019 end-page: 103 ident: bb0285 article-title: Oxidative stress: one potential factor for arsenite-induced increase of N6-methyladenosine in human keratinocytes publication-title: Environ. Toxicol. Pharmacol. – volume: 67 start-page: 6146 year: 2007 end-page: 6154 ident: bb0040 article-title: Incorporation of an internal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression publication-title: Cancer Res. – volume: 4 start-page: ra56 year: 2011 ident: bb0035 article-title: AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer publication-title: Sci. Signal. – volume: 18 start-page: 176 year: 2019 ident: bb0125 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer – volume: 119 start-page: 157 year: 2018 end-page: 184 ident: bb0220 article-title: Prevalence of exposure of heavy metals and their impact on health consequences publication-title: J. Cell. Biochem. – volume: 145 start-page: 19 year: 2019 end-page: 29 ident: bb0055 article-title: Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression publication-title: J. Cancer Res. Clin. Oncol. – volume: 153 year: 2021 ident: bb0170 article-title: Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)] publication-title: Environ. Int. – volume: 6 year: 2016 ident: bb0030 article-title: Recent advances in dynamic m6A RNA modification publication-title: Open Biol. – volume: 259 year: 2020 ident: bb0290 article-title: N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation publication-title: Environ. Pollut. – volume: 209 start-page: 174 year: 2005 end-page: 182 ident: bb0190 article-title: Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms publication-title: Toxicol. Appl. Pharmacol. – volume: 20 start-page: 2718 year: 2019 ident: bb0205 article-title: Signal transduction in ribosome biogenesis: a recipe to avoid disaster publication-title: Int. J. Mol. Sci. – volume: 19 start-page: 2515 year: 2018 ident: bb0175 article-title: Aberrant regulation of mRNA m6A modification in cancer development publication-title: Int. J. Mol. Sci. – volume: 36 start-page: 971 year: 2008 end-page: 979 ident: bb0090 article-title: Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes publication-title: Drug Metab. Dispos. – volume: 33 year: 2020 ident: bb0225 article-title: Ribosome 18S m6A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth publication-title: Cell Rep. – volume: 48 start-page: 830 year: 2020 end-page: 846 ident: bb0210 article-title: The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA publication-title: Nucleic Acids Res. – volume: 7 start-page: 57 year: 2021 end-page: 76 ident: bb0025 article-title: Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer publication-title: Trends Cancer – volume: 535 start-page: 312 year: 2014 end-page: 317 ident: bb0265 article-title: Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles publication-title: Gene – volume: 47 start-page: 7719 year: 2019 end-page: 7733 ident: bb0240 article-title: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112 publication-title: Nucleic Acids Res. – volume: 62 start-page: 335 year: 2016 end-page: 345 ident: bb0155 article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol. Cell – volume: 6 start-page: 89 year: 2018 ident: bb0165 article-title: Link between m6A modification and cancers publication-title: Front. Bioeng. Biotechnol. – volume: 13 year: 2017 ident: bb0260 article-title: Ribosomal DNA copy number loss and sequence variation in cancer publication-title: PLoS Genet. – volume: 292 start-page: 1 year: 2018 end-page: 11 ident: bb0115 article-title: N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells publication-title: Toxicol. Lett. – volume: 561 start-page: 556 year: 2018 end-page: 560 ident: bb0070 article-title: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis publication-title: Nature – volume: 47 start-page: 245 year: 2014 end-page: 252 ident: bb0130 article-title: Health effects of chronic arsenic exposure publication-title: J. Prev. Med. Public Health – volume: 552 start-page: 126 year: 2017 end-page: 131 ident: bb0015 article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control publication-title: Nature – volume: 9 start-page: 1061 year: 2020 ident: bb0230 article-title: Modification of adenosine196 by Mettl3 methyltransferase in the 5'-external transcribed spacer of 47S pre-rRNA affects rRNA maturation publication-title: Cells – volume: 409 start-page: 3092 year: 2011 end-page: 3097 ident: bb0150 article-title: Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients publication-title: Sci. Total Environ. – volume: 169 start-page: 381 year: 2017 end-page: 405 ident: bb0180 article-title: AKT/PKB signaling: navigating the network publication-title: Cell – volume: 69 start-page: 636 year: 2018 end-page: 647 ident: bb0300 article-title: N6-methyladenosine guides mRNA alternative translation during integrated stress response publication-title: Mol. Cell – volume: 10 start-page: 5332 year: 2019 ident: bb0185 article-title: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2 publication-title: Nat. Commun. – volume: 18 start-page: 51 year: 2018 end-page: 63 ident: bb0200 article-title: Ribosome biogenesis in cancer: new players and therapeutic avenues publication-title: Nat. Rev. Cancer – volume: 290 start-page: 29695 year: 2015 end-page: 29706 ident: bb0120 article-title: Proteomic analysis identifies ribosome reduction as an effective proteotoxic stress response publication-title: J. Biol. Chem. – volume: 43 start-page: 181 year: 2016 end-page: 186 ident: bb0060 article-title: Relationship between arsenic-containing drinking water and skin cancers in the arseniasis endemic areas in Taiwan publication-title: J. Dermatol. – volume: 5 year: 2014 ident: bb0280 article-title: The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-ras-ERK-p90RSK axis publication-title: Cell Death Dis. – volume: 445 year: 2023 ident: bb0295 article-title: N6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1 publication-title: J. Hazard. Mater. – volume: 56 start-page: 84 year: 2019 end-page: 92 ident: bb0050 article-title: Changes of RNA N6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells publication-title: Toxicol. in Vitro – volume: 409 start-page: 3092 year: 2011 ident: 10.1016/j.scitotenv.2023.163428_bb0150 article-title: Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.05.008 – volume: 69 start-page: 95 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0285 article-title: Oxidative stress: one potential factor for arsenite-induced increase of N6-methyladenosine in human keratinocytes publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2019.04.005 – volume: 10 start-page: 5332 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0185 article-title: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13317-9 – volume: 18 start-page: 176 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0125 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-1109-9 – volume: 12 start-page: 767 year: 2015 ident: 10.1016/j.scitotenv.2023.163428_bb0160 article-title: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome publication-title: Nat. Methods doi: 10.1038/nmeth.3453 – volume: 18 start-page: 302 year: 2005 ident: 10.1016/j.scitotenv.2023.163428_bb0005 article-title: Over-expressed genes detected by suppression subtractive hybridization in carcinoma derived from transformed 16HBE cells induced by BPDE publication-title: Biomed. Environ. Sci. – volume: 5 year: 2014 ident: 10.1016/j.scitotenv.2023.163428_bb0280 article-title: The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-ras-ERK-p90RSK axis publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.496 – volume: 445 year: 2023 ident: 10.1016/j.scitotenv.2023.163428_bb0295 article-title: N6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130468 – volume: 13 year: 2017 ident: 10.1016/j.scitotenv.2023.163428_bb0250 article-title: Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006994 – volume: 17 start-page: 101 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0255 article-title: Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword publication-title: Mol. Cancer doi: 10.1186/s12943-018-0847-4 – volume: 13 year: 2017 ident: 10.1016/j.scitotenv.2023.163428_bb0260 article-title: Ribosomal DNA copy number loss and sequence variation in cancer publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006771 – volume: 18 start-page: 51 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0200 article-title: Ribosome biogenesis in cancer: new players and therapeutic avenues publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.104 – volume: 48 start-page: 830 year: 2020 ident: 10.1016/j.scitotenv.2023.163428_bb0210 article-title: The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1147 – volume: 12 start-page: 2183 year: 2021 ident: 10.1016/j.scitotenv.2023.163428_bb0080 article-title: Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis publication-title: Nat. Commun. doi: 10.1038/s41467-021-22469-6 – volume: 9 start-page: 1061 year: 2020 ident: 10.1016/j.scitotenv.2023.163428_bb0230 article-title: Modification of adenosine196 by Mettl3 methyltransferase in the 5'-external transcribed spacer of 47S pre-rRNA affects rRNA maturation publication-title: Cells doi: 10.3390/cells9041061 – volume: 292 start-page: 539 year: 2017 ident: 10.1016/j.scitotenv.2023.163428_bb0105 article-title: The atypical dual specificity phosphatase hYVH1 associates with multiple ribonucleoprotein particles publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.715607 – volume: 278 start-page: 38 year: 2017 ident: 10.1016/j.scitotenv.2023.163428_bb0045 article-title: MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.07.215 – volume: 169 start-page: 381 year: 2017 ident: 10.1016/j.scitotenv.2023.163428_bb0180 article-title: AKT/PKB signaling: navigating the network publication-title: Cell doi: 10.1016/j.cell.2017.04.001 – volume: 11 start-page: 48 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0195 article-title: Multiple functions of m6A RNA methylation in cancer publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-018-0590-8 – volume: 259 year: 2020 ident: 10.1016/j.scitotenv.2023.163428_bb0290 article-title: N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113908 – volume: 569–570 start-page: 476 year: 2016 ident: 10.1016/j.scitotenv.2023.163428_bb0075 article-title: Heavy metals in drinking water: occurrences, implications, and future needs in developing countries publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.166 – volume: 69 start-page: 636 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0300 article-title: N6-methyladenosine guides mRNA alternative translation during integrated stress response publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.019 – volume: 47 start-page: 245 year: 2014 ident: 10.1016/j.scitotenv.2023.163428_bb0130 article-title: Health effects of chronic arsenic exposure publication-title: J. Prev. Med. Public Health doi: 10.3961/jpmph.14.035 – volume: 19 start-page: 2515 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0175 article-title: Aberrant regulation of mRNA m6A modification in cancer development publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19092515 – volume: 123 start-page: 305 year: 2011 ident: 10.1016/j.scitotenv.2023.163428_bb0135 article-title: Arsenic exposure and toxicology: a historical perspective publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfr184 – volume: 29 start-page: 1343 year: 2015 ident: 10.1016/j.scitotenv.2023.163428_bb0275 article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation publication-title: Genes Dev. doi: 10.1101/gad.262766.115 – volume: 56 start-page: 84 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0050 article-title: Changes of RNA N6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2019.01.010 – volume: 138 year: 2020 ident: 10.1016/j.scitotenv.2023.163428_bb0095 article-title: Ribosomal DNA copy number is associated with P53 status and levels of heavy metals in gastrectomy specimens from gastric cancer patients publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105593 – volume: 290 start-page: 29695 year: 2015 ident: 10.1016/j.scitotenv.2023.163428_bb0120 article-title: Proteomic analysis identifies ribosome reduction as an effective proteotoxic stress response publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.684969 – volume: 36 start-page: 971 year: 2008 ident: 10.1016/j.scitotenv.2023.163428_bb0090 article-title: Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.107.019034 – volume: 209 start-page: 174 year: 2005 ident: 10.1016/j.scitotenv.2023.163428_bb0190 article-title: Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2005.04.008 – volume: 6 start-page: 89 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0165 article-title: Link between m6A modification and cancers publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00089 – volume: 133 start-page: 2182 year: 2013 ident: 10.1016/j.scitotenv.2023.163428_bb0235 article-title: Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational european study publication-title: Int. J. Cancer doi: 10.1002/ijc.28216 – volume: 561 start-page: 556 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0070 article-title: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis publication-title: Nature doi: 10.1038/s41586-018-0538-8 – volume: 535 start-page: 312 year: 2014 ident: 10.1016/j.scitotenv.2023.163428_bb0265 article-title: Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles publication-title: Gene doi: 10.1016/j.gene.2013.10.072 – volume: 178 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0305 article-title: Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development publication-title: Environ. Res. doi: 10.1016/j.envres.2019.108700 – volume: 13 start-page: 657 year: 2006 ident: 10.1016/j.scitotenv.2023.163428_bb0270 article-title: Arsenic carcinogenesis in the skin publication-title: J. Biomed. Sci. doi: 10.1007/s11373-006-9092-8 – volume: 145 start-page: 19 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0055 article-title: Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-018-2796-0 – volume: 234 start-page: 7948 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0020 article-title: A dynamic reversible RNA N6-methyladenosine modification: current status and perspectives publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28014 – volume: 43 start-page: 181 year: 2016 ident: 10.1016/j.scitotenv.2023.163428_bb0060 article-title: Relationship between arsenic-containing drinking water and skin cancers in the arseniasis endemic areas in Taiwan publication-title: J. Dermatol. doi: 10.1111/1346-8138.13058 – volume: 21 start-page: 22 year: 2021 ident: 10.1016/j.scitotenv.2023.163428_bb0110 article-title: RNA in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-00306-0 – volume: 119 start-page: 157 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0220 article-title: Prevalence of exposure of heavy metals and their impact on health consequences publication-title: J. Cell. Biochem. doi: 10.1002/jcb.26234 – volume: 292 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2023.163428_bb0115 article-title: N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2018.04.018 – volume: 4 start-page: ra56 year: 2011 ident: 10.1016/j.scitotenv.2023.163428_bb0035 article-title: AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer publication-title: Sci. Signal. doi: 10.1126/scisignal.2001754 – volume: 67 start-page: 6146 year: 2007 ident: 10.1016/j.scitotenv.2023.163428_bb0040 article-title: Incorporation of an internal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0867 – volume: 47 start-page: 7719 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0240 article-title: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz619 – volume: 153 year: 2021 ident: 10.1016/j.scitotenv.2023.163428_bb0170 article-title: Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)] publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106525 – volume: 552 start-page: 126 year: 2017 ident: 10.1016/j.scitotenv.2023.163428_bb0015 article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control publication-title: Nature doi: 10.1038/nature24678 – volume: 62 start-page: 335 year: 2016 ident: 10.1016/j.scitotenv.2023.163428_bb0155 article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.03.021 – year: 2012 ident: 10.1016/j.scitotenv.2023.163428_bb0140 – volume: 11 start-page: 2468 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0245 article-title: Adaptation to extreme environments in an admixed human population from the Atacama Desert publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evz172 – volume: 84 start-page: 93 year: 2015 ident: 10.1016/j.scitotenv.2023.163428_bb0085 article-title: Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060614-033917 – volume: 20 start-page: 2718 year: 2019 ident: 10.1016/j.scitotenv.2023.163428_bb0205 article-title: Signal transduction in ribosome biogenesis: a recipe to avoid disaster publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20112718 – volume: 6 year: 2016 ident: 10.1016/j.scitotenv.2023.163428_bb0030 article-title: Recent advances in dynamic m6A RNA modification publication-title: Open Biol. doi: 10.1098/rsob.160003 – volume: 7 start-page: 57 issue: 1 year: 2021 ident: 10.1016/j.scitotenv.2023.163428_bb0025 article-title: Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.08.003 – volume: 33 year: 2020 ident: 10.1016/j.scitotenv.2023.163428_bb0225 article-title: Ribosome 18S m6A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108544 |
SSID | ssj0000781 |
Score | 2.4716413 |
Snippet | Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163428 |
SubjectTerms | AKT1 Arsenic biogenesis carcinogenesis Carcinogenicity cell proliferation chromium environment epigenetics Heavy metal contaminants humans keratinocytes m6A microarray technology multiomics nickel ribosomal DNA Ribosomal proteins ribosomes RNA soil surface water |
Title | N6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis |
URI | https://dx.doi.org/10.1016/j.scitotenv.2023.163428 https://www.proquest.com/docview/2801981221 https://www.proquest.com/docview/2834230238 |
Volume | 881 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFH6Ii7Agizuu-GulgteOaZumyd5ElNkdnIMo6y2kaSoVbYfpzIIX__Z9b9IqsyzrYU-lbRJCXvLykbzvfQAnRhlZ5pKip6Ik5FZEoZKqCGOTlJKygThHbOSriRjd8h936d0anPdcGAqr7Hy_9-lLb919Oe1G83RaVcTx5VIJUs0igmdGhF_OM5rlw5e3MA9KZuNvmXFhY-mVGC9sd94gNv01JBXxIWITTrLsf9-h_vDVyw3ocgs-dcgxOPOd-wxrrh7AhteSfB7AzsUbZQ2LdWu2HcCmP5kLPOFoG64nIiTd6OdHU1CmcISZwWI685r0rg1mVd60zZML8qq5J09YtUFVB26leUsSRHX__wvcXl7cnI_CTlkhtEkUzcPMxS5XXOSxZanNrGBFksTMZmmsypwjJMoV44aJQnLLMsst8WVLwYWQJWKkZAfW66Z2uxBknKdWRWUiS_QHhZWGsQJhHHovY2ya7IHoR1PbLu04qV886j6-7EG_mkGTGbQ3wx6w14pTn3nj_SrfenPplUmkcX94v_Jxb2CNS4zuTUztmkWrY9zFFQKhOPpXGUqlSABo_386cQAf6Y0OjyN2COvz2cJ9RdQzz4-W0_oIPpx9H48m9Bxf_xz_BrwzBQY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRaiVKkS3RaXlI5W4BpzEcezeEAItX3uoQOJmOY6DgiBZbXaR-PfM4AS0VVUOXGOPZXns5ydnZh7ArlFGlrmk6KkoCbkVUaikKsLYJKWkaiDOUTbyxViMrvjpdXq9BId9LgyFVXbY7zH9Ga27L_vdau5PqopyfLlUglSzKMEzkx9gmapTpQNYPjg5G41fATmTXjiP49lGg4UwLxx61iA9fdgjIfE9pCeclNn_fUn9BdfPd9DxGqx25DE48PP7AkuuHsKKl5N8HML60WvWGnbrjm07hM_-cS7wOUdf4c9YhCQd_XhnCioWjkwzmE-mXpbetcG0ypu2uXdBXjU3BIZVG1R14BaGt6RCVPft3-Dq-OjycBR24gqhTaJoFmYudrniIo8tS21mBSuSJGY2S2NV5hxZUa4YN0wUkluWWW4pZbYUXAhZIk1K1mFQN7X7DkHGeWpVVCayREgorDSMFcjkEMCMsWmyAaJfTW27yuMkgHGn-xCzW_3iBk1u0N4NG8BeDCe--MbbJr97d-mFfaTxinjb-FfvYI2njH6dmNo181bHeJEr5EJx9L8-VE2RONCP90xiBz6OLi_O9fnJ-OwnfKIWekuO2CYMZtO520ISNMu3u03-BHOFBhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-methyladenosine+upregulates+ribosome+biogenesis+in+environmental+carcinogenesis&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhao%2C+Tianhe&rft.au=Sun%2C+Donglei&rft.au=Long%2C+Keyan&rft.au=Lemos%2C+Bernardo&rft.date=2023-07-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=881&rft.spage=163428&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.163428&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |