N6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis

Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 881; p. 163428
Main Authors Zhao, Tianhe, Sun, Donglei, Long, Keyan, Lemos, Bernardo, Zhang, Qian, Man, Jin, Zhao, Manyu, Zhang, Zunzhen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens. [Display omitted] •m6A in arsenic carcinogenesis is enriched in the genes regulating ribosome biogenesis.•m6A promotes ribosome biogenesis by affecting ribosomal proteins and non-coding RNAs.•m6A transmits proliferative signals to ribosome biogenesis by activating key node AKT.•m6A also upregulates ribosome biogenesis in chromium or nickel-induced transformation.•Inhibiting m6A-upregulated ribosome biogenesis blocks environmental carcinogenesis.
AbstractList Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N⁶-methyladenosine (m⁶A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m⁶A microarray assay and a series of experiments, we found for the first time that the elevated m⁶A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m⁶A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m⁶A and ribosome biogenesis in arsenic carcinogenesis. m⁶A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m⁶A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m⁶A reduces ribosome biogenesis. Targeted inhibition of m⁶A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m⁶A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens. [Display omitted] •m6A in arsenic carcinogenesis is enriched in the genes regulating ribosome biogenesis.•m6A promotes ribosome biogenesis by affecting ribosomal proteins and non-coding RNAs.•m6A transmits proliferative signals to ribosome biogenesis by activating key node AKT.•m6A also upregulates ribosome biogenesis in chromium or nickel-induced transformation.•Inhibiting m6A-upregulated ribosome biogenesis blocks environmental carcinogenesis.
ArticleNumber 163428
Author Lemos, Bernardo
Zhao, Manyu
Man, Jin
Zhang, Zunzhen
Long, Keyan
Sun, Donglei
Zhang, Qian
Zhao, Tianhe
Author_xml – sequence: 1
  givenname: Tianhe
  surname: Zhao
  fullname: Zhao, Tianhe
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
– sequence: 2
  givenname: Donglei
  surname: Sun
  fullname: Sun, Donglei
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
– sequence: 3
  givenname: Keyan
  surname: Long
  fullname: Long, Keyan
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
– sequence: 4
  givenname: Bernardo
  surname: Lemos
  fullname: Lemos, Bernardo
  organization: Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA
– sequence: 5
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
– sequence: 6
  givenname: Jin
  surname: Man
  fullname: Man, Jin
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
– sequence: 7
  givenname: Manyu
  surname: Zhao
  fullname: Zhao, Manyu
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
– sequence: 8
  givenname: Zunzhen
  surname: Zhang
  fullname: Zhang, Zunzhen
  email: zhangzz@scu.edu.cn
  organization: Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
BookMark eNqNkD1PwzAQhi1UJErhN5CRJeXspLYzMFQVX1IFEoLZcpxLcZXYxXaR-u9JVWBggVtuuOd9T3pOych5h4RcUJhSoPxqPY3GJp_QfUwZsGJKeVEyeUTGVIoqp8D4iIwBSplXvBIn5DTGNQwjJB2T50ee95jedp1u0PloHWbbTcDVttMJYxZs7aPvMautX6HDaGNmXTY8s8G7Hl3SXWZ0MNZ938_Icau7iOdfe0Jeb29eFvf58unuYTFf5qagNOUCGdZVyWtmYGaE4dAUBQMjZqxq65Kzoq6g1MAbWRoQpjRCVtDyknPZzjgUE3J56N0E_77FmFRvo8Gu0w79NiomBw_FYET-AwVaScoYHdDrA2qCjzFgqwa7OlnvUtC2UxTUXrtaqx_taq9dHbQPefErvwm212H3j-T8kMRB2ofFsOfQGWxsQJNU4-2fHZ8fv6U9
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40473
crossref_primary_10_1016_j_heliyon_2024_e28165
crossref_primary_10_1016_j_jhazmat_2024_136243
crossref_primary_10_1016_j_jhazmat_2023_133329
crossref_primary_10_1186_s40779_024_00509_8
crossref_primary_10_1016_j_cbi_2024_111352
crossref_primary_10_1007_s40572_024_00468_1
crossref_primary_10_1016_j_ecoenv_2024_116372
crossref_primary_10_1002_ctm2_1644
Cites_doi 10.1016/j.scitotenv.2011.05.008
10.1016/j.etap.2019.04.005
10.1038/s41467-019-13317-9
10.1186/s12943-019-1109-9
10.1038/nmeth.3453
10.1038/cddis.2014.496
10.1016/j.jhazmat.2022.130468
10.1371/journal.pgen.1006994
10.1186/s12943-018-0847-4
10.1371/journal.pgen.1006771
10.1038/nrc.2017.104
10.1093/nar/gkz1147
10.1038/s41467-021-22469-6
10.3390/cells9041061
10.1074/jbc.M116.715607
10.1016/j.toxlet.2017.07.215
10.1016/j.cell.2017.04.001
10.1186/s13045-018-0590-8
10.1016/j.envpol.2019.113908
10.1016/j.scitotenv.2016.06.166
10.1016/j.molcel.2018.01.019
10.3961/jpmph.14.035
10.3390/ijms19092515
10.1093/toxsci/kfr184
10.1101/gad.262766.115
10.1016/j.tiv.2019.01.010
10.1016/j.envint.2020.105593
10.1074/jbc.M115.684969
10.1124/dmd.107.019034
10.1016/j.taap.2005.04.008
10.3389/fbioe.2018.00089
10.1002/ijc.28216
10.1038/s41586-018-0538-8
10.1016/j.gene.2013.10.072
10.1016/j.envres.2019.108700
10.1007/s11373-006-9092-8
10.1007/s00432-018-2796-0
10.1002/jcp.28014
10.1111/1346-8138.13058
10.1038/s41568-020-00306-0
10.1002/jcb.26234
10.1016/j.toxlet.2018.04.018
10.1126/scisignal.2001754
10.1158/0008-5472.CAN-07-0867
10.1093/nar/gkz619
10.1016/j.envint.2021.106525
10.1038/nature24678
10.1016/j.molcel.2016.03.021
10.1093/gbe/evz172
10.1146/annurev-biochem-060614-033917
10.3390/ijms20112718
10.1098/rsob.160003
10.1016/j.trecan.2020.08.003
10.1016/j.celrep.2020.108544
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.163428
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2023_163428
S0048969723020478
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
WUQ
XPP
ZXP
ZY4
7X8
7S9
L.6
ID FETCH-LOGICAL-c311t-7e2eb946b2c05c7c60d3320c7529fb4623b904a06d84c07c4c7890f64668f5603
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Wed Jul 02 04:49:48 EDT 2025
Fri Jul 11 07:50:12 EDT 2025
Tue Jul 01 02:08:44 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Sun Apr 06 06:54:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords m6A
AKT1
Arsenic
Ribosomal proteins
Carcinogenicity
Heavy metal contaminants
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-7e2eb946b2c05c7c60d3320c7529fb4623b904a06d84c07c4c7890f64668f5603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2801981221
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834230238
proquest_miscellaneous_2801981221
crossref_citationtrail_10_1016_j_scitotenv_2023_163428
crossref_primary_10_1016_j_scitotenv_2023_163428
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_163428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-10
PublicationDateYYYYMMDD 2023-07-10
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-10
  day: 10
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Zhao, Sun, Wu, Zhang (bb0050) 2019; 56
Bursać, Prodan, Pullen, Bartek, Volarević (bb0025) 2021; 7
de la Cruz, Karbstein, Woolford (bb0085) 2015; 84
Manning, Toker (bb0180) 2017; 169
Kolachi, Kazi, Wadhwa, Afridi, Baig, Khan, Shah (bb0150) 2011; 409
Chen, Jiang, Gu, Zhang (bb0045) 2017; 278
Guerra-Moreno, Isasa, Bhanu, Waterman, Eapen, Gygi, Hanna (bb0120) 2015; 290
Pinto, Vågbø, Jakobsson, Kim, Baltissen, O'Donohue, Guzmán, Małecki, Wu, Kirpekar, Olsen, Gleizes, Vermeulen, Leidel, Slupphaug, Falnes (bb0210) 2020; 48
Rong, Zhang, Wan, Xing, Dai, Li, Cai, Xie, Song, Chen, Zhang, Yan, Zhang, Gao, Han, Qu, Ma, Tian, Lan (bb0225) 2020; 33
Zimta, Schitcu, Gurzau, Stavaru, Manda, Szedlacsek, Berindan-Neagoe (bb0305) 2019; 178
Chowdhury, Mazumder, Al-Attas, Husain (bb0075) 2016; 569–570
Cao, Li, Yin, Flavell (bb0030) 2016; 6
Hughes, Beck, Chen, Lewis, Thomas (bb0135) 2011; 123
Feng, Du, Yao, Jiang, Li, Zhang, Guo, Yu, Xia, Shi, Jia, Tong, Ju, Liu, Lou, Lemos (bb0095) 2020; 138
Zhao, Sun, Zhao, Lai, Liu, Zhang (bb0290) 2020; 259
Pelletier, Thomas, Volarević (bb0200) 2018; 18
Wang, Chai, Jia, Jia (bb0255) 2018; 17
Chang, Bhatia, Zhang, Meighan, Castranova, Shi, Chen (bb0040) 2007; 67
Barbieri, Tzelepis, Pandolfini, Shi, Millán-Zambrano, Robson, Aspris, Migliori, Bannister, Han, De Braekeleer, Ponstingl, Hendrick, Vakoc, Vassiliou, Kouzarides (bb0015) 2017; 552
Geng, Xhabija, Knuckle, Bonham, Vacratsis (bb0105) 2017; 292
Zhou, Wan, Shu, Mao, Liu, Yuan, Zhang, Hess, Brüning, Qian (bb0300) 2018; 69
Rehman, Fatima, Waheed, Akash (bb0220) 2018; 119
Dopp, von Recklinghausen, Hartmann, Stueckradt, Pollok, Rabieh, Hao, Nussler, Katier, Hirner, Rettenmeier (bb0090) 2008; 36
Noreault, Jacobs, Nichols, Trask, Wrighton, Sinclair, Evans, Sinclair (bb0190) 2005; 209
Yang, Lin, Cui (bb0265) 2014; 535
van Tran, Ernst, Hawley, Zorbas, Ulryck, Hackert, Bohnsack, Bohnsack, Jaffrey, Graille, Lafontaine (bb0240) 2019; 47
An, Chen, Liu, Zhao, Chen (bb0005) 2005; 18
Pan, Ma, Liu, Li, Shu (bb0195) 2018; 11
(bb0140) 2012
Yu, Liao, Chai (bb0270) 2006; 13
Cui, Yang, Wei, Shea, Zhong, Wang, Shah, Kibriya, Cui, Ahsan, He, He (bb0080) 2021; 12
Lin, Choe, Du, Triboulet, Gregory (bb0155) 2016; 62
Lou, Yu, Feng, Guo, Wang, Branco, Li, Lemos (bb0170) 2021; 153
Linder, Grozhik, Olarerin-George, Meydan, Mason, Jaffrey (bb0160) 2015; 12
Xu, Li, Perry, Singh, Unruh, Yu, Zakari, McDowell, Li, Gerton (bb0260) 2017; 13
Surdu, Fitzgerald, Bloom, Boscoe, Carpenter, Haase, Gurzau, Rudnai, Koppova, Févotte, Vahter, Leonardi, Goessler, Kumar, Fletcher (bb0235) 2013; 133
Chan, Hannan, Riddell, Ng, Peck, Lee, Hung, Astle, Bywater, Wall, Poortinga, Jastrzebski, Sheppard, Hemmings, Hall, Johnstone, McArthur, Hannan, Pearson (bb0035) 2011; 4
Zhang, Liu, Mi, Liang, Li, Huang (bb0280) 2014; 5
Choe, Lin, Zhang, Liu, Wang, Ramirez-Moya, Du, Kim, Tang, Sliz, Santisteban, George, Richards, Wong, Locker, Slack, Gregory (bb0070) 2018; 561
Luo, Liu, Luan, He, Li (bb0175) 2018; 19
Bi, Liu, Zhao, Yao, Wu, Liu, Wang, Wang (bb0020) 2019; 234
Zhao, Sun, Xiong, Man, Zhang, Zhao, Zhang (bb0295) 2023; 445
Zhao, Li, Sun, Zhang (bb0285) 2019; 69
Gu, Sun, Dai, Zhang (bb0115) 2018; 292
He, Li, Wu, Peng, Shu, Yin (bb0125) 2019; 18
Liu, Li, Sun, Liu (bb0165) 2018; 6
Chen, Du (bb0055) 2019; 145
Goodall, Wickramasinghe (bb0110) 2021; 21
(bb0010) 2021
Sergeeva, Sergeev, Melnikov, Prikazchikova, Dontsova, Zatsepin (bb0230) 2020; 9
Piazzi, Bavelloni, Gallo, Faenza, Blalock (bb0205) 2019; 20
Wang, Lemos (bb0250) 2017; 13
Vicuña, Fernandez, Vial, Valdebenito, Chaparro, Espinoza, Ziegler, Bustamante, Eyheramendy (bb0245) 2019; 11
Hong, Song, Chung (bb0130) 2014; 47
Mao, Dong, Liu, Guo, Ma, Shen, Qian (bb0185) 2019; 10
Cheng, Weng, Chiang, Lai (bb0060) 2016; 43
Yue, Liu, He (bb0275) 2015; 29
He (10.1016/j.scitotenv.2023.163428_bb0125) 2019; 18
Wang (10.1016/j.scitotenv.2023.163428_bb0250) 2017; 13
Hughes (10.1016/j.scitotenv.2023.163428_bb0135) 2011; 123
Sergeeva (10.1016/j.scitotenv.2023.163428_bb0230) 2020; 9
Yang (10.1016/j.scitotenv.2023.163428_bb0265) 2014; 535
Chen (10.1016/j.scitotenv.2023.163428_bb0045) 2017; 278
Liu (10.1016/j.scitotenv.2023.163428_bb0165) 2018; 6
Zhao (10.1016/j.scitotenv.2023.163428_bb0295) 2023; 445
Geng (10.1016/j.scitotenv.2023.163428_bb0105) 2017; 292
Dopp (10.1016/j.scitotenv.2023.163428_bb0090) 2008; 36
Pinto (10.1016/j.scitotenv.2023.163428_bb0210) 2020; 48
Luo (10.1016/j.scitotenv.2023.163428_bb0175) 2018; 19
Pelletier (10.1016/j.scitotenv.2023.163428_bb0200) 2018; 18
Mao (10.1016/j.scitotenv.2023.163428_bb0185) 2019; 10
Guerra-Moreno (10.1016/j.scitotenv.2023.163428_bb0120) 2015; 290
Chowdhury (10.1016/j.scitotenv.2023.163428_bb0075) 2016; 569–570
Gu (10.1016/j.scitotenv.2023.163428_bb0115) 2018; 292
Vicuña (10.1016/j.scitotenv.2023.163428_bb0245) 2019; 11
de la Cruz (10.1016/j.scitotenv.2023.163428_bb0085) 2015; 84
Zhang (10.1016/j.scitotenv.2023.163428_bb0280) 2014; 5
Lin (10.1016/j.scitotenv.2023.163428_bb0155) 2016; 62
Kolachi (10.1016/j.scitotenv.2023.163428_bb0150) 2011; 409
Yu (10.1016/j.scitotenv.2023.163428_bb0270) 2006; 13
Barbieri (10.1016/j.scitotenv.2023.163428_bb0015) 2017; 552
Rong (10.1016/j.scitotenv.2023.163428_bb0225) 2020; 33
Piazzi (10.1016/j.scitotenv.2023.163428_bb0205) 2019; 20
Cui (10.1016/j.scitotenv.2023.163428_bb0080) 2021; 12
Manning (10.1016/j.scitotenv.2023.163428_bb0180) 2017; 169
Zhao (10.1016/j.scitotenv.2023.163428_bb0290) 2020; 259
Choe (10.1016/j.scitotenv.2023.163428_bb0070) 2018; 561
Hong (10.1016/j.scitotenv.2023.163428_bb0130) 2014; 47
Chen (10.1016/j.scitotenv.2023.163428_bb0055) 2019; 145
Surdu (10.1016/j.scitotenv.2023.163428_bb0235) 2013; 133
van Tran (10.1016/j.scitotenv.2023.163428_bb0240) 2019; 47
Chang (10.1016/j.scitotenv.2023.163428_bb0040) 2007; 67
Lou (10.1016/j.scitotenv.2023.163428_bb0170) 2021; 153
Wang (10.1016/j.scitotenv.2023.163428_bb0255) 2018; 17
Yue (10.1016/j.scitotenv.2023.163428_bb0275) 2015; 29
Pan (10.1016/j.scitotenv.2023.163428_bb0195) 2018; 11
Xu (10.1016/j.scitotenv.2023.163428_bb0260) 2017; 13
Chan (10.1016/j.scitotenv.2023.163428_bb0035) 2011; 4
Bi (10.1016/j.scitotenv.2023.163428_bb0020) 2019; 234
Zhao (10.1016/j.scitotenv.2023.163428_bb0285) 2019; 69
An (10.1016/j.scitotenv.2023.163428_bb0005) 2005; 18
Linder (10.1016/j.scitotenv.2023.163428_bb0160) 2015; 12
Chen (10.1016/j.scitotenv.2023.163428_bb0050) 2019; 56
Rehman (10.1016/j.scitotenv.2023.163428_bb0220) 2018; 119
Cao (10.1016/j.scitotenv.2023.163428_bb0030) 2016; 6
Noreault (10.1016/j.scitotenv.2023.163428_bb0190) 2005; 209
Cheng (10.1016/j.scitotenv.2023.163428_bb0060) 2016; 43
Bursać (10.1016/j.scitotenv.2023.163428_bb0025) 2021; 7
Zhou (10.1016/j.scitotenv.2023.163428_bb0300) 2018; 69
Feng (10.1016/j.scitotenv.2023.163428_bb0095) 2020; 138
Goodall (10.1016/j.scitotenv.2023.163428_bb0110) 2021; 21
(10.1016/j.scitotenv.2023.163428_bb0140) 2012
Zimta (10.1016/j.scitotenv.2023.163428_bb0305) 2019; 178
References_xml – volume: 11
  start-page: 48
  year: 2018
  ident: bb0195
  article-title: Multiple functions of m6A RNA methylation in cancer
  publication-title: J. Hematol. Oncol.
– volume: 292
  start-page: 539
  year: 2017
  end-page: 550
  ident: bb0105
  article-title: The atypical dual specificity phosphatase hYVH1 associates with multiple ribonucleoprotein particles
  publication-title: J. Biol. Chem.
– year: 2021
  ident: bb0010
– volume: 17
  start-page: 101
  year: 2018
  ident: bb0255
  article-title: Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword
  publication-title: Mol. Cancer
– volume: 178
  year: 2019
  ident: bb0305
  article-title: Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development
  publication-title: Environ. Res.
– volume: 29
  start-page: 1343
  year: 2015
  end-page: 1355
  ident: bb0275
  article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation
  publication-title: Genes Dev.
– volume: 13
  year: 2017
  ident: bb0250
  article-title: Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation
  publication-title: PLoS Genet.
– volume: 18
  start-page: 302
  year: 2005
  end-page: 306
  ident: bb0005
  article-title: Over-expressed genes detected by suppression subtractive hybridization in carcinoma derived from transformed 16HBE cells induced by BPDE
  publication-title: Biomed. Environ. Sci.
– volume: 234
  start-page: 7948
  year: 2019
  end-page: 7956
  ident: bb0020
  article-title: A dynamic reversible RNA N6-methyladenosine modification: current status and perspectives
  publication-title: J. Cell. Physiol.
– volume: 278
  start-page: 38
  year: 2017
  end-page: 47
  ident: bb0045
  article-title: MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells
  publication-title: Toxicol. Lett.
– volume: 569–570
  start-page: 476
  year: 2016
  end-page: 488
  ident: bb0075
  article-title: Heavy metals in drinking water: occurrences, implications, and future needs in developing countries
  publication-title: Sci. Total Environ.
– volume: 138
  year: 2020
  ident: bb0095
  article-title: Ribosomal DNA copy number is associated with P53 status and levels of heavy metals in gastrectomy specimens from gastric cancer patients
  publication-title: Environ. Int.
– volume: 123
  start-page: 305
  year: 2011
  end-page: 332
  ident: bb0135
  article-title: Arsenic exposure and toxicology: a historical perspective
  publication-title: Toxicol. Sci.
– volume: 12
  start-page: 767
  year: 2015
  end-page: 772
  ident: bb0160
  article-title: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome
  publication-title: Nat. Methods
– volume: 21
  start-page: 22
  year: 2021
  end-page: 36
  ident: bb0110
  article-title: RNA in cancer
  publication-title: Nat. Rev. Cancer
– volume: 133
  start-page: 2182
  year: 2013
  end-page: 2191
  ident: bb0235
  article-title: Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational european study
  publication-title: Int. J. Cancer
– volume: 11
  start-page: 2468
  year: 2019
  end-page: 2479
  ident: bb0245
  article-title: Adaptation to extreme environments in an admixed human population from the Atacama Desert
  publication-title: Genome Biol. Evol.
– volume: 12
  start-page: 2183
  year: 2021
  ident: bb0080
  article-title: Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis
  publication-title: Nat. Commun.
– volume: 13
  start-page: 657
  year: 2006
  end-page: 666
  ident: bb0270
  article-title: Arsenic carcinogenesis in the skin
  publication-title: J. Biomed. Sci.
– volume: 84
  start-page: 93
  year: 2015
  end-page: 129
  ident: bb0085
  article-title: Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo
  publication-title: Annu. Rev. Biochem.
– year: 2012
  ident: bb0140
  article-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres, and Dusts
– volume: 69
  start-page: 95
  year: 2019
  end-page: 103
  ident: bb0285
  article-title: Oxidative stress: one potential factor for arsenite-induced increase of N6-methyladenosine in human keratinocytes
  publication-title: Environ. Toxicol. Pharmacol.
– volume: 67
  start-page: 6146
  year: 2007
  end-page: 6154
  ident: bb0040
  article-title: Incorporation of an internal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression
  publication-title: Cancer Res.
– volume: 4
  start-page: ra56
  year: 2011
  ident: bb0035
  article-title: AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer
  publication-title: Sci. Signal.
– volume: 18
  start-page: 176
  year: 2019
  ident: bb0125
  article-title: Functions of N6-methyladenosine and its role in cancer
  publication-title: Mol. Cancer
– volume: 119
  start-page: 157
  year: 2018
  end-page: 184
  ident: bb0220
  article-title: Prevalence of exposure of heavy metals and their impact on health consequences
  publication-title: J. Cell. Biochem.
– volume: 145
  start-page: 19
  year: 2019
  end-page: 29
  ident: bb0055
  article-title: Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 153
  year: 2021
  ident: bb0170
  article-title: Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]
  publication-title: Environ. Int.
– volume: 6
  year: 2016
  ident: bb0030
  article-title: Recent advances in dynamic m6A RNA modification
  publication-title: Open Biol.
– volume: 259
  year: 2020
  ident: bb0290
  article-title: N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation
  publication-title: Environ. Pollut.
– volume: 209
  start-page: 174
  year: 2005
  end-page: 182
  ident: bb0190
  article-title: Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 20
  start-page: 2718
  year: 2019
  ident: bb0205
  article-title: Signal transduction in ribosome biogenesis: a recipe to avoid disaster
  publication-title: Int. J. Mol. Sci.
– volume: 19
  start-page: 2515
  year: 2018
  ident: bb0175
  article-title: Aberrant regulation of mRNA m6A modification in cancer development
  publication-title: Int. J. Mol. Sci.
– volume: 36
  start-page: 971
  year: 2008
  end-page: 979
  ident: bb0090
  article-title: Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes
  publication-title: Drug Metab. Dispos.
– volume: 33
  year: 2020
  ident: bb0225
  article-title: Ribosome 18S m6A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth
  publication-title: Cell Rep.
– volume: 48
  start-page: 830
  year: 2020
  end-page: 846
  ident: bb0210
  article-title: The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 57
  year: 2021
  end-page: 76
  ident: bb0025
  article-title: Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer
  publication-title: Trends Cancer
– volume: 535
  start-page: 312
  year: 2014
  end-page: 317
  ident: bb0265
  article-title: Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles
  publication-title: Gene
– volume: 47
  start-page: 7719
  year: 2019
  end-page: 7733
  ident: bb0240
  article-title: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112
  publication-title: Nucleic Acids Res.
– volume: 62
  start-page: 335
  year: 2016
  end-page: 345
  ident: bb0155
  article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
  publication-title: Mol. Cell
– volume: 6
  start-page: 89
  year: 2018
  ident: bb0165
  article-title: Link between m6A modification and cancers
  publication-title: Front. Bioeng. Biotechnol.
– volume: 13
  year: 2017
  ident: bb0260
  article-title: Ribosomal DNA copy number loss and sequence variation in cancer
  publication-title: PLoS Genet.
– volume: 292
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0115
  article-title: N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells
  publication-title: Toxicol. Lett.
– volume: 561
  start-page: 556
  year: 2018
  end-page: 560
  ident: bb0070
  article-title: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis
  publication-title: Nature
– volume: 47
  start-page: 245
  year: 2014
  end-page: 252
  ident: bb0130
  article-title: Health effects of chronic arsenic exposure
  publication-title: J. Prev. Med. Public Health
– volume: 552
  start-page: 126
  year: 2017
  end-page: 131
  ident: bb0015
  article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control
  publication-title: Nature
– volume: 9
  start-page: 1061
  year: 2020
  ident: bb0230
  article-title: Modification of adenosine196 by Mettl3 methyltransferase in the 5'-external transcribed spacer of 47S pre-rRNA affects rRNA maturation
  publication-title: Cells
– volume: 409
  start-page: 3092
  year: 2011
  end-page: 3097
  ident: bb0150
  article-title: Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients
  publication-title: Sci. Total Environ.
– volume: 169
  start-page: 381
  year: 2017
  end-page: 405
  ident: bb0180
  article-title: AKT/PKB signaling: navigating the network
  publication-title: Cell
– volume: 69
  start-page: 636
  year: 2018
  end-page: 647
  ident: bb0300
  article-title: N6-methyladenosine guides mRNA alternative translation during integrated stress response
  publication-title: Mol. Cell
– volume: 10
  start-page: 5332
  year: 2019
  ident: bb0185
  article-title: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2
  publication-title: Nat. Commun.
– volume: 18
  start-page: 51
  year: 2018
  end-page: 63
  ident: bb0200
  article-title: Ribosome biogenesis in cancer: new players and therapeutic avenues
  publication-title: Nat. Rev. Cancer
– volume: 290
  start-page: 29695
  year: 2015
  end-page: 29706
  ident: bb0120
  article-title: Proteomic analysis identifies ribosome reduction as an effective proteotoxic stress response
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 181
  year: 2016
  end-page: 186
  ident: bb0060
  article-title: Relationship between arsenic-containing drinking water and skin cancers in the arseniasis endemic areas in Taiwan
  publication-title: J. Dermatol.
– volume: 5
  year: 2014
  ident: bb0280
  article-title: The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-ras-ERK-p90RSK axis
  publication-title: Cell Death Dis.
– volume: 445
  year: 2023
  ident: bb0295
  article-title: N6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 84
  year: 2019
  end-page: 92
  ident: bb0050
  article-title: Changes of RNA N6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells
  publication-title: Toxicol. in Vitro
– volume: 409
  start-page: 3092
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163428_bb0150
  article-title: Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.05.008
– volume: 69
  start-page: 95
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0285
  article-title: Oxidative stress: one potential factor for arsenite-induced increase of N6-methyladenosine in human keratinocytes
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/j.etap.2019.04.005
– volume: 10
  start-page: 5332
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0185
  article-title: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13317-9
– volume: 18
  start-page: 176
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0125
  article-title: Functions of N6-methyladenosine and its role in cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1109-9
– volume: 12
  start-page: 767
  year: 2015
  ident: 10.1016/j.scitotenv.2023.163428_bb0160
  article-title: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3453
– volume: 18
  start-page: 302
  year: 2005
  ident: 10.1016/j.scitotenv.2023.163428_bb0005
  article-title: Over-expressed genes detected by suppression subtractive hybridization in carcinoma derived from transformed 16HBE cells induced by BPDE
  publication-title: Biomed. Environ. Sci.
– volume: 5
  year: 2014
  ident: 10.1016/j.scitotenv.2023.163428_bb0280
  article-title: The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-ras-ERK-p90RSK axis
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.496
– volume: 445
  year: 2023
  ident: 10.1016/j.scitotenv.2023.163428_bb0295
  article-title: N6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.130468
– volume: 13
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163428_bb0250
  article-title: Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006994
– volume: 17
  start-page: 101
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0255
  article-title: Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-018-0847-4
– volume: 13
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163428_bb0260
  article-title: Ribosomal DNA copy number loss and sequence variation in cancer
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006771
– volume: 18
  start-page: 51
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0200
  article-title: Ribosome biogenesis in cancer: new players and therapeutic avenues
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.104
– volume: 48
  start-page: 830
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163428_bb0210
  article-title: The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1147
– volume: 12
  start-page: 2183
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163428_bb0080
  article-title: Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22469-6
– volume: 9
  start-page: 1061
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163428_bb0230
  article-title: Modification of adenosine196 by Mettl3 methyltransferase in the 5'-external transcribed spacer of 47S pre-rRNA affects rRNA maturation
  publication-title: Cells
  doi: 10.3390/cells9041061
– volume: 292
  start-page: 539
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163428_bb0105
  article-title: The atypical dual specificity phosphatase hYVH1 associates with multiple ribonucleoprotein particles
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.715607
– volume: 278
  start-page: 38
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163428_bb0045
  article-title: MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2017.07.215
– volume: 169
  start-page: 381
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163428_bb0180
  article-title: AKT/PKB signaling: navigating the network
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.001
– volume: 11
  start-page: 48
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0195
  article-title: Multiple functions of m6A RNA methylation in cancer
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-018-0590-8
– volume: 259
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163428_bb0290
  article-title: N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113908
– volume: 569–570
  start-page: 476
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163428_bb0075
  article-title: Heavy metals in drinking water: occurrences, implications, and future needs in developing countries
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.06.166
– volume: 69
  start-page: 636
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0300
  article-title: N6-methyladenosine guides mRNA alternative translation during integrated stress response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.019
– volume: 47
  start-page: 245
  year: 2014
  ident: 10.1016/j.scitotenv.2023.163428_bb0130
  article-title: Health effects of chronic arsenic exposure
  publication-title: J. Prev. Med. Public Health
  doi: 10.3961/jpmph.14.035
– volume: 19
  start-page: 2515
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0175
  article-title: Aberrant regulation of mRNA m6A modification in cancer development
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19092515
– volume: 123
  start-page: 305
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163428_bb0135
  article-title: Arsenic exposure and toxicology: a historical perspective
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfr184
– volume: 29
  start-page: 1343
  year: 2015
  ident: 10.1016/j.scitotenv.2023.163428_bb0275
  article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation
  publication-title: Genes Dev.
  doi: 10.1101/gad.262766.115
– volume: 56
  start-page: 84
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0050
  article-title: Changes of RNA N6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2019.01.010
– volume: 138
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163428_bb0095
  article-title: Ribosomal DNA copy number is associated with P53 status and levels of heavy metals in gastrectomy specimens from gastric cancer patients
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105593
– volume: 290
  start-page: 29695
  year: 2015
  ident: 10.1016/j.scitotenv.2023.163428_bb0120
  article-title: Proteomic analysis identifies ribosome reduction as an effective proteotoxic stress response
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.684969
– volume: 36
  start-page: 971
  year: 2008
  ident: 10.1016/j.scitotenv.2023.163428_bb0090
  article-title: Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.107.019034
– volume: 209
  start-page: 174
  year: 2005
  ident: 10.1016/j.scitotenv.2023.163428_bb0190
  article-title: Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2005.04.008
– volume: 6
  start-page: 89
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0165
  article-title: Link between m6A modification and cancers
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00089
– volume: 133
  start-page: 2182
  year: 2013
  ident: 10.1016/j.scitotenv.2023.163428_bb0235
  article-title: Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational european study
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28216
– volume: 561
  start-page: 556
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0070
  article-title: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis
  publication-title: Nature
  doi: 10.1038/s41586-018-0538-8
– volume: 535
  start-page: 312
  year: 2014
  ident: 10.1016/j.scitotenv.2023.163428_bb0265
  article-title: Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles
  publication-title: Gene
  doi: 10.1016/j.gene.2013.10.072
– volume: 178
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0305
  article-title: Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.108700
– volume: 13
  start-page: 657
  year: 2006
  ident: 10.1016/j.scitotenv.2023.163428_bb0270
  article-title: Arsenic carcinogenesis in the skin
  publication-title: J. Biomed. Sci.
  doi: 10.1007/s11373-006-9092-8
– volume: 145
  start-page: 19
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0055
  article-title: Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-018-2796-0
– volume: 234
  start-page: 7948
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0020
  article-title: A dynamic reversible RNA N6-methyladenosine modification: current status and perspectives
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28014
– volume: 43
  start-page: 181
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163428_bb0060
  article-title: Relationship between arsenic-containing drinking water and skin cancers in the arseniasis endemic areas in Taiwan
  publication-title: J. Dermatol.
  doi: 10.1111/1346-8138.13058
– volume: 21
  start-page: 22
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163428_bb0110
  article-title: RNA in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-020-00306-0
– volume: 119
  start-page: 157
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0220
  article-title: Prevalence of exposure of heavy metals and their impact on health consequences
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.26234
– volume: 292
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163428_bb0115
  article-title: N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2018.04.018
– volume: 4
  start-page: ra56
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163428_bb0035
  article-title: AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001754
– volume: 67
  start-page: 6146
  year: 2007
  ident: 10.1016/j.scitotenv.2023.163428_bb0040
  article-title: Incorporation of an internal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0867
– volume: 47
  start-page: 7719
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0240
  article-title: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz619
– volume: 153
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163428_bb0170
  article-title: Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.106525
– volume: 552
  start-page: 126
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163428_bb0015
  article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control
  publication-title: Nature
  doi: 10.1038/nature24678
– volume: 62
  start-page: 335
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163428_bb0155
  article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.03.021
– year: 2012
  ident: 10.1016/j.scitotenv.2023.163428_bb0140
– volume: 11
  start-page: 2468
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0245
  article-title: Adaptation to extreme environments in an admixed human population from the Atacama Desert
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evz172
– volume: 84
  start-page: 93
  year: 2015
  ident: 10.1016/j.scitotenv.2023.163428_bb0085
  article-title: Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060614-033917
– volume: 20
  start-page: 2718
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163428_bb0205
  article-title: Signal transduction in ribosome biogenesis: a recipe to avoid disaster
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20112718
– volume: 6
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163428_bb0030
  article-title: Recent advances in dynamic m6A RNA modification
  publication-title: Open Biol.
  doi: 10.1098/rsob.160003
– volume: 7
  start-page: 57
  issue: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163428_bb0025
  article-title: Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.08.003
– volume: 33
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163428_bb0225
  article-title: Ribosome 18S m6A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108544
SSID ssj0000781
Score 2.4716413
Snippet Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163428
SubjectTerms AKT1
Arsenic
biogenesis
carcinogenesis
Carcinogenicity
cell proliferation
chromium
environment
epigenetics
Heavy metal contaminants
humans
keratinocytes
m6A
microarray technology
multiomics
nickel
ribosomal DNA
Ribosomal proteins
ribosomes
RNA
soil
surface water
Title N6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis
URI https://dx.doi.org/10.1016/j.scitotenv.2023.163428
https://www.proquest.com/docview/2801981221
https://www.proquest.com/docview/2834230238
Volume 881
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFH6Ii7Agizuu-GulgteOaZumyd5ElNkdnIMo6y2kaSoVbYfpzIIX__Z9b9IqsyzrYU-lbRJCXvLykbzvfQAnRhlZ5pKip6Ik5FZEoZKqCGOTlJKygThHbOSriRjd8h936d0anPdcGAqr7Hy_9-lLb919Oe1G83RaVcTx5VIJUs0igmdGhF_OM5rlw5e3MA9KZuNvmXFhY-mVGC9sd94gNv01JBXxIWITTrLsf9-h_vDVyw3ocgs-dcgxOPOd-wxrrh7AhteSfB7AzsUbZQ2LdWu2HcCmP5kLPOFoG64nIiTd6OdHU1CmcISZwWI685r0rg1mVd60zZML8qq5J09YtUFVB26leUsSRHX__wvcXl7cnI_CTlkhtEkUzcPMxS5XXOSxZanNrGBFksTMZmmsypwjJMoV44aJQnLLMsst8WVLwYWQJWKkZAfW66Z2uxBknKdWRWUiS_QHhZWGsQJhHHovY2ya7IHoR1PbLu04qV886j6-7EG_mkGTGbQ3wx6w14pTn3nj_SrfenPplUmkcX94v_Jxb2CNS4zuTUztmkWrY9zFFQKhOPpXGUqlSABo_386cQAf6Y0OjyN2COvz2cJ9RdQzz4-W0_oIPpx9H48m9Bxf_xz_BrwzBQY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRaiVKkS3RaXlI5W4BpzEcezeEAItX3uoQOJmOY6DgiBZbXaR-PfM4AS0VVUOXGOPZXns5ydnZh7ArlFGlrmk6KkoCbkVUaikKsLYJKWkaiDOUTbyxViMrvjpdXq9BId9LgyFVXbY7zH9Ga27L_vdau5PqopyfLlUglSzKMEzkx9gmapTpQNYPjg5G41fATmTXjiP49lGg4UwLxx61iA9fdgjIfE9pCeclNn_fUn9BdfPd9DxGqx25DE48PP7AkuuHsKKl5N8HML60WvWGnbrjm07hM_-cS7wOUdf4c9YhCQd_XhnCioWjkwzmE-mXpbetcG0ypu2uXdBXjU3BIZVG1R14BaGt6RCVPft3-Dq-OjycBR24gqhTaJoFmYudrniIo8tS21mBSuSJGY2S2NV5hxZUa4YN0wUkluWWW4pZbYUXAhZIk1K1mFQN7X7DkHGeWpVVCayREgorDSMFcjkEMCMsWmyAaJfTW27yuMkgHGn-xCzW_3iBk1u0N4NG8BeDCe--MbbJr97d-mFfaTxinjb-FfvYI2njH6dmNo181bHeJEr5EJx9L8-VE2RONCP90xiBz6OLi_O9fnJ-OwnfKIWekuO2CYMZtO520ISNMu3u03-BHOFBhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-methyladenosine+upregulates+ribosome+biogenesis+in+environmental+carcinogenesis&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhao%2C+Tianhe&rft.au=Sun%2C+Donglei&rft.au=Long%2C+Keyan&rft.au=Lemos%2C+Bernardo&rft.date=2023-07-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=881&rft.spage=163428&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.163428&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon