Fractional Sobolev spaces with variable exponents and fractional p ( x ) -Laplacians
In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving...
Saved in:
Published in | Electronic journal of qualitative theory of differential equations Vol. 2017; no. 76; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
University of Szeged
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1417-3875 1417-3875 |
DOI | 10.14232/ejqtde.2017.1.76 |
Cover
Loading…
Abstract | In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving the fractional $p(x)$-Laplacian. |
---|---|
AbstractList | In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving the fractional $p(x)$-Laplacian. |
Author | Kaufmann, Uriel Rossi, Julio Vidal, Raul |
Author_xml | – sequence: 1 givenname: Uriel surname: Kaufmann fullname: Kaufmann, Uriel – sequence: 2 givenname: Julio orcidid: 0000-0002-5905-4412 surname: Rossi fullname: Rossi, Julio – sequence: 3 givenname: Raul surname: Vidal fullname: Vidal, Raul |
BookMark | eNp1kElLBDEQhYMoOC4_wFuOeugxlXSWOYq4DAx4UM-hOotmaLvbpHH5944ziiJ4qqLge6_e2yPbXd8FQo6ATaHmgp-G5fPow5Qz0FOYarVFJlCDroTRcvvXvkv2SlkyxrmSakLuLjO6MfUdtvS2b_o2vNAyoAuFvqbxkb5gTti0gYa3YeXYjYVi52n8oQZ6TN_oCa0WOLToEnblgOxEbEs4_Jr75P7y4u78ulrcXM3PzxaVEwBjpWvGIgsGWC2VAu-Y4WbmY2M8ggvAZo1samUki3XD0HiIxnMVZj6ImQAv9sl8o-t7XNohpyfM77bHZNeHPj9YzGNybbDofZTaiYZ7VWtcWUgphG947Q1G6VZaeqPlcl9KDtG6NOJnxjFjai0wuy7aboq2n0VbsFqtSPhDfn_yP_MBxgCFWQ |
CitedBy_id | crossref_primary_10_1080_17476933_2024_2401799 crossref_primary_10_3934_mine_2024026 crossref_primary_10_1007_s12215_024_01117_0 crossref_primary_10_3390_fractalfract7030207 crossref_primary_10_1007_s40324_023_00343_3 crossref_primary_10_3934_dcdss_2020425 crossref_primary_10_1002_mana_202100521 crossref_primary_10_3103_S1066369X23080054 crossref_primary_10_1002_mma_6995 crossref_primary_10_1186_s13661_021_01575_w crossref_primary_10_1007_s12220_023_01211_2 crossref_primary_10_1080_17476933_2020_1781832 crossref_primary_10_1080_17476933_2024_2416419 crossref_primary_10_1016_j_jmaa_2025_129502 crossref_primary_10_1080_00036811_2021_1950693 crossref_primary_10_1016_j_na_2019_06_001 crossref_primary_10_1080_00036811_2020_1789601 crossref_primary_10_1007_s10231_023_01333_y crossref_primary_10_3934_math_2021539 crossref_primary_10_1007_s13348_020_00283_5 crossref_primary_10_3934_math_2023836 crossref_primary_10_56082_annalsarscimath_2022_1_2_77 crossref_primary_10_1007_s40590_023_00580_6 crossref_primary_10_1515_anona_2020_0160 crossref_primary_10_1007_s12215_024_01156_7 crossref_primary_10_1080_00036811_2021_1948019 crossref_primary_10_3390_fractalfract6050255 crossref_primary_10_3934_dcds_2022017 crossref_primary_10_1080_00036811_2020_1829601 crossref_primary_10_3390_sym13101819 crossref_primary_10_1007_s13324_021_00643_9 crossref_primary_10_1007_s13226_021_00037_4 crossref_primary_10_11650_tjm_190404 crossref_primary_10_1016_j_jmaa_2023_128005 crossref_primary_10_1155_2021_6686213 crossref_primary_10_3934_era_2023167 crossref_primary_10_3390_math12203269 crossref_primary_10_1515_math_2022_0028 crossref_primary_10_1051_cocv_2020064 crossref_primary_10_1155_2021_8888078 crossref_primary_10_5269_bspm_62890 crossref_primary_10_1063_5_0004341 crossref_primary_10_1515_dema_2023_0266 crossref_primary_10_3934_cam_2023027 crossref_primary_10_1007_s11868_024_00626_x crossref_primary_10_1007_s41808_023_00213_z crossref_primary_10_3934_math_2021486 crossref_primary_10_1216_jie_2022_34_1 crossref_primary_10_1007_s41808_023_00239_3 crossref_primary_10_54021_seesv5n1_127 crossref_primary_10_1063_1_5111786 crossref_primary_10_1007_s41808_022_00189_2 crossref_primary_10_1002_mma_10808 crossref_primary_10_11948_20200394 crossref_primary_10_1007_s00009_023_02517_9 crossref_primary_10_1016_j_na_2018_07_016 crossref_primary_10_1155_2021_7285769 crossref_primary_10_1007_s12220_024_01835_y crossref_primary_10_1186_s13660_021_02569_z crossref_primary_10_1007_s11868_019_00310_5 crossref_primary_10_3934_math_2021571 crossref_primary_10_1007_s00033_022_01724_w crossref_primary_10_1080_17476933_2024_2310225 crossref_primary_10_1088_1751_8121_adaa3e crossref_primary_10_1007_s00009_020_01661_w crossref_primary_10_1007_s11785_018_00885_9 crossref_primary_10_1080_00036811_2019_1603372 crossref_primary_10_1007_s00009_023_02273_w crossref_primary_10_1007_s11785_023_01470_5 crossref_primary_10_1016_j_jmaa_2024_128999 crossref_primary_10_1063_1_5145154 crossref_primary_10_1142_S0218348X22402599 crossref_primary_10_11650_tjm_210503 crossref_primary_10_2478_mjpaa_2022_0011 crossref_primary_10_1007_s10884_019_09745_2 crossref_primary_10_1016_j_jmaa_2020_124269 crossref_primary_10_1080_00036811_2019_1673373 crossref_primary_10_1080_00036811_2022_2107916 crossref_primary_10_1002_mana_201900315 crossref_primary_10_1002_mma_8449 crossref_primary_10_1007_s13348_021_00318_5 crossref_primary_10_3390_math10121973 crossref_primary_10_1080_00036811_2019_1688790 crossref_primary_10_1007_s10231_024_01515_2 crossref_primary_10_1016_j_jmaa_2024_128284 crossref_primary_10_1080_17476933_2021_1951719 crossref_primary_10_1515_dema_2021_0022 crossref_primary_10_1007_s12215_024_01133_0 crossref_primary_10_1007_s43036_019_00006_z crossref_primary_10_1002_mma_6813 crossref_primary_10_3233_ASY_221770 crossref_primary_10_1007_s13348_019_00254_5 crossref_primary_10_3390_sym13081393 crossref_primary_10_11650_tjm_210603 crossref_primary_10_1080_17476933_2020_1751136 crossref_primary_10_3846_mma_2022_15740 crossref_primary_10_1002_mma_7213 crossref_primary_10_1007_s11587_021_00638_5 crossref_primary_10_1007_s11785_024_01519_z crossref_primary_10_5269_bspm_64239 crossref_primary_10_3390_math9161973 |
Cites_doi | 10.1016/j.anihpc.2009.09.008 10.1007/978-3-642-18363-8 10.1016/j.jfa.2014.05.023 10.1007/978-1-4471-2807-6 10.1007/s13163-014-0147-5 10.22034/aot.1704-1152 10.3934/dcds.2016.36.1813 10.1016/j.anihpc.2015.04.003 10.1515/ans-2014-0306 10.1016/j.na.2010.02.033 10.1016/j.bulsci.2011.12.004 10.1515/acv-2014-0024 10.4310/MRL.2014.v21.n2.a3 10.1007/s00526-013-0600-1 10.1016/j.aml.2013.07.011 10.1016/j.na.2015.02.006 10.1016/j.na.2009.06.054 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.14232/ejqtde.2017.1.76 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1417-3875 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_addf57c3b2d647ab8d5533db24d8af5c 10_14232_ejqtde_2017_1_76 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAYXX ABDBF ACGFO ACIPV ACUHS ADBBV AEGXH AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM B0M BCNDV C1A CITATION E3Z EAP EBS EJD EMK EN8 EOJEC EPL EST ESX FRJ FRP GROUPED_DOAJ J9A KQ8 LO0 OBODZ OK1 OVT P2P REM RNS TR2 TUS XSB ~8M |
ID | FETCH-LOGICAL-c311t-7400f0e81045661dc08289dfb8da1ce109b5b46850f4b0a8d1f8d26e9de3931d3 |
IEDL.DBID | DOA |
ISSN | 1417-3875 |
IngestDate | Wed Aug 27 01:28:35 EDT 2025 Tue Jul 01 03:20:13 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 76 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-7400f0e81045661dc08289dfb8da1ce109b5b46850f4b0a8d1f8d26e9de3931d3 |
ORCID | 0000-0002-5905-4412 |
OpenAccessLink | https://doaj.org/article/addf57c3b2d647ab8d5533db24d8af5c |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_addf57c3b2d647ab8d5533db24d8af5c crossref_citationtrail_10_14232_ejqtde_2017_1_76 crossref_primary_10_14232_ejqtde_2017_1_76 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Electronic journal of qualitative theory of differential equations |
PublicationYear | 2017 |
Publisher | University of Szeged |
Publisher_xml | – name: University of Szeged |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1016/j.anihpc.2009.09.008 – ident: ref1 – ident: ref8 doi: 10.1007/978-3-642-18363-8 – ident: ref7 doi: 10.1016/j.jfa.2014.05.023 – ident: ref5 doi: 10.1007/978-1-4471-2807-6 – ident: ref13 doi: 10.1007/s13163-014-0147-5 – ident: ref3 doi: 10.22034/aot.1704-1152 – ident: ref2 doi: 10.3934/dcds.2016.36.1813 – ident: ref6 doi: 10.1016/j.anihpc.2015.04.003 – ident: ref19 doi: 10.1515/ans-2014-0306 – ident: ref9 – ident: ref12 doi: 10.1016/j.na.2010.02.033 – ident: ref20 doi: 10.1016/j.bulsci.2011.12.004 – ident: ref10 doi: 10.1515/acv-2014-0024 – ident: ref18 doi: 10.4310/MRL.2014.v21.n2.a3 – ident: ref11 – ident: ref14 doi: 10.1007/s00526-013-0600-1 – ident: ref17 doi: 10.1016/j.aml.2013.07.011 – ident: ref4 doi: 10.1016/j.na.2015.02.006 – ident: ref16 doi: 10.1016/j.na.2009.06.054 |
SSID | ssj0022656 |
Score | 2.482778 |
Snippet | In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | fractional laplacian sobolev spaces variable exponents |
Title | Fractional Sobolev spaces with variable exponents and fractional p ( x ) -Laplacians |
URI | https://doaj.org/article/addf57c3b2d647ab8d5533db24d8af5c |
Volume | 2017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnqI8qgwdACklzsOxxxaIKkQZgErdIidnD6hKSxuq_nzumrR0goU1siPr8-O-s---Y6wlBLJu4NpVRtPVja9c5QG4Xgy-skFgfUH5zv0X0RuET8NouFHqi2LCKnngCjgKq7FRnAeZDyKMdSYhQoYCmR-C1DbK6fRFm7dypmpXy0eaUr9h0kvknfn4LIFUMXnc5m0SGNmwQhti_Uurkhyw_ZoOOp1qGIdsyxRHbK-_1lKdHbPXZFolH2C7t3E2Hpm5g8cA7m-HLlGdOXq7lP_kmMVkXFBchKMLcOxPr9bkenHTcp81BWDhcpidsEHy-H7fc-tKCG4ecF66Me406xnJiYAJDjkJzymwiIbmueGeyqIsFDLybJh5WgK3EnxhFJhABRyCU7Zd4BDOmIOusLbcIogSPQmQCgkhhDaUCK-Mld9g3gqZNK9lwqlaxSgld4HATCswUwIz5WksGux23WVSaWT81rhLcK8bkrz18gNOelpPevrXpJ__x08u2C6NqrpPuWTb5fTLXCHDKLMm2-l0H7pJc7movgGtPdGw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Sobolev+spaces+with+variable+exponents+and+fractional+p+%28+x+%29+-Laplacians&rft.jtitle=Electronic+journal+of+qualitative+theory+of+differential+equations&rft.au=Kaufmann%2C+Uriel&rft.au=Rossi%2C+Julio&rft.au=Vidal%2C+Raul&rft.date=2017-01-01&rft.issn=1417-3875&rft.eissn=1417-3875&rft.issue=76&rft.spage=1&rft.epage=10&rft_id=info:doi/10.14232%2Fejqtde.2017.1.76&rft.externalDBID=n%2Fa&rft.externalDocID=10_14232_ejqtde_2017_1_76 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1417-3875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1417-3875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1417-3875&client=summon |