Fractional Sobolev spaces with variable exponents and fractional p ( x ) -Laplacians

In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of qualitative theory of differential equations Vol. 2017; no. 76; pp. 1 - 10
Main Authors Kaufmann, Uriel, Rossi, Julio, Vidal, Raul
Format Journal Article
LanguageEnglish
Published University of Szeged 01.01.2017
Subjects
Online AccessGet full text
ISSN1417-3875
1417-3875
DOI10.14232/ejqtde.2017.1.76

Cover

Loading…
Abstract In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving the fractional $p(x)$-Laplacian.
AbstractList In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving the fractional $p(x)$-Laplacian.
Author Kaufmann, Uriel
Rossi, Julio
Vidal, Raul
Author_xml – sequence: 1
  givenname: Uriel
  surname: Kaufmann
  fullname: Kaufmann, Uriel
– sequence: 2
  givenname: Julio
  orcidid: 0000-0002-5905-4412
  surname: Rossi
  fullname: Rossi, Julio
– sequence: 3
  givenname: Raul
  surname: Vidal
  fullname: Vidal, Raul
BookMark eNp1kElLBDEQhYMoOC4_wFuOeugxlXSWOYq4DAx4UM-hOotmaLvbpHH5944ziiJ4qqLge6_e2yPbXd8FQo6ATaHmgp-G5fPow5Qz0FOYarVFJlCDroTRcvvXvkv2SlkyxrmSakLuLjO6MfUdtvS2b_o2vNAyoAuFvqbxkb5gTti0gYa3YeXYjYVi52n8oQZ6TN_oCa0WOLToEnblgOxEbEs4_Jr75P7y4u78ulrcXM3PzxaVEwBjpWvGIgsGWC2VAu-Y4WbmY2M8ggvAZo1samUki3XD0HiIxnMVZj6ImQAv9sl8o-t7XNohpyfM77bHZNeHPj9YzGNybbDofZTaiYZ7VWtcWUgphG947Q1G6VZaeqPlcl9KDtG6NOJnxjFjai0wuy7aboq2n0VbsFqtSPhDfn_yP_MBxgCFWQ
CitedBy_id crossref_primary_10_1080_17476933_2024_2401799
crossref_primary_10_3934_mine_2024026
crossref_primary_10_1007_s12215_024_01117_0
crossref_primary_10_3390_fractalfract7030207
crossref_primary_10_1007_s40324_023_00343_3
crossref_primary_10_3934_dcdss_2020425
crossref_primary_10_1002_mana_202100521
crossref_primary_10_3103_S1066369X23080054
crossref_primary_10_1002_mma_6995
crossref_primary_10_1186_s13661_021_01575_w
crossref_primary_10_1007_s12220_023_01211_2
crossref_primary_10_1080_17476933_2020_1781832
crossref_primary_10_1080_17476933_2024_2416419
crossref_primary_10_1016_j_jmaa_2025_129502
crossref_primary_10_1080_00036811_2021_1950693
crossref_primary_10_1016_j_na_2019_06_001
crossref_primary_10_1080_00036811_2020_1789601
crossref_primary_10_1007_s10231_023_01333_y
crossref_primary_10_3934_math_2021539
crossref_primary_10_1007_s13348_020_00283_5
crossref_primary_10_3934_math_2023836
crossref_primary_10_56082_annalsarscimath_2022_1_2_77
crossref_primary_10_1007_s40590_023_00580_6
crossref_primary_10_1515_anona_2020_0160
crossref_primary_10_1007_s12215_024_01156_7
crossref_primary_10_1080_00036811_2021_1948019
crossref_primary_10_3390_fractalfract6050255
crossref_primary_10_3934_dcds_2022017
crossref_primary_10_1080_00036811_2020_1829601
crossref_primary_10_3390_sym13101819
crossref_primary_10_1007_s13324_021_00643_9
crossref_primary_10_1007_s13226_021_00037_4
crossref_primary_10_11650_tjm_190404
crossref_primary_10_1016_j_jmaa_2023_128005
crossref_primary_10_1155_2021_6686213
crossref_primary_10_3934_era_2023167
crossref_primary_10_3390_math12203269
crossref_primary_10_1515_math_2022_0028
crossref_primary_10_1051_cocv_2020064
crossref_primary_10_1155_2021_8888078
crossref_primary_10_5269_bspm_62890
crossref_primary_10_1063_5_0004341
crossref_primary_10_1515_dema_2023_0266
crossref_primary_10_3934_cam_2023027
crossref_primary_10_1007_s11868_024_00626_x
crossref_primary_10_1007_s41808_023_00213_z
crossref_primary_10_3934_math_2021486
crossref_primary_10_1216_jie_2022_34_1
crossref_primary_10_1007_s41808_023_00239_3
crossref_primary_10_54021_seesv5n1_127
crossref_primary_10_1063_1_5111786
crossref_primary_10_1007_s41808_022_00189_2
crossref_primary_10_1002_mma_10808
crossref_primary_10_11948_20200394
crossref_primary_10_1007_s00009_023_02517_9
crossref_primary_10_1016_j_na_2018_07_016
crossref_primary_10_1155_2021_7285769
crossref_primary_10_1007_s12220_024_01835_y
crossref_primary_10_1186_s13660_021_02569_z
crossref_primary_10_1007_s11868_019_00310_5
crossref_primary_10_3934_math_2021571
crossref_primary_10_1007_s00033_022_01724_w
crossref_primary_10_1080_17476933_2024_2310225
crossref_primary_10_1088_1751_8121_adaa3e
crossref_primary_10_1007_s00009_020_01661_w
crossref_primary_10_1007_s11785_018_00885_9
crossref_primary_10_1080_00036811_2019_1603372
crossref_primary_10_1007_s00009_023_02273_w
crossref_primary_10_1007_s11785_023_01470_5
crossref_primary_10_1016_j_jmaa_2024_128999
crossref_primary_10_1063_1_5145154
crossref_primary_10_1142_S0218348X22402599
crossref_primary_10_11650_tjm_210503
crossref_primary_10_2478_mjpaa_2022_0011
crossref_primary_10_1007_s10884_019_09745_2
crossref_primary_10_1016_j_jmaa_2020_124269
crossref_primary_10_1080_00036811_2019_1673373
crossref_primary_10_1080_00036811_2022_2107916
crossref_primary_10_1002_mana_201900315
crossref_primary_10_1002_mma_8449
crossref_primary_10_1007_s13348_021_00318_5
crossref_primary_10_3390_math10121973
crossref_primary_10_1080_00036811_2019_1688790
crossref_primary_10_1007_s10231_024_01515_2
crossref_primary_10_1016_j_jmaa_2024_128284
crossref_primary_10_1080_17476933_2021_1951719
crossref_primary_10_1515_dema_2021_0022
crossref_primary_10_1007_s12215_024_01133_0
crossref_primary_10_1007_s43036_019_00006_z
crossref_primary_10_1002_mma_6813
crossref_primary_10_3233_ASY_221770
crossref_primary_10_1007_s13348_019_00254_5
crossref_primary_10_3390_sym13081393
crossref_primary_10_11650_tjm_210603
crossref_primary_10_1080_17476933_2020_1751136
crossref_primary_10_3846_mma_2022_15740
crossref_primary_10_1002_mma_7213
crossref_primary_10_1007_s11587_021_00638_5
crossref_primary_10_1007_s11785_024_01519_z
crossref_primary_10_5269_bspm_64239
crossref_primary_10_3390_math9161973
Cites_doi 10.1016/j.anihpc.2009.09.008
10.1007/978-3-642-18363-8
10.1016/j.jfa.2014.05.023
10.1007/978-1-4471-2807-6
10.1007/s13163-014-0147-5
10.22034/aot.1704-1152
10.3934/dcds.2016.36.1813
10.1016/j.anihpc.2015.04.003
10.1515/ans-2014-0306
10.1016/j.na.2010.02.033
10.1016/j.bulsci.2011.12.004
10.1515/acv-2014-0024
10.4310/MRL.2014.v21.n2.a3
10.1007/s00526-013-0600-1
10.1016/j.aml.2013.07.011
10.1016/j.na.2015.02.006
10.1016/j.na.2009.06.054
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.14232/ejqtde.2017.1.76
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1417-3875
EndPage 10
ExternalDocumentID oai_doaj_org_article_addf57c3b2d647ab8d5533db24d8af5c
10_14232_ejqtde_2017_1_76
GroupedDBID -~9
29G
2WC
5GY
5VS
AAYXX
ABDBF
ACGFO
ACIPV
ACUHS
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
BCNDV
C1A
CITATION
E3Z
EAP
EBS
EJD
EMK
EN8
EOJEC
EPL
EST
ESX
FRJ
FRP
GROUPED_DOAJ
J9A
KQ8
LO0
OBODZ
OK1
OVT
P2P
REM
RNS
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c311t-7400f0e81045661dc08289dfb8da1ce109b5b46850f4b0a8d1f8d26e9de3931d3
IEDL.DBID DOA
ISSN 1417-3875
IngestDate Wed Aug 27 01:28:35 EDT 2025
Tue Jul 01 03:20:13 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 76
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-7400f0e81045661dc08289dfb8da1ce109b5b46850f4b0a8d1f8d26e9de3931d3
ORCID 0000-0002-5905-4412
OpenAccessLink https://doaj.org/article/addf57c3b2d647ab8d5533db24d8af5c
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_addf57c3b2d647ab8d5533db24d8af5c
crossref_citationtrail_10_14232_ejqtde_2017_1_76
crossref_primary_10_14232_ejqtde_2017_1_76
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Electronic journal of qualitative theory of differential equations
PublicationYear 2017
Publisher University of Szeged
Publisher_xml – name: University of Szeged
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1016/j.anihpc.2009.09.008
– ident: ref1
– ident: ref8
  doi: 10.1007/978-3-642-18363-8
– ident: ref7
  doi: 10.1016/j.jfa.2014.05.023
– ident: ref5
  doi: 10.1007/978-1-4471-2807-6
– ident: ref13
  doi: 10.1007/s13163-014-0147-5
– ident: ref3
  doi: 10.22034/aot.1704-1152
– ident: ref2
  doi: 10.3934/dcds.2016.36.1813
– ident: ref6
  doi: 10.1016/j.anihpc.2015.04.003
– ident: ref19
  doi: 10.1515/ans-2014-0306
– ident: ref9
– ident: ref12
  doi: 10.1016/j.na.2010.02.033
– ident: ref20
  doi: 10.1016/j.bulsci.2011.12.004
– ident: ref10
  doi: 10.1515/acv-2014-0024
– ident: ref18
  doi: 10.4310/MRL.2014.v21.n2.a3
– ident: ref11
– ident: ref14
  doi: 10.1007/s00526-013-0600-1
– ident: ref17
  doi: 10.1016/j.aml.2013.07.011
– ident: ref4
  doi: 10.1016/j.na.2015.02.006
– ident: ref16
  doi: 10.1016/j.na.2009.06.054
SSID ssj0022656
Score 2.482778
Snippet In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1
SubjectTerms fractional laplacian
sobolev spaces
variable exponents
Title Fractional Sobolev spaces with variable exponents and fractional p ( x ) -Laplacians
URI https://doaj.org/article/addf57c3b2d647ab8d5533db24d8af5c
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnqI8qgwdACklzsOxxxaIKkQZgErdIidnD6hKSxuq_nzumrR0goU1siPr8-O-s---Y6wlBLJu4NpVRtPVja9c5QG4Xgy-skFgfUH5zv0X0RuET8NouFHqi2LCKnngCjgKq7FRnAeZDyKMdSYhQoYCmR-C1DbK6fRFm7dypmpXy0eaUr9h0kvknfn4LIFUMXnc5m0SGNmwQhti_Uurkhyw_ZoOOp1qGIdsyxRHbK-_1lKdHbPXZFolH2C7t3E2Hpm5g8cA7m-HLlGdOXq7lP_kmMVkXFBchKMLcOxPr9bkenHTcp81BWDhcpidsEHy-H7fc-tKCG4ecF66Me406xnJiYAJDjkJzymwiIbmueGeyqIsFDLybJh5WgK3EnxhFJhABRyCU7Zd4BDOmIOusLbcIogSPQmQCgkhhDaUCK-Mld9g3gqZNK9lwqlaxSgld4HATCswUwIz5WksGux23WVSaWT81rhLcK8bkrz18gNOelpPevrXpJ__x08u2C6NqrpPuWTb5fTLXCHDKLMm2-l0H7pJc7movgGtPdGw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Sobolev+spaces+with+variable+exponents+and+fractional+p+%28+x+%29+-Laplacians&rft.jtitle=Electronic+journal+of+qualitative+theory+of+differential+equations&rft.au=Kaufmann%2C+Uriel&rft.au=Rossi%2C+Julio&rft.au=Vidal%2C+Raul&rft.date=2017-01-01&rft.issn=1417-3875&rft.eissn=1417-3875&rft.issue=76&rft.spage=1&rft.epage=10&rft_id=info:doi/10.14232%2Fejqtde.2017.1.76&rft.externalDBID=n%2Fa&rft.externalDocID=10_14232_ejqtde_2017_1_76
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1417-3875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1417-3875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1417-3875&client=summon