Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity
In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of the Hepatitis B (HBV) virus and it’s control by applying the strategy of vaccinating an offspring. The number of basic reproductive is calcu...
Saved in:
Published in | Physica scripta Vol. 96; no. 7; pp. 74005 - 74033 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-8949 1402-4896 |
DOI | 10.1088/1402-4896/abfacc |
Cover
Loading…
Abstract | In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of the Hepatitis B (HBV) virus and it’s control by applying the strategy of vaccinating an offspring. The number of basic reproductive is calculated and proved that the system holds some sharp threshold properties. It is investigated that the model has a bounded, unique and positive solution subject to initial positive data. Furthermore, the stability of the investigated system has been presented by using stochastic Lyapunov functional theory. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. To control the spread of the disease through some external measures, we used optimal control theory and analyzed stochastic as well as deterministic control problems. For further verification of the obtained analytical results, additional graphical solutions have been presented for the ease of understanding. This study may provide a strong theoretical basis for understanding worldwide chronic infectious diseases. |
---|---|
AbstractList | In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of the Hepatitis B (HBV) virus and it’s control by applying the strategy of vaccinating an offspring. The number of basic reproductive is calculated and proved that the system holds some sharp threshold properties. It is investigated that the model has a bounded, unique and positive solution subject to initial positive data. Furthermore, the stability of the investigated system has been presented by using stochastic Lyapunov functional theory. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. To control the spread of the disease through some external measures, we used optimal control theory and analyzed stochastic as well as deterministic control problems. For further verification of the obtained analytical results, additional graphical solutions have been presented for the ease of understanding. This study may provide a strong theoretical basis for understanding worldwide chronic infectious diseases. |
Author | Din, Anwarud Li, Yongjin |
Author_xml | – sequence: 1 givenname: Anwarud orcidid: 0000-0003-0463-0360 surname: Din fullname: Din, Anwarud organization: Department of Mathematics Sun Yat-sen University , Guangzhou 510275, People's Republic of China – sequence: 2 givenname: Yongjin orcidid: 0000-0003-4322-308X surname: Li fullname: Li, Yongjin organization: Department of Mathematics Sun Yat-sen University , Guangzhou 510275, People's Republic of China |
BookMark | eNp9kLtPwzAYxC1UJEphZ_TERKjtpHE8QsVLqsQAzJZfUVwlcWS7gvLX4xDEgIDpe-jupPsdg1nvegPAGUaXGFXVEheIZEXFyqWQtVDqAMy_XzMwRyjHWcUKdgSOQ9giREpSsjl4f4oiWtcLv4fahuit3I03NG_R9upzFb2Gboi2Ey1Uro_etbB2HsbGwBCdakSIVsHGDCkq2gCvoRmsNl16dk6bFr7a2MBB-GhThO26XW_j_gQc1qIN5vRrLsDL7c3z-j7bPN49rK82mcoxjhnNSc4kMzXNdSlLVFOdG1zUjMqSYLKSpNRKEKNyozWlTClCmUSKCSkk1SpfgHLKVd6F4E3NlZ1KRy9syzHiI0E-4uIjLj4RTEb0wzj4BMHv_7OcTxbrBr51O9-nZnwIPEkoR7RAaMUHXSfhxS_CP3M_APTIlz4 |
CODEN | PHSTBO |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_01_070 crossref_primary_10_1080_16583655_2024_2414523 crossref_primary_10_1155_2023_8255686 crossref_primary_10_1142_S1793524523500833 crossref_primary_10_3390_sym16101306 crossref_primary_10_1155_2024_8811930 crossref_primary_10_3390_math11173642 crossref_primary_10_1088_1402_4896_ad8f6a crossref_primary_10_1063_5_0063050 crossref_primary_10_3934_math_2023079 crossref_primary_10_1038_s41598_024_70788_7 crossref_primary_10_1080_10255842_2022_2106784 crossref_primary_10_1080_10255842_2023_2199900 crossref_primary_10_1186_s13661_023_01761_y crossref_primary_10_1088_1402_4896_ac1c1a crossref_primary_10_1016_j_rinp_2021_104775 crossref_primary_10_1080_17455030_2022_2147598 crossref_primary_10_1155_2022_4779213 crossref_primary_10_1016_j_matcom_2022_08_012 crossref_primary_10_3934_mbe_2022195 crossref_primary_10_1515_ijnsns_2021_0150 crossref_primary_10_1088_1674_1056_ac2f32 crossref_primary_10_1002_mma_9782 crossref_primary_10_3934_math_2022398 crossref_primary_10_1155_2021_3094011 crossref_primary_10_3934_mbe_2022101 crossref_primary_10_1515_ijnsns_2021_0399 crossref_primary_10_1515_phys_2022_0033 crossref_primary_10_1142_S0218348X22400175 crossref_primary_10_1016_j_rinp_2021_104683 crossref_primary_10_1016_j_rinp_2022_105757 crossref_primary_10_1007_s11071_023_08790_3 crossref_primary_10_3934_math_20241033 crossref_primary_10_1080_17513758_2023_2299001 crossref_primary_10_1142_S021797922350176X crossref_primary_10_3390_math11081806 crossref_primary_10_3934_math_2023804 crossref_primary_10_1142_S0218348X22402204 crossref_primary_10_1038_s41598_021_03732_8 crossref_primary_10_3934_mbe_2022356 crossref_primary_10_1140_epjp_s13360_023_04625_7 crossref_primary_10_1088_1402_4896_ad186c crossref_primary_10_1142_S0218348X22401272 crossref_primary_10_3934_mbe_2023483 crossref_primary_10_1080_10255842_2022_2050222 crossref_primary_10_1016_j_rinp_2022_105687 crossref_primary_10_1016_j_csfx_2024_100117 crossref_primary_10_3390_math10162830 crossref_primary_10_1007_s00285_024_02151_3 crossref_primary_10_1142_S0217979222502381 crossref_primary_10_1080_10255842_2022_2103371 crossref_primary_10_1186_s13661_023_01740_3 crossref_primary_10_1088_1402_4896_acfa34 crossref_primary_10_1016_j_chaos_2023_113560 crossref_primary_10_1142_S0218348X22401521 crossref_primary_10_3389_fams_2023_1072447 crossref_primary_10_1007_s10473_024_0220_1 crossref_primary_10_1142_S0218348X23400066 crossref_primary_10_1155_2022_7226487 crossref_primary_10_1140_epjp_s13360_022_02748_x crossref_primary_10_3934_mbe_2021430 crossref_primary_10_3934_math_2023541 crossref_primary_10_3390_fractalfract6050279 crossref_primary_10_3934_math_2022492 crossref_primary_10_1016_j_rinp_2022_105653 crossref_primary_10_1016_j_rinp_2023_106966 crossref_primary_10_1016_j_aej_2024_12_109 crossref_primary_10_1016_j_chaos_2021_111623 crossref_primary_10_1140_epjp_s13360_023_04633_7 crossref_primary_10_1016_j_rinp_2021_104665 crossref_primary_10_1080_13873954_2024_2304808 crossref_primary_10_1515_phys_2022_0219 |
Cites_doi | 10.1016/j.aml.2013.11.002 10.1080/17513758.2019.1600750 10.1186/s13662-020-02983-5 10.1016/j.amc.2014.05.124 10.1103/PhysRevE.98.012114 10.1186/s13662-017-1077-6 10.1088/1402-4896/abb2e2 10.1016/j.biosystems.2012.10.003 10.1016/j.biosystems.2009.05.006 10.1016/j.chaos.2020.110286 10.1088/1402-4896/ab495b 10.1016/j.chaos.2018.01.036 10.1016/j.aej.2020.01.034 10.1016/j.apm.2009.06.002 10.1016/j.amc.2013.10.073 10.1056/NEJMcp041507 10.1140/epjp/i2019-12565-6 10.1080/17513758.2016.1256441 10.3934/dcdsb.2017071 10.1016/j.physa.2018.03.056 10.1016/j.physa.2017.04.173 10.1016/j.chaos.2020.109883 10.1038/307178a0 10.1016/j.jfranklin.2018.12.005 10.1016/j.chaos.2018.09.033 10.1016/j.apm.2012.08.004 10.1016/j.rinp.2021.104004 10.1016/j.jfranklin.2019.03.007 10.1002/num.22223 10.1016/j.rinp.2020.103719 10.1016/j.mbs.2005.01.004 10.1155/2019/3575410 10.1016/j.rinp.2020.103510 10.1016/j.jmaa.2007.11.005 10.1155/2015/271654 10.1088/0031-8949/86/02/025002 10.1016/0016-0032(74)90037-4 10.1088/0031-8949/2009/T136/014024 10.1016/j.chaos.2021.110839 10.1016/j.amc.2016.02.058 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1402-4896/abfacc |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1402-4896 |
ExternalDocumentID | 10_1088_1402_4896_abfacc psabfacc |
GrantInformation_xml | – fundername: Research Funds for the central Universities – fundername: National Natural Science Foundation of P. R. China grantid: 11971493; 12071491 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT LAP M45 MV1 N5L N9A NS0 PJBAE RIN RNS ROL RPA SJN SY9 TN5 W28 WH7 XPP ~02 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c311t-73239b9ef73d6b60f7d3e14f97b62125b26dca2ec3edd779cc279b0c9abab7dc3 |
IEDL.DBID | IOP |
ISSN | 0031-8949 |
IngestDate | Thu Apr 24 22:56:52 EDT 2025 Tue Jul 01 01:34:09 EDT 2025 Wed Aug 21 03:34:58 EDT 2024 Wed Jun 07 11:19:04 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-73239b9ef73d6b60f7d3e14f97b62125b26dca2ec3edd779cc279b0c9abab7dc3 |
Notes | PHYSSCR-113610.R1 |
ORCID | 0000-0003-4322-308X 0000-0003-0463-0360 |
PageCount | 29 |
ParticipantIDs | iop_journals_10_1088_1402_4896_abfacc crossref_citationtrail_10_1088_1402_4896_abfacc crossref_primary_10_1088_1402_4896_abfacc |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica scripta |
PublicationTitleAbbrev | PS |
PublicationTitleAlternate | Phys. Scr |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Iannelli (psabfaccbib3) 2005; 195.1 Din (psabfaccbib22) 2020 Din (psabfaccbib42) 2020; 19 Hoppensteadt (psabfaccbib6) 1974; 297.5 Din (psabfaccbib19) 2020; 19 Zhang (psabfaccbib2) 2017; 483 Zhang (psabfaccbib49) 2019; 356 Khan (psabfaccbib9) 2021; 24 Zaman (psabfaccbib55) 2009; 98 Kar (psabfaccbib51) 2013; 111 Din (psabfaccbib25) 2020; 141 Pontryagin (psabfaccbib56) 1962 Din (psabfaccbib29) 2021 Zhu (psabfaccbib20) 2020; 95.3 Okosun (psabfaccbib47) 2013; 37 Din (psabfaccbib15) 2021; 146 Din (psabfaccbib39) 2020; 20 Agarwal (psabfaccbib44) 2019; 356 Atangana (psabfaccbib16) 2019; 134.4 Din (psabfaccbib36) 2018; 98 Din (psabfaccbib30) 2020; 59 Wang (psabfaccbib1) 2016; 284 Atangana (psabfaccbib27) 2018; 505 Khan (psabfaccbib24) 2017; 11 Khan (psabfaccbib40) 2018; 108 McAleer (psabfaccbib8) 1984; 307 Modanli (psabfaccbib26) 2018; 34.5 Zhao (psabfaccbib38) 2014; 243 Yousefpour (psabfaccbib18) 2020; 136 Poland (psabfaccbib7) 2004; 351 Din (psabfaccbib34) 2020; 2020 Atangana (psabfaccbib14) 2021; 2021.1 Din (psabfaccbib32) 2020; 33 Rihan (psabfaccbib13) 2020; 2020.1 Duan (psabfaccbib5) 2014; 226 Zhao (psabfaccbib37) 2014; 34 Armenia (psabfaccbib33) 2019; 12 El Fatini (psabfaccbib45) 2020 Liu (psabfaccbib52) 2017; 22.4 Aris (psabfaccbib11) 1994 Nana-Kyere (psabfaccbib17) 2017; 7.1 Akgül (psabfaccbib28) 2019; 2116 Fleming (psabfaccbib48) 1975 Frankowska (psabfaccbib50) 2010 Özdemir (psabfaccbib21) 2009; 2009.T136 Gao (psabfaccbib12) 2012; 86.2 Li (psabfaccbib4) 2010; 34.2 Liu (psabfaccbib53) 2017; 2017 Alzahrani (psabfaccbib31) 2018; 116 Witbooi (psabfaccbib46) 2015; 2015 Lei (psabfaccbib43) 2016; 96 Trigger (psabfaccbib10) 2020; 95.10 Zhang (psabfaccbib35) 2019; 2019 Kamien (psabfaccbib54) 2012; 31 Khan (psabfaccbib41) 2019; 13 Dalal (psabfaccbib23) 2008; 341 |
References_xml | – volume: 34 start-page: 90 year: 2014 ident: psabfaccbib37 article-title: The threshold of a stochastic SIRS epidemic model with saturated incidence publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2013.11.002 – volume: 13 start-page: 328 year: 2019 ident: psabfaccbib41 article-title: A stochastic model for the transmission dynamics of hepatitis B virus publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2019.1600750 – volume: 33 start-page: 1 year: 2020 ident: psabfaccbib32 article-title: The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control publication-title: J Syst Sci Complex – volume: 2020 start-page: 1 year: 2020 ident: psabfaccbib34 article-title: Controlling heroin addiction via age-structured modeling publication-title: Advances in Difference Equations doi: 10.1186/s13662-020-02983-5 – year: 1975 ident: psabfaccbib48 – volume: 243 start-page: 718 year: 2014 ident: psabfaccbib38 article-title: The threshold of a stochastic SIS epidemic model with vac- cination.” publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.05.124 – volume: 98 year: 2018 ident: psabfaccbib36 article-title: Detecting critical transitions in the case of moderate or strong noise by binomial moments publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.012114 – volume: 2017 start-page: 1 year: 2017 ident: psabfaccbib53 article-title: Optimal harvesting control and dynamics of two-species stochastic model with delays publication-title: Advances in Difference Equations doi: 10.1186/s13662-017-1077-6 – volume: 95.10 year: 2020 ident: psabfaccbib10 article-title: Equation for epidemic spread with the quarantine measures: application to COVID-19 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abb2e2 – volume: 2021.1 start-page: 1 year: 2021 ident: psabfaccbib14 article-title: Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe publication-title: Advances in Difference Equations – volume: 111 start-page: 37 year: 2013 ident: psabfaccbib51 article-title: A theoretical study on mathematical modelling of an infectious disease with application of optimal control publication-title: BioSystems doi: 10.1016/j.biosystems.2012.10.003 – volume: 98 start-page: 43 year: 2009 ident: psabfaccbib55 article-title: Optimal treatment of an SIR epidemic model with time delay publication-title: BioSystems doi: 10.1016/j.biosystems.2009.05.006 – volume: 141 year: 2020 ident: psabfaccbib25 article-title: Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110286 – volume: 95.3 year: 2020 ident: psabfaccbib20 article-title: Dynamics analysis and optimal control strategy for a SIRS epidemic model with two discrete time delays publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab495b – volume: 7.1 start-page: 5 year: 2017 ident: psabfaccbib17 article-title: Hepatitis B optimal control model with vertical transmission publication-title: Appl. Math – volume: 108 start-page: 123 year: 2018 ident: psabfaccbib40 article-title: The extinction and persistence of the stochastic hepatitis B epidemic model publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.01.036 – volume: 59 start-page: 667 year: 2020 ident: psabfaccbib30 article-title: Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.01.034 – volume: 34.2 start-page: 437 year: 2010 ident: psabfaccbib4 article-title: Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2009.06.002 – volume: 226 start-page: 528 year: 2014 ident: psabfaccbib5 article-title: Global stability of an SVIR model with age of vaccination publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.10.073 – volume: 351 start-page: 2832 year: 2004 ident: psabfaccbib7 article-title: Prevention of hepatitis B with the hepatitis B vaccine publication-title: New Engl. J. Med. doi: 10.1056/NEJMcp041507 – volume: 134.4 start-page: 160 year: 2019 ident: psabfaccbib16 article-title: Fractional stochastic modelling illustration with modified Chua attractor publication-title: The European Physical Journal Plus doi: 10.1140/epjp/i2019-12565-6 – volume: 11 start-page: 172 year: 2017 ident: psabfaccbib24 article-title: The transmission dynamic and optimal control of acute and chronic hepatitis B publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2016.1256441 – volume: 22.4 start-page: 1493 year: 2017 ident: psabfaccbib52 article-title: Optimal harvesting of a stochastic delay competitive model publication-title: Discrete and Continuous Dynamical Systems-B doi: 10.3934/dcdsb.2017071 – volume: 505 start-page: 688 year: 2018 ident: psabfaccbib27 article-title: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties publication-title: Physica A doi: 10.1016/j.physa.2018.03.056 – year: 2020 ident: psabfaccbib22 – volume: 483 start-page: 94 year: 2017 ident: psabfaccbib2 article-title: Dynamical behavior of a stochastic SVIR epidemic model with vaccination publication-title: Physica A doi: 10.1016/j.physa.2017.04.173 – volume: 136 year: 2020 ident: psabfaccbib18 article-title: Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109883 – volume: 307 start-page: 178 year: 1984 ident: psabfaccbib8 article-title: Human hepatitis B vaccine from recombinant yeast publication-title: Nature doi: 10.1038/307178a0 – volume: 356 start-page: 1396 year: 2019 ident: psabfaccbib49 article-title: The obstacle problem of integro-partial differential equations with applications to stochastic optimal control/stopping problem publication-title: J. Frankl. Inst doi: 10.1016/j.jfranklin.2018.12.005 – volume: 96 start-page: 1 year: 2016 ident: psabfaccbib43 article-title: Dynamical behaviours of a stochastic SIRI epidemic model publication-title: Appl. Anal. – volume: 116 start-page: 287 year: 2018 ident: psabfaccbib31 article-title: Modeling the dynamics of Hepatitis E with optimal control publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.09.033 – volume: 37 start-page: 3802 year: 2013 ident: psabfaccbib47 article-title: Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.08.004 – volume: 24 year: 2021 ident: psabfaccbib9 article-title: Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model publication-title: Results in Physics doi: 10.1016/j.rinp.2021.104004 – volume: 2020.1 start-page: 1 year: 2020 ident: psabfaccbib13 article-title: Stochastic SIRC epidemic model with time-delay for COVID-19 publication-title: Advances in difference equations – volume: 356 start-page: 3991 year: 2019 ident: psabfaccbib44 article-title: Optimal control and dynamical aspects of a stochastic pine wilt disease model publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2019.03.007 – volume: 34.5 start-page: 1678 year: 2018 ident: psabfaccbib26 article-title: On solutions to the second-order partial differential equations by two accurate methods publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/num.22223 – year: 1962 ident: psabfaccbib56 – volume: 31 year: 2012 ident: psabfaccbib54 – volume: 20 year: 2020 ident: psabfaccbib39 article-title: Mathematical analysis of dengue stochastic epidemic model publication-title: Results in Physics doi: 10.1016/j.rinp.2020.103719 – volume: 195.1 start-page: 23 year: 2005 ident: psabfaccbib3 article-title: Strain replacement in an epidemic model with super-infection and perfect vaccination publication-title: Math. Biosci. doi: 10.1016/j.mbs.2005.01.004 – start-page: 269 year: 1994 ident: psabfaccbib11 article-title: Mathematical modelling techniques publication-title: Courier Corporation – volume: 2019 year: 2019 ident: psabfaccbib35 article-title: Stationary distribution and extinction of a stochastic siqr model with saturated incidence rate publication-title: Mathematical Problems in Engineering doi: 10.1155/2019/3575410 – year: 2021 ident: psabfaccbib29 – volume: 2116 year: 2019 ident: psabfaccbib28 article-title: How to construct a fourth-order scheme for Heston-Hull-White equation? – start-page: 1 year: 2020 ident: psabfaccbib45 article-title: A control treatment for a stochastic epidemic model with relapse and Crowly-Martin incidence publication-title: The Journal of Analysis – year: 2010 ident: psabfaccbib50 article-title: Optimal control under state constraints – volume: 19 year: 2020 ident: psabfaccbib19 article-title: On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease publication-title: Results in Physics doi: 10.1016/j.rinp.2020.103510 – volume: 341 start-page: 1084 year: 2008 ident: psabfaccbib23 article-title: A stochastic model for internal HIV dynamics publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.11.005 – volume: 2015 year: 2015 ident: psabfaccbib46 article-title: Vaccination control in a stochastic SVIR epidemic model publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2015/271654 – volume: 86.2 year: 2012 ident: psabfaccbib12 article-title: Stochastic resonance induced by the memory of a random delay publication-title: Phys. Scr. doi: 10.1088/0031-8949/86/02/025002 – volume: 297.5 start-page: 325 year: 1974 ident: psabfaccbib6 article-title: An age dependent epidemic model publication-title: J. Franklin Inst. doi: 10.1016/0016-0032(74)90037-4 – volume: 19 year: 2020 ident: psabfaccbib42 article-title: Stochastic dynamics of hepatitis B epidemics publication-title: Results in Physics doi: 10.1016/j.rinp.2020.103510 – volume: 2009.T136 year: 2009 ident: psabfaccbib21 article-title: Fractional optimal control problem of an axis-symmetric diffusion-wave propagation publication-title: Phys. Scr. T doi: 10.1088/0031-8949/2009/T136/014024 – volume: 12 start-page: 41 year: 2019 ident: psabfaccbib33 publication-title: Problem for the Optimal Control of Cigarette Addiction – volume: 146 year: 2021 ident: psabfaccbib15 article-title: Delayed hepatitis B epidemic model with stochastic analysis publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110839 – volume: 284 start-page: 47 year: 2016 ident: psabfaccbib1 article-title: Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2016.02.058 |
SSID | ssj0026269 |
Score | 2.5555274 |
Snippet | In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 74005 |
SubjectTerms | numerical simulation Stochastic HBV vaccination model stochastic optimal control stochastic stability analysis |
Title | Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity |
URI | https://iopscience.iop.org/article/10.1088/1402-4896/abfacc |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA7qsuBF3Yc4vjaH9bCHnulOMukOnlQcXMFdwRU8LIS8mhnUnmam56C_3konM-iyiHhr6Ep1qEpXviRfqhD6zqhNVVaqhFMFCxTNSSIcZQnhOrdUQQS0fkP_4hc_u2bnN_2bJXS4uAszrmPo78JjSBQcTBgJcUUPlgQkYYXgPaVLZcwy-kALzn35gp-_LxerLUDqAfvSLCkEE_GM8n8aXsxJy_DdZ1PMYB39nXcuMEtuu7NGd83jP3kb39n7DbQWoSc-CqKf0JKrPqOPLQXUTL-gx6twKq8mD9j6dLqxEhaG8D2q2usPWFUWjyHI3IOeSHLHgHoxoEgMKNIMlU_7jIfO87Sb0RQfYxdK0Brc1tzBft8X1767oGLUXk5pHr6i68Hpn5OzJFZmSAzNsibJKaFCC1fm1HLN0xL86jJWihycDZBJE26NIs5QZ22eC2NILnRqhNIKxoChm2ilGlduC-FU27RvMmppQVihmAYI5sqSUWIYBB_dQb25b6SJact99Yw72R6fF4X0FpXeojJYtIN-LFrUIWXHK7IH4CgZ_9vpK3LfXsjVUwnvcgkADMKYrG25_UZNO2iVeFpMy_jdRSvNZOb2ANc0er8dv09m_PYe |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbqBC2ypOkLebQ1h3ToIFsiaUoc86jhtEkaoDXgjeVLiNFEFmJlSH59jiJjxEVhFOgmQKcTdUcdP5If7xDaZ9SmKitVwqmCCYrmJBGOsoRwnVuqIAJav6B_ds5HY_Z1MpjEOqftWZhZHUN_Dy5DouBgwkiIK_owJSAJKwTvK10qY_q1LTtofUA59cnzT75fLGZcgNYD_qVZUggm4j7l37QsjUsdePeTYWb4Ev16bGBgl_zu3Ta6Z-7_yN34H1-whTYjBMUHQfwVeuaq1-h5SwU18zfo_kfYnVc3d9j6tLqxIhaGMD6t2mMQWFUWzyDYXIOeSHbHgH4xoEkMaNJcKp_-GV86z9dupnN8iF0oRWtwW3sH-_VfXPsmg4ppe0iluXuLxsMvP49GSazQkBiaZU2SU0KFFq7MqeWapyX412WsFDk4HaCTJtwaRZyhzto8F8aQXOjUCKUV9AVD36G1ala5bYRTbdOByailBWGFYhqgmCtLRolhEIT0Duo_-keamL7cV9G4ku02elFIb1XprSqDVXfQ58UTdUjdsUL2EzhLxv93vkKuuyRXzyXcyyUAMQhnEvy4-4-auujFxfFQnp6cf9tDG8QzZVoS8Hu01tzcug8AdRr9se3OD-mX-4I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stationary+distribution+extinction+and+optimal+control+for+the+stochastic+hepatitis+B+epidemic+model+with+partial+immunity&rft.jtitle=Physica+scripta&rft.au=Din%2C+Anwarud&rft.au=Li%2C+Yongjin&rft.date=2021-07-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=96&rft.issue=7&rft_id=info:doi/10.1088%2F1402-4896%2Fabfacc&rft.externalDocID=psabfacc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon |