Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity

In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of the Hepatitis B (HBV) virus and it’s control by applying the strategy of vaccinating an offspring. The number of basic reproductive is calcu...

Full description

Saved in:
Bibliographic Details
Published inPhysica scripta Vol. 96; no. 7; pp. 74005 - 74033
Main Authors Din, Anwarud, Li, Yongjin
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2021
Subjects
Online AccessGet full text
ISSN0031-8949
1402-4896
DOI10.1088/1402-4896/abfacc

Cover

Loading…
Abstract In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of the Hepatitis B (HBV) virus and it’s control by applying the strategy of vaccinating an offspring. The number of basic reproductive is calculated and proved that the system holds some sharp threshold properties. It is investigated that the model has a bounded, unique and positive solution subject to initial positive data. Furthermore, the stability of the investigated system has been presented by using stochastic Lyapunov functional theory. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. To control the spread of the disease through some external measures, we used optimal control theory and analyzed stochastic as well as deterministic control problems. For further verification of the obtained analytical results, additional graphical solutions have been presented for the ease of understanding. This study may provide a strong theoretical basis for understanding worldwide chronic infectious diseases.
AbstractList In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of the Hepatitis B (HBV) virus and it’s control by applying the strategy of vaccinating an offspring. The number of basic reproductive is calculated and proved that the system holds some sharp threshold properties. It is investigated that the model has a bounded, unique and positive solution subject to initial positive data. Furthermore, the stability of the investigated system has been presented by using stochastic Lyapunov functional theory. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. To control the spread of the disease through some external measures, we used optimal control theory and analyzed stochastic as well as deterministic control problems. For further verification of the obtained analytical results, additional graphical solutions have been presented for the ease of understanding. This study may provide a strong theoretical basis for understanding worldwide chronic infectious diseases.
Author Din, Anwarud
Li, Yongjin
Author_xml – sequence: 1
  givenname: Anwarud
  orcidid: 0000-0003-0463-0360
  surname: Din
  fullname: Din, Anwarud
  organization: Department of Mathematics Sun Yat-sen University , Guangzhou 510275, People's Republic of China
– sequence: 2
  givenname: Yongjin
  orcidid: 0000-0003-4322-308X
  surname: Li
  fullname: Li, Yongjin
  organization: Department of Mathematics Sun Yat-sen University , Guangzhou 510275, People's Republic of China
BookMark eNp9kLtPwzAYxC1UJEphZ_TERKjtpHE8QsVLqsQAzJZfUVwlcWS7gvLX4xDEgIDpe-jupPsdg1nvegPAGUaXGFXVEheIZEXFyqWQtVDqAMy_XzMwRyjHWcUKdgSOQ9giREpSsjl4f4oiWtcLv4fahuit3I03NG_R9upzFb2Gboi2Ey1Uro_etbB2HsbGwBCdakSIVsHGDCkq2gCvoRmsNl16dk6bFr7a2MBB-GhThO26XW_j_gQc1qIN5vRrLsDL7c3z-j7bPN49rK82mcoxjhnNSc4kMzXNdSlLVFOdG1zUjMqSYLKSpNRKEKNyozWlTClCmUSKCSkk1SpfgHLKVd6F4E3NlZ1KRy9syzHiI0E-4uIjLj4RTEb0wzj4BMHv_7OcTxbrBr51O9-nZnwIPEkoR7RAaMUHXSfhxS_CP3M_APTIlz4
CODEN PHSTBO
CitedBy_id crossref_primary_10_1016_j_aej_2024_01_070
crossref_primary_10_1080_16583655_2024_2414523
crossref_primary_10_1155_2023_8255686
crossref_primary_10_1142_S1793524523500833
crossref_primary_10_3390_sym16101306
crossref_primary_10_1155_2024_8811930
crossref_primary_10_3390_math11173642
crossref_primary_10_1088_1402_4896_ad8f6a
crossref_primary_10_1063_5_0063050
crossref_primary_10_3934_math_2023079
crossref_primary_10_1038_s41598_024_70788_7
crossref_primary_10_1080_10255842_2022_2106784
crossref_primary_10_1080_10255842_2023_2199900
crossref_primary_10_1186_s13661_023_01761_y
crossref_primary_10_1088_1402_4896_ac1c1a
crossref_primary_10_1016_j_rinp_2021_104775
crossref_primary_10_1080_17455030_2022_2147598
crossref_primary_10_1155_2022_4779213
crossref_primary_10_1016_j_matcom_2022_08_012
crossref_primary_10_3934_mbe_2022195
crossref_primary_10_1515_ijnsns_2021_0150
crossref_primary_10_1088_1674_1056_ac2f32
crossref_primary_10_1002_mma_9782
crossref_primary_10_3934_math_2022398
crossref_primary_10_1155_2021_3094011
crossref_primary_10_3934_mbe_2022101
crossref_primary_10_1515_ijnsns_2021_0399
crossref_primary_10_1515_phys_2022_0033
crossref_primary_10_1142_S0218348X22400175
crossref_primary_10_1016_j_rinp_2021_104683
crossref_primary_10_1016_j_rinp_2022_105757
crossref_primary_10_1007_s11071_023_08790_3
crossref_primary_10_3934_math_20241033
crossref_primary_10_1080_17513758_2023_2299001
crossref_primary_10_1142_S021797922350176X
crossref_primary_10_3390_math11081806
crossref_primary_10_3934_math_2023804
crossref_primary_10_1142_S0218348X22402204
crossref_primary_10_1038_s41598_021_03732_8
crossref_primary_10_3934_mbe_2022356
crossref_primary_10_1140_epjp_s13360_023_04625_7
crossref_primary_10_1088_1402_4896_ad186c
crossref_primary_10_1142_S0218348X22401272
crossref_primary_10_3934_mbe_2023483
crossref_primary_10_1080_10255842_2022_2050222
crossref_primary_10_1016_j_rinp_2022_105687
crossref_primary_10_1016_j_csfx_2024_100117
crossref_primary_10_3390_math10162830
crossref_primary_10_1007_s00285_024_02151_3
crossref_primary_10_1142_S0217979222502381
crossref_primary_10_1080_10255842_2022_2103371
crossref_primary_10_1186_s13661_023_01740_3
crossref_primary_10_1088_1402_4896_acfa34
crossref_primary_10_1016_j_chaos_2023_113560
crossref_primary_10_1142_S0218348X22401521
crossref_primary_10_3389_fams_2023_1072447
crossref_primary_10_1007_s10473_024_0220_1
crossref_primary_10_1142_S0218348X23400066
crossref_primary_10_1155_2022_7226487
crossref_primary_10_1140_epjp_s13360_022_02748_x
crossref_primary_10_3934_mbe_2021430
crossref_primary_10_3934_math_2023541
crossref_primary_10_3390_fractalfract6050279
crossref_primary_10_3934_math_2022492
crossref_primary_10_1016_j_rinp_2022_105653
crossref_primary_10_1016_j_rinp_2023_106966
crossref_primary_10_1016_j_aej_2024_12_109
crossref_primary_10_1016_j_chaos_2021_111623
crossref_primary_10_1140_epjp_s13360_023_04633_7
crossref_primary_10_1016_j_rinp_2021_104665
crossref_primary_10_1080_13873954_2024_2304808
crossref_primary_10_1515_phys_2022_0219
Cites_doi 10.1016/j.aml.2013.11.002
10.1080/17513758.2019.1600750
10.1186/s13662-020-02983-5
10.1016/j.amc.2014.05.124
10.1103/PhysRevE.98.012114
10.1186/s13662-017-1077-6
10.1088/1402-4896/abb2e2
10.1016/j.biosystems.2012.10.003
10.1016/j.biosystems.2009.05.006
10.1016/j.chaos.2020.110286
10.1088/1402-4896/ab495b
10.1016/j.chaos.2018.01.036
10.1016/j.aej.2020.01.034
10.1016/j.apm.2009.06.002
10.1016/j.amc.2013.10.073
10.1056/NEJMcp041507
10.1140/epjp/i2019-12565-6
10.1080/17513758.2016.1256441
10.3934/dcdsb.2017071
10.1016/j.physa.2018.03.056
10.1016/j.physa.2017.04.173
10.1016/j.chaos.2020.109883
10.1038/307178a0
10.1016/j.jfranklin.2018.12.005
10.1016/j.chaos.2018.09.033
10.1016/j.apm.2012.08.004
10.1016/j.rinp.2021.104004
10.1016/j.jfranklin.2019.03.007
10.1002/num.22223
10.1016/j.rinp.2020.103719
10.1016/j.mbs.2005.01.004
10.1155/2019/3575410
10.1016/j.rinp.2020.103510
10.1016/j.jmaa.2007.11.005
10.1155/2015/271654
10.1088/0031-8949/86/02/025002
10.1016/0016-0032(74)90037-4
10.1088/0031-8949/2009/T136/014024
10.1016/j.chaos.2021.110839
10.1016/j.amc.2016.02.058
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/abfacc
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_abfacc
psabfacc
GrantInformation_xml – fundername: Research Funds for the central Universities
– fundername: National Natural Science Foundation of P. R. China
  grantid: 11971493; 12071491
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
M45
MV1
N5L
N9A
NS0
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c311t-73239b9ef73d6b60f7d3e14f97b62125b26dca2ec3edd779cc279b0c9abab7dc3
IEDL.DBID IOP
ISSN 0031-8949
IngestDate Thu Apr 24 22:56:52 EDT 2025
Tue Jul 01 01:34:09 EDT 2025
Wed Aug 21 03:34:58 EDT 2024
Wed Jun 07 11:19:04 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-73239b9ef73d6b60f7d3e14f97b62125b26dca2ec3edd779cc279b0c9abab7dc3
Notes PHYSSCR-113610.R1
ORCID 0000-0003-4322-308X
0000-0003-0463-0360
PageCount 29
ParticipantIDs iop_journals_10_1088_1402_4896_abfacc
crossref_citationtrail_10_1088_1402_4896_abfacc
crossref_primary_10_1088_1402_4896_abfacc
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Iannelli (psabfaccbib3) 2005; 195.1
Din (psabfaccbib22) 2020
Din (psabfaccbib42) 2020; 19
Hoppensteadt (psabfaccbib6) 1974; 297.5
Din (psabfaccbib19) 2020; 19
Zhang (psabfaccbib2) 2017; 483
Zhang (psabfaccbib49) 2019; 356
Khan (psabfaccbib9) 2021; 24
Zaman (psabfaccbib55) 2009; 98
Kar (psabfaccbib51) 2013; 111
Din (psabfaccbib25) 2020; 141
Pontryagin (psabfaccbib56) 1962
Din (psabfaccbib29) 2021
Zhu (psabfaccbib20) 2020; 95.3
Okosun (psabfaccbib47) 2013; 37
Din (psabfaccbib15) 2021; 146
Din (psabfaccbib39) 2020; 20
Agarwal (psabfaccbib44) 2019; 356
Atangana (psabfaccbib16) 2019; 134.4
Din (psabfaccbib36) 2018; 98
Din (psabfaccbib30) 2020; 59
Wang (psabfaccbib1) 2016; 284
Atangana (psabfaccbib27) 2018; 505
Khan (psabfaccbib24) 2017; 11
Khan (psabfaccbib40) 2018; 108
McAleer (psabfaccbib8) 1984; 307
Modanli (psabfaccbib26) 2018; 34.5
Zhao (psabfaccbib38) 2014; 243
Yousefpour (psabfaccbib18) 2020; 136
Poland (psabfaccbib7) 2004; 351
Din (psabfaccbib34) 2020; 2020
Atangana (psabfaccbib14) 2021; 2021.1
Din (psabfaccbib32) 2020; 33
Rihan (psabfaccbib13) 2020; 2020.1
Duan (psabfaccbib5) 2014; 226
Zhao (psabfaccbib37) 2014; 34
Armenia (psabfaccbib33) 2019; 12
El Fatini (psabfaccbib45) 2020
Liu (psabfaccbib52) 2017; 22.4
Aris (psabfaccbib11) 1994
Nana-Kyere (psabfaccbib17) 2017; 7.1
Akgül (psabfaccbib28) 2019; 2116
Fleming (psabfaccbib48) 1975
Frankowska (psabfaccbib50) 2010
Özdemir (psabfaccbib21) 2009; 2009.T136
Gao (psabfaccbib12) 2012; 86.2
Li (psabfaccbib4) 2010; 34.2
Liu (psabfaccbib53) 2017; 2017
Alzahrani (psabfaccbib31) 2018; 116
Witbooi (psabfaccbib46) 2015; 2015
Lei (psabfaccbib43) 2016; 96
Trigger (psabfaccbib10) 2020; 95.10
Zhang (psabfaccbib35) 2019; 2019
Kamien (psabfaccbib54) 2012; 31
Khan (psabfaccbib41) 2019; 13
Dalal (psabfaccbib23) 2008; 341
References_xml – volume: 34
  start-page: 90
  year: 2014
  ident: psabfaccbib37
  article-title: The threshold of a stochastic SIRS epidemic model with saturated incidence
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2013.11.002
– volume: 13
  start-page: 328
  year: 2019
  ident: psabfaccbib41
  article-title: A stochastic model for the transmission dynamics of hepatitis B virus
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2019.1600750
– volume: 33
  start-page: 1
  year: 2020
  ident: psabfaccbib32
  article-title: The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control
  publication-title: J Syst Sci Complex
– volume: 2020
  start-page: 1
  year: 2020
  ident: psabfaccbib34
  article-title: Controlling heroin addiction via age-structured modeling
  publication-title: Advances in Difference Equations
  doi: 10.1186/s13662-020-02983-5
– year: 1975
  ident: psabfaccbib48
– volume: 243
  start-page: 718
  year: 2014
  ident: psabfaccbib38
  article-title: The threshold of a stochastic SIS epidemic model with vac- cination.”
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.05.124
– volume: 98
  year: 2018
  ident: psabfaccbib36
  article-title: Detecting critical transitions in the case of moderate or strong noise by binomial moments
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.012114
– volume: 2017
  start-page: 1
  year: 2017
  ident: psabfaccbib53
  article-title: Optimal harvesting control and dynamics of two-species stochastic model with delays
  publication-title: Advances in Difference Equations
  doi: 10.1186/s13662-017-1077-6
– volume: 95.10
  year: 2020
  ident: psabfaccbib10
  article-title: Equation for epidemic spread with the quarantine measures: application to COVID-19
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abb2e2
– volume: 2021.1
  start-page: 1
  year: 2021
  ident: psabfaccbib14
  article-title: Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe
  publication-title: Advances in Difference Equations
– volume: 111
  start-page: 37
  year: 2013
  ident: psabfaccbib51
  article-title: A theoretical study on mathematical modelling of an infectious disease with application of optimal control
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2012.10.003
– volume: 98
  start-page: 43
  year: 2009
  ident: psabfaccbib55
  article-title: Optimal treatment of an SIR epidemic model with time delay
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2009.05.006
– volume: 141
  year: 2020
  ident: psabfaccbib25
  article-title: Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110286
– volume: 95.3
  year: 2020
  ident: psabfaccbib20
  article-title: Dynamics analysis and optimal control strategy for a SIRS epidemic model with two discrete time delays
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab495b
– volume: 7.1
  start-page: 5
  year: 2017
  ident: psabfaccbib17
  article-title: Hepatitis B optimal control model with vertical transmission
  publication-title: Appl. Math
– volume: 108
  start-page: 123
  year: 2018
  ident: psabfaccbib40
  article-title: The extinction and persistence of the stochastic hepatitis B epidemic model
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.01.036
– volume: 59
  start-page: 667
  year: 2020
  ident: psabfaccbib30
  article-title: Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.01.034
– volume: 34.2
  start-page: 437
  year: 2010
  ident: psabfaccbib4
  article-title: Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2009.06.002
– volume: 226
  start-page: 528
  year: 2014
  ident: psabfaccbib5
  article-title: Global stability of an SVIR model with age of vaccination
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.10.073
– volume: 351
  start-page: 2832
  year: 2004
  ident: psabfaccbib7
  article-title: Prevention of hepatitis B with the hepatitis B vaccine
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMcp041507
– volume: 134.4
  start-page: 160
  year: 2019
  ident: psabfaccbib16
  article-title: Fractional stochastic modelling illustration with modified Chua attractor
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/i2019-12565-6
– volume: 11
  start-page: 172
  year: 2017
  ident: psabfaccbib24
  article-title: The transmission dynamic and optimal control of acute and chronic hepatitis B
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2016.1256441
– volume: 22.4
  start-page: 1493
  year: 2017
  ident: psabfaccbib52
  article-title: Optimal harvesting of a stochastic delay competitive model
  publication-title: Discrete and Continuous Dynamical Systems-B
  doi: 10.3934/dcdsb.2017071
– volume: 505
  start-page: 688
  year: 2018
  ident: psabfaccbib27
  article-title: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.03.056
– year: 2020
  ident: psabfaccbib22
– volume: 483
  start-page: 94
  year: 2017
  ident: psabfaccbib2
  article-title: Dynamical behavior of a stochastic SVIR epidemic model with vaccination
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.04.173
– volume: 136
  year: 2020
  ident: psabfaccbib18
  article-title: Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109883
– volume: 307
  start-page: 178
  year: 1984
  ident: psabfaccbib8
  article-title: Human hepatitis B vaccine from recombinant yeast
  publication-title: Nature
  doi: 10.1038/307178a0
– volume: 356
  start-page: 1396
  year: 2019
  ident: psabfaccbib49
  article-title: The obstacle problem of integro-partial differential equations with applications to stochastic optimal control/stopping problem
  publication-title: J. Frankl. Inst
  doi: 10.1016/j.jfranklin.2018.12.005
– volume: 96
  start-page: 1
  year: 2016
  ident: psabfaccbib43
  article-title: Dynamical behaviours of a stochastic SIRI epidemic model
  publication-title: Appl. Anal.
– volume: 116
  start-page: 287
  year: 2018
  ident: psabfaccbib31
  article-title: Modeling the dynamics of Hepatitis E with optimal control
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.09.033
– volume: 37
  start-page: 3802
  year: 2013
  ident: psabfaccbib47
  article-title: Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.08.004
– volume: 24
  year: 2021
  ident: psabfaccbib9
  article-title: Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2021.104004
– volume: 2020.1
  start-page: 1
  year: 2020
  ident: psabfaccbib13
  article-title: Stochastic SIRC epidemic model with time-delay for COVID-19
  publication-title: Advances in difference equations
– volume: 356
  start-page: 3991
  year: 2019
  ident: psabfaccbib44
  article-title: Optimal control and dynamical aspects of a stochastic pine wilt disease model
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.03.007
– volume: 34.5
  start-page: 1678
  year: 2018
  ident: psabfaccbib26
  article-title: On solutions to the second-order partial differential equations by two accurate methods
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.22223
– year: 1962
  ident: psabfaccbib56
– volume: 31
  year: 2012
  ident: psabfaccbib54
– volume: 20
  year: 2020
  ident: psabfaccbib39
  article-title: Mathematical analysis of dengue stochastic epidemic model
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2020.103719
– volume: 195.1
  start-page: 23
  year: 2005
  ident: psabfaccbib3
  article-title: Strain replacement in an epidemic model with super-infection and perfect vaccination
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2005.01.004
– start-page: 269
  year: 1994
  ident: psabfaccbib11
  article-title: Mathematical modelling techniques
  publication-title: Courier Corporation
– volume: 2019
  year: 2019
  ident: psabfaccbib35
  article-title: Stationary distribution and extinction of a stochastic siqr model with saturated incidence rate
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2019/3575410
– year: 2021
  ident: psabfaccbib29
– volume: 2116
  year: 2019
  ident: psabfaccbib28
  article-title: How to construct a fourth-order scheme for Heston-Hull-White equation?
– start-page: 1
  year: 2020
  ident: psabfaccbib45
  article-title: A control treatment for a stochastic epidemic model with relapse and Crowly-Martin incidence
  publication-title: The Journal of Analysis
– year: 2010
  ident: psabfaccbib50
  article-title: Optimal control under state constraints
– volume: 19
  year: 2020
  ident: psabfaccbib19
  article-title: On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2020.103510
– volume: 341
  start-page: 1084
  year: 2008
  ident: psabfaccbib23
  article-title: A stochastic model for internal HIV dynamics
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.11.005
– volume: 2015
  year: 2015
  ident: psabfaccbib46
  article-title: Vaccination control in a stochastic SVIR epidemic model
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2015/271654
– volume: 86.2
  year: 2012
  ident: psabfaccbib12
  article-title: Stochastic resonance induced by the memory of a random delay
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/86/02/025002
– volume: 297.5
  start-page: 325
  year: 1974
  ident: psabfaccbib6
  article-title: An age dependent epidemic model
  publication-title: J. Franklin Inst.
  doi: 10.1016/0016-0032(74)90037-4
– volume: 19
  year: 2020
  ident: psabfaccbib42
  article-title: Stochastic dynamics of hepatitis B epidemics
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2020.103510
– volume: 2009.T136
  year: 2009
  ident: psabfaccbib21
  article-title: Fractional optimal control problem of an axis-symmetric diffusion-wave propagation
  publication-title: Phys. Scr. T
  doi: 10.1088/0031-8949/2009/T136/014024
– volume: 12
  start-page: 41
  year: 2019
  ident: psabfaccbib33
  publication-title: Problem for the Optimal Control of Cigarette Addiction
– volume: 146
  year: 2021
  ident: psabfaccbib15
  article-title: Delayed hepatitis B epidemic model with stochastic analysis
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110839
– volume: 284
  start-page: 47
  year: 2016
  ident: psabfaccbib1
  article-title: Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.02.058
SSID ssj0026269
Score 2.5555274
Snippet In this paper, a stochastic model (with random noise transmission) is designed. The model possesses substantial potential to describe the dynamical behavior of...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 74005
SubjectTerms numerical simulation
Stochastic HBV vaccination model
stochastic optimal control
stochastic stability analysis
Title Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity
URI https://iopscience.iop.org/article/10.1088/1402-4896/abfacc
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA7qsuBF3Yc4vjaH9bCHnulOMukOnlQcXMFdwRU8LIS8mhnUnmam56C_3konM-iyiHhr6Ep1qEpXviRfqhD6zqhNVVaqhFMFCxTNSSIcZQnhOrdUQQS0fkP_4hc_u2bnN_2bJXS4uAszrmPo78JjSBQcTBgJcUUPlgQkYYXgPaVLZcwy-kALzn35gp-_LxerLUDqAfvSLCkEE_GM8n8aXsxJy_DdZ1PMYB39nXcuMEtuu7NGd83jP3kb39n7DbQWoSc-CqKf0JKrPqOPLQXUTL-gx6twKq8mD9j6dLqxEhaG8D2q2usPWFUWjyHI3IOeSHLHgHoxoEgMKNIMlU_7jIfO87Sb0RQfYxdK0Brc1tzBft8X1767oGLUXk5pHr6i68Hpn5OzJFZmSAzNsibJKaFCC1fm1HLN0xL86jJWihycDZBJE26NIs5QZ22eC2NILnRqhNIKxoChm2ilGlduC-FU27RvMmppQVihmAYI5sqSUWIYBB_dQb25b6SJact99Yw72R6fF4X0FpXeojJYtIN-LFrUIWXHK7IH4CgZ_9vpK3LfXsjVUwnvcgkADMKYrG25_UZNO2iVeFpMy_jdRSvNZOb2ANc0er8dv09m_PYe
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbqBC2ypOkLebQ1h3ToIFsiaUoc86jhtEkaoDXgjeVLiNFEFmJlSH59jiJjxEVhFOgmQKcTdUcdP5If7xDaZ9SmKitVwqmCCYrmJBGOsoRwnVuqIAJav6B_ds5HY_Z1MpjEOqftWZhZHUN_Dy5DouBgwkiIK_owJSAJKwTvK10qY_q1LTtofUA59cnzT75fLGZcgNYD_qVZUggm4j7l37QsjUsdePeTYWb4Ev16bGBgl_zu3Ta6Z-7_yN34H1-whTYjBMUHQfwVeuaq1-h5SwU18zfo_kfYnVc3d9j6tLqxIhaGMD6t2mMQWFUWzyDYXIOeSHbHgH4xoEkMaNJcKp_-GV86z9dupnN8iF0oRWtwW3sH-_VfXPsmg4ppe0iluXuLxsMvP49GSazQkBiaZU2SU0KFFq7MqeWapyX412WsFDk4HaCTJtwaRZyhzto8F8aQXOjUCKUV9AVD36G1ala5bYRTbdOByailBWGFYhqgmCtLRolhEIT0Duo_-keamL7cV9G4ku02elFIb1XprSqDVXfQ58UTdUjdsUL2EzhLxv93vkKuuyRXzyXcyyUAMQhnEvy4-4-auujFxfFQnp6cf9tDG8QzZVoS8Hu01tzcug8AdRr9se3OD-mX-4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stationary+distribution+extinction+and+optimal+control+for+the+stochastic+hepatitis+B+epidemic+model+with+partial+immunity&rft.jtitle=Physica+scripta&rft.au=Din%2C+Anwarud&rft.au=Li%2C+Yongjin&rft.date=2021-07-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=96&rft.issue=7&rft_id=info:doi/10.1088%2F1402-4896%2Fabfacc&rft.externalDocID=psabfacc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon