A temporal–spectral fusion transformer with subject-specific adapter for enhancing RSVP-BCI decoding

The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subje...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 181; p. 106844
Main Authors Li, Xujin, Wei, Wei, Qiu, Shuang, He, Huiguang
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use. •Temporal and spectral information of EEG signals are integrated for RSVP decoding.•Common features across two views are extracted and fused to enhance performance.•A subject-specific adapter is proposed for fast deployment of models to new subjects.•The proposed model achieves superior performance and reduces preparation time of BCI.
AbstractList The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use. •Temporal and spectral information of EEG signals are integrated for RSVP decoding.•Common features across two views are extracted and fused to enhance performance.•A subject-specific adapter is proposed for fast deployment of models to new subjects.•The proposed model achieves superior performance and reduces preparation time of BCI.
The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.
The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.
ArticleNumber 106844
Author Wei, Wei
Li, Xujin
He, Huiguang
Qiu, Shuang
Author_xml – sequence: 1
  givenname: Xujin
  orcidid: 0000-0001-5591-1029
  surname: Li
  fullname: Li, Xujin
  organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-8042-1574
  surname: Wei
  fullname: Wei, Wei
  organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 3
  givenname: Shuang
  surname: Qiu
  fullname: Qiu, Shuang
  email: shuang.qiu@ia.ac.cn
  organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 4
  givenname: Huiguang
  orcidid: 0000-0002-0684-1711
  surname: He
  fullname: He, Huiguang
  email: huiguang.he@ia.ac.cn
  organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39509814$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9OGzEQxq0K1IS0b1AhH3vZYK93s95LpRC1gBQJRP9cLa89Jo6y9tbeBXHjHXhDnqQOGzj2NKOZ3zfSN98JOnLeAUJfKJlTQhdn27mDwUE_z0lepNGCF8UHNKW8qrO84vkRmhJes2xBOJmgkxi3hOwh9hFNWF2SmtNiiswS99B2Psjdy9Nz7ED1qcVmiNY7nHoXjQ8tBPxg-w2OQ7NNSLYHrbEKSy27Pm0ThMFtpFPW3eHbn39usvPVFdagvE6TT-jYyF2Ez4c6Q79_fP-1uszW1xdXq-U6U4zSPqvysmBSQiM5LWujcwPJHegKqOZlozVTjTJaNVQaxSGvAApdQmlKvWC6pmyGvo53u-D_DhB70dqoYLeTDvwQBaM5Z5SXr-jpAR2aFrTogm1leBRvv0lAMQIq-BgDmHeEErGPQGzFGIHYRyDGCJLs2yiD5PPeQhBRWXAKtA3pdUJ7-_8D_wDMY5Pp
Cites_doi 10.1088/1741-2552/aace8c
10.1109/TBME.2016.2583200
10.1109/TBME.2013.2289898
10.3389/fnins.2015.00270
10.1145/3641289
10.1016/j.clinph.2012.12.050
10.1007/s11571-022-09906-y
10.1016/j.cmpb.2022.107324
10.1109/JSEN.2022.3159475
10.1109/CVPR.2019.00631
10.1109/TNSRE.2021.3099908
10.1145/3503161.3548269
10.1016/j.isprsjprs.2019.11.023
10.5626/JCSE.2013.7.2.139
10.1002/hbm.23730
10.1145/3534678.3539260
10.1109/CVPR52688.2022.01187
10.1109/TNSRE.2020.3023761
10.24963/ijcai.2018/222
10.1109/JPROC.2020.3004555
10.1016/j.jneumeth.2014.07.019
10.3389/fnins.2020.568000
10.1093/schbul/sbn093
10.1007/s11571-024-10073-5
10.1109/TNSRE.2006.875550
10.1038/nature14539
10.1016/j.bspc.2010.08.001
10.1186/s12938-018-0483-7
10.1109/TNSRE.2022.3184725
10.1109/TNSRE.2020.3048106
10.1016/j.neunet.2023.04.045
10.1126/science.1066168
10.1109/JOE.2015.2408471
10.1088/1741-2552/aa9817
10.1109/TKDE.2018.2872063
10.1016/j.clinph.2007.04.019
10.1016/j.neuroimage.2015.02.015
10.1109/TNSRE.2022.3230250
10.1126/science.959831
10.1109/TNSRE.2020.2980223
10.3389/fnins.2016.00430
10.1016/j.tics.2004.03.008
10.1109/CVPR.2015.7298682
10.1016/S1388-2457(02)00057-3
10.1145/3503161.3548107
10.3390/s120201211
10.1016/0013-4694(88)90149-6
10.1088/1741-2552/ac5eb7
10.1016/j.eswa.2023.120537
10.1109/TNSRE.2015.2502323
10.1088/1741-2552/ac1610
10.1109/ACCESS.2020.2988057
10.1109/TCYB.2024.3390805
10.3389/fncom.2015.00146
10.1109/TPAMI.2010.125
10.1109/TAFFC.2022.3199075
10.1016/j.jocs.2021.101544
10.1109/CVPR.2017.195
10.1016/j.neunet.2023.01.009
10.1109/TNSRE.2019.2940485
10.1109/TPAMI.2023.3275156
10.1109/TBME.2004.826702
10.1109/TNNLS.2014.2302898
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106844
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39509814
10_1016_j_neunet_2024_106844
S0893608024007688
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c311t-72543aaeba8159fd2fe202ed7e1d85bdd3cbcfdcb1afc8e27ee4d5e5f5d63d913
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Jul 10 19:56:22 EDT 2025
Thu Apr 03 07:00:12 EDT 2025
Tue Jul 01 03:32:21 EDT 2025
Sat Jan 11 15:48:25 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Rapid Serial Visual Presentation (RSVP)
Adapter-based fine-tuning
Transformer
Brain–Computer Interface (BCI)
Multi-view learning
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-72543aaeba8159fd2fe202ed7e1d85bdd3cbcfdcb1afc8e27ee4d5e5f5d63d913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8042-1574
0000-0001-5591-1029
0000-0002-0684-1711
PMID 39509814
PQID 3128318591
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3128318591
pubmed_primary_39509814
crossref_primary_10_1016_j_neunet_2024_106844
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-Jan
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei, Qiu, Ma, Li, Wang, He (b70) 2020; 28
Song, Zheng, Liu, Gao (b59) 2022; 31
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (b56) 2017; 38
Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., & Wang, Y. (2022). Multimodal token fusion for vision transformers. In
Li, Guo, Liu, Liu, Meng (b30) 2021; 29
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In
Meel, Vishwakarma (b45) 2023; 229
(pp. 815–823).
Matran-Fernandez, Poli (b44) 2016; 64
Van der Maaten, Hinton (b37) 2008; 9
Wang, Zhang, Han (b68) 2021
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b26) 2018; 15
Alpert, Manor, Spanier, Deouell, Geva (b2) 2013; 61
Polich (b51) 2007; 118
(pp. 51–59).
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
Shan, H., Liu, Y., & Stefanov, T. P. (2018). A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain Computer Interface. In
(pp. 4555–4563).
Barachant, Congedo (b4) 2014
Lees, Dayan, Cecotti, McCullagh, Maguire, Lotte (b29) 2018; 15
Acqualagna, Blankertz (b1) 2013; 124
Cecotti, Graser (b9) 2010; 33
Chen, Zhang, Pan, Xu, Guan (b13) 2023; 164
Goyal, Choudhury, Raje, Chakaravarthy, Sabharwal, Verma (b18) 2020
Zhang, Wang, Zhang, Gao (b80) 2020; 14
Wei, Qiu, Zhang, Mao, He (b71) 2022; 19
Ming, An, Xi, Hu, Wan, Qi (b46) 2010; 5
Tajmirriahi, Amini, Rabbani, Kafieh (b62) 2022; 22
Tsai, Bai, Liang, Kolter, Morency, Salakhutdinov (b65) 2019
Farwell, Donchin (b16) 1988; 70
Makeig, Debener, Onton, Delorme (b38) 2004; 8
Tian, Deng, Ying, Choi, Wu, Qin (b63) 2019; 27
(pp. 1251–1258).
Li, Yang, Zhang (b34) 2018; 31
Li, Wang, Li, Wu, Fu, Ji (b32) 2021
Roach, Mathalon (b53) 2008; 34
Li, X., Wei, W., Qiu, S., & He, H. (2022). TFF-Former: Temporal-frequency fusion transformer for zero-training decoding of two BCI tasks. In
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck (b19) 2013; 7
Xie, C.-W., Wu, J., Zheng, Y., Pan, P., & Hua, X.-S. (2022). Token embeddings alignment for cross-modal retrieval. In
(pp. 12186–12195).
Krizhevsky, Sutskever, Hinton (b25) 2012; 25
Wu, Yan, Zeng, Zhang, Tong (b73) 2018; 17
Xu, Zhu, Clifton (b75) 2023
Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen, J., et al. (2019). Deep surface normal estimation with hierarchical rgb-d fusion. In
Lee, Won, Kwon, Jun, Ahn (b28) 2020; 8
Waytowich, Lawhern, Bohannon, Ball, Lance (b69) 2016; 10
Ramachandran, Parmar, Vaswani, Bello, Levskaya, Shlens (b52) 2019; 32
Chen, Fan, Gao, Qiu, Wei, He (b11) 2024; 18
Marathe, Ries, Lawhern, Lance, Touryan, McDowell (b43) 2015; 9
Miranda, Casebeer, Hein, Judy, Krotkov, Laabs (b47) 2015; 244
Santamaria-Vazquez, Martinez-Cagigal, Vaquerizo-Villar, Hornero (b55) 2020; 28
(pp. 6153–6162).
Zhuang, Qi, Duan, Xi, Zhu, Zhu (b82) 2020; 109
(pp. 784–794).
(pp. 1604–1610).
Liu, Wang, Liu, Zhao, Liu (b35) 2023; 17
Yan, Guo, Xing, Xu (b76) 2024
Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne (b39) 2002; 295
Robbins, Touryan, Mullen, Kothe, Bigdely-Shamlo (b54) 2020; 28
Luo, Cui, Xu, Wang, Li, Liao (b36) 2023
Chen, Kornblith, Norouzi, Hinton (b12) 2020
Nicolas-Alonso, Gomez-Gil (b50) 2012; 12
Bostanov (b6) 2004; 51
LeCun, Bengio, Hinton (b27) 2015; 521
Mao, Qiu, Wei, He (b41) 2023; 161
Zhang, Zhang, Gao, Zhang, Yang (b81) 2023
Fan, Shen, Xie, Su, Yu, Hu (b15) 2022; 30
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b72) 2002; 113
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b66) 2017; 30
Ang, Guan (b3) 2013; 7
Jin, Xu, Daly, Zhao, Wang, Cichocki (b22) 2024
Casal, Di Persia, Schlotthauer (b7) 2022
Houlsby, Giurgiu, Jastrzebski, Morrone, De Laroussilhe, Gesmundo (b21) 2019
Li, Wan, Cheng, Meng, Han (b31) 2020; 159
Barngrover, Althoff, DeGuzman, Kastner (b5) 2015; 41
Havaei, Zekri, Mahmoudzadeh, Rabbani (b20) 2023; 229
Marathe, Lawhern, Wu, Slayback, Lance (b42) 2015; 24
Manor, Geva (b40) 2015; 9
Zang, Lin, Liu, Gao (b77) 2021; 18
Morioka, Kanemura, Hirayama, Shikauchi, Ogawa, Ikeda (b48) 2015; 111
Gerson, Parra, Sajda (b17) 2006; 14
Chang, Wang, Wang, Wu, Yang, Zhu (b10) 2024; 15
Cecotti, Eckstein, Giesbrecht (b8) 2014; 25
Torralba, Murphy, Freeman (b64) 2009
Squires, Wickens, Squires, Donchin (b60) 1976; 193
Zhang, Huang, Jin, Lu (b79) 2024
Kingma, Ba (b24) 2014
Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W., Hassoun, J., et al. (2022). Learned token pruning for transformers. In
Sun, Cui, Yu, Han, Hu, Li (b61) 2022; 13
Naseer, Ranasinghe, Khan, Hayat, Shahbaz Khan, Yang (b49) 2021; 34
Jin (10.1016/j.neunet.2024.106844_b22) 2024
Vaswani (10.1016/j.neunet.2024.106844_b66) 2017; 30
Ming (10.1016/j.neunet.2024.106844_b46) 2010; 5
Bostanov (10.1016/j.neunet.2024.106844_b6) 2004; 51
Luo (10.1016/j.neunet.2024.106844_b36) 2023
Chen (10.1016/j.neunet.2024.106844_b12) 2020
Wang (10.1016/j.neunet.2024.106844_b68) 2021
Miranda (10.1016/j.neunet.2024.106844_b47) 2015; 244
Morioka (10.1016/j.neunet.2024.106844_b48) 2015; 111
Makeig (10.1016/j.neunet.2024.106844_b39) 2002; 295
Sun (10.1016/j.neunet.2024.106844_b61) 2022; 13
Casal (10.1016/j.neunet.2024.106844_b7) 2022
Gerson (10.1016/j.neunet.2024.106844_b17) 2006; 14
Naseer (10.1016/j.neunet.2024.106844_b49) 2021; 34
Manor (10.1016/j.neunet.2024.106844_b40) 2015; 9
Zhuang (10.1016/j.neunet.2024.106844_b82) 2020; 109
Meel (10.1016/j.neunet.2024.106844_b45) 2023; 229
Wolpaw (10.1016/j.neunet.2024.106844_b72) 2002; 113
Schirrmeister (10.1016/j.neunet.2024.106844_b56) 2017; 38
Zhang (10.1016/j.neunet.2024.106844_b81) 2023
Li (10.1016/j.neunet.2024.106844_b34) 2018; 31
10.1016/j.neunet.2024.106844_b74
Ang (10.1016/j.neunet.2024.106844_b3) 2013; 7
10.1016/j.neunet.2024.106844_b33
Wei (10.1016/j.neunet.2024.106844_b70) 2020; 28
10.1016/j.neunet.2024.106844_b78
Li (10.1016/j.neunet.2024.106844_b31) 2020; 159
Barngrover (10.1016/j.neunet.2024.106844_b5) 2015; 41
Song (10.1016/j.neunet.2024.106844_b59) 2022; 31
Goyal (10.1016/j.neunet.2024.106844_b18) 2020
Fan (10.1016/j.neunet.2024.106844_b15) 2022; 30
Squires (10.1016/j.neunet.2024.106844_b60) 1976; 193
Alpert (10.1016/j.neunet.2024.106844_b2) 2013; 61
Li (10.1016/j.neunet.2024.106844_b32) 2021
Santamaria-Vazquez (10.1016/j.neunet.2024.106844_b55) 2020; 28
Zhang (10.1016/j.neunet.2024.106844_b80) 2020; 14
Lees (10.1016/j.neunet.2024.106844_b29) 2018; 15
Mao (10.1016/j.neunet.2024.106844_b41) 2023; 161
Marathe (10.1016/j.neunet.2024.106844_b43) 2015; 9
Marathe (10.1016/j.neunet.2024.106844_b42) 2015; 24
Yan (10.1016/j.neunet.2024.106844_b76) 2024
Gramfort (10.1016/j.neunet.2024.106844_b19) 2013; 7
10.1016/j.neunet.2024.106844_b23
Robbins (10.1016/j.neunet.2024.106844_b54) 2020; 28
10.1016/j.neunet.2024.106844_b67
Tsai (10.1016/j.neunet.2024.106844_b65) 2019
Chen (10.1016/j.neunet.2024.106844_b11) 2024; 18
Farwell (10.1016/j.neunet.2024.106844_b16) 1988; 70
Krizhevsky (10.1016/j.neunet.2024.106844_b25) 2012; 25
Liu (10.1016/j.neunet.2024.106844_b35) 2023; 17
Makeig (10.1016/j.neunet.2024.106844_b38) 2004; 8
Tajmirriahi (10.1016/j.neunet.2024.106844_b62) 2022; 22
Wu (10.1016/j.neunet.2024.106844_b73) 2018; 17
Zang (10.1016/j.neunet.2024.106844_b77) 2021; 18
Lawhern (10.1016/j.neunet.2024.106844_b26) 2018; 15
LeCun (10.1016/j.neunet.2024.106844_b27) 2015; 521
Li (10.1016/j.neunet.2024.106844_b30) 2021; 29
Kingma (10.1016/j.neunet.2024.106844_b24) 2014
Nicolas-Alonso (10.1016/j.neunet.2024.106844_b50) 2012; 12
Zhang (10.1016/j.neunet.2024.106844_b79) 2024
Chen (10.1016/j.neunet.2024.106844_b13) 2023; 164
Polich (10.1016/j.neunet.2024.106844_b51) 2007; 118
Matran-Fernandez (10.1016/j.neunet.2024.106844_b44) 2016; 64
Roach (10.1016/j.neunet.2024.106844_b53) 2008; 34
Cecotti (10.1016/j.neunet.2024.106844_b9) 2010; 33
Ramachandran (10.1016/j.neunet.2024.106844_b52) 2019; 32
Van der Maaten (10.1016/j.neunet.2024.106844_b37) 2008; 9
Chang (10.1016/j.neunet.2024.106844_b10) 2024; 15
10.1016/j.neunet.2024.106844_b57
10.1016/j.neunet.2024.106844_b14
10.1016/j.neunet.2024.106844_b58
Havaei (10.1016/j.neunet.2024.106844_b20) 2023; 229
Torralba (10.1016/j.neunet.2024.106844_b64) 2009
Lee (10.1016/j.neunet.2024.106844_b28) 2020; 8
Tian (10.1016/j.neunet.2024.106844_b63) 2019; 27
Cecotti (10.1016/j.neunet.2024.106844_b8) 2014; 25
Waytowich (10.1016/j.neunet.2024.106844_b69) 2016; 10
Xu (10.1016/j.neunet.2024.106844_b75) 2023
Acqualagna (10.1016/j.neunet.2024.106844_b1) 2013; 124
Houlsby (10.1016/j.neunet.2024.106844_b21) 2019
Barachant (10.1016/j.neunet.2024.106844_b4) 2014
Wei (10.1016/j.neunet.2024.106844_b71) 2022; 19
References_xml – volume: 14
  year: 2020
  ident: b80
  article-title: A benchmark dataset for RSVP-based brain–computer interfaces
  publication-title: Frontiers in Neuroscience
– volume: 41
  start-page: 123
  year: 2015
  end-page: 138
  ident: b5
  article-title: A brain–computer interface (BCI) for the detection of mine-like objects in sidescan sonar imagery
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 61
  start-page: 2290
  year: 2013
  end-page: 2303
  ident: b2
  article-title: Spatiotemporal representations of rapid visual target detection: A single-trial EEG classification algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
– year: 2014
  ident: b4
  article-title: A plug&play P300 BCI using information geometry
– reference: (pp. 51–59).
– volume: 28
  start-page: 2773
  year: 2020
  end-page: 2782
  ident: b55
  article-title: EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 15
  year: 2018
  ident: b26
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– volume: 29
  start-page: 1534
  year: 2021
  end-page: 1545
  ident: b30
  article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 17
  start-page: 1357
  year: 2023
  end-page: 1380
  ident: b35
  article-title: 3D convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification
  publication-title: Cognitive Neurodynamics
– volume: 9
  start-page: 270
  year: 2015
  ident: b43
  article-title: The effect of target and non-target similarity on neural classification performance: a boost from confidence
  publication-title: Frontiers in Neuroscience
– year: 2023
  ident: b81
  article-title: UAV target detection for IoT via enhancing ERP component by brain computer interface system
  publication-title: IEEE Internet of Things Journal
– reference: Li, X., Wei, W., Qiu, S., & He, H. (2022). TFF-Former: Temporal-frequency fusion transformer for zero-training decoding of two BCI tasks. In
– volume: 229
  year: 2023
  ident: b20
  article-title: An efficient deep learning framework for P300 evoked related potential detection in EEG signal
  publication-title: Computer Methods and Programs in Biomedicine
– reference: Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
– reference: Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W., Hassoun, J., et al. (2022). Learned token pruning for transformers. In
– volume: 27
  start-page: 1962
  year: 2019
  end-page: 1972
  ident: b63
  article-title: Deep multi-view feature learning for EEG-based epileptic seizure detection
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– start-page: 6558
  year: 2019
  ident: b65
  article-title: Multimodal transformer for unaligned multimodal language sequences
  publication-title: Proceedings of the conference. Association for computational linguistics. Meeting, 2019
– volume: 22
  start-page: 8685
  year: 2022
  end-page: 8692
  ident: b62
  article-title: An interpretable convolutional neural network for P300 detection: Analysis of time frequency features for limited data
  publication-title: IEEE Sensors Journal
– reference: Xie, C.-W., Wu, J., Zheng, Y., Pan, P., & Hua, X.-S. (2022). Token embeddings alignment for cross-modal retrieval. In
– volume: 15
  start-page: 1
  year: 2024
  end-page: 45
  ident: b10
  article-title: A survey on evaluation of large language models
  publication-title: ACM Transactions on Intelligent Systems and Technology
– year: 2023
  ident: b75
  article-title: Multimodal learning with transformers: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen, J., et al. (2019). Deep surface normal estimation with hierarchical rgb-d fusion. In
– start-page: 3690
  year: 2020
  end-page: 3699
  ident: b18
  article-title: Power-bert: Accelerating bert inference via progressive word-vector elimination
  publication-title: International conference on machine learning
– reference: (pp. 784–794).
– volume: 25
  start-page: 2030
  year: 2014
  end-page: 2042
  ident: b8
  article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 433
  year: 2010
  end-page: 445
  ident: b9
  article-title: Convolutional neural networks for P300 detection with application to brain-computer interfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 2790
  year: 2019
  end-page: 2799
  ident: b21
  article-title: Parameter-efficient transfer learning for NLP
  publication-title: International conference on machine learning
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b12
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International conference on machine learning
– year: 2021
  ident: b32
  article-title: Phase preservation neural network for electroencephalography classification in rapid serial visual presentation task
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: (pp. 6153–6162).
– volume: 25
  year: 2012
  ident: b25
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 8
  start-page: 74385
  year: 2020
  end-page: 74400
  ident: b28
  article-title: CNN with large data achieves true zero-training in online P300 brain-computer interface
  publication-title: IEEE Access
– reference: (pp. 12186–12195).
– year: 2024
  ident: b79
  article-title: Vision-language models for vision tasks: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 30
  year: 2017
  ident: b66
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  year: 2021
  ident: b49
  article-title: Intriguing properties of vision transformers
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  year: 2019
  ident: b52
  article-title: Stand-alone self-attention in vision models
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 907
  year: 2008
  end-page: 926
  ident: b53
  article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia
  publication-title: Schizophrenia Bulletin
– volume: 109
  start-page: 43
  year: 2020
  end-page: 76
  ident: b82
  article-title: A comprehensive survey on transfer learning
  publication-title: Proceedings of the IEEE
– volume: 244
  start-page: 52
  year: 2015
  end-page: 67
  ident: b47
  article-title: DARPA-funded efforts in the development of novel brain–computer interface technologies
  publication-title: Journal of Neuroscience Methods
– volume: 193
  start-page: 1142
  year: 1976
  end-page: 1146
  ident: b60
  article-title: The effect of stimulus sequence on the waveform of the cortical event-related potential
  publication-title: Science
– volume: 9
  start-page: 146
  year: 2015
  ident: b40
  article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI
  publication-title: Frontiers in Computational Neuroscience
– volume: 118
  start-page: 2128
  year: 2007
  end-page: 2148
  ident: b51
  article-title: Updating P300: an integrative theory of P3a and P3b
  publication-title: Clinical Neurophysiology
– volume: 31
  start-page: 710
  year: 2022
  end-page: 719
  ident: b59
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 161
  start-page: 65
  year: 2023
  end-page: 82
  ident: b41
  article-title: Cross-modal guiding and reweighting network for multi-modal RSVP-based target detection
  publication-title: Neural Networks
– volume: 111
  start-page: 167
  year: 2015
  end-page: 178
  ident: b48
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
– volume: 18
  start-page: 357
  year: 2024
  end-page: 370
  ident: b11
  article-title: EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method
  publication-title: Cognitive Neurodynamics
– year: 2024
  ident: b76
  article-title: Bridge graph attention based graph convolution network with multi-scale transformer for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– year: 2009
  ident: b64
  article-title: The MIT-CSAIL database of objects and scenes
– year: 2024
  ident: b22
  article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Cybernetics
– year: 2014
  ident: b24
  article-title: Adam: A method for stochastic optimization
– volume: 5
  start-page: 243
  year: 2010
  end-page: 251
  ident: b46
  article-title: Time-locked and phase-locked features of P300 event-related potentials (ERPs) for brain–computer interface speller
  publication-title: Biomedical Signal Processing and Control
– volume: 18
  start-page: 0460c8
  year: 2021
  ident: b77
  article-title: A deep learning method for single-trial EEG classification in RSVP task based on spatiotemporal features of ERPs
  publication-title: Journal of Neural Engineering
– volume: 7
  start-page: 139
  year: 2013
  end-page: 146
  ident: b3
  article-title: Brain-computer interface in stroke rehabilitation
  publication-title: Journal of Computing Science and Engineering
– reference: (pp. 815–823).
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b72
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
– volume: 14
  start-page: 174
  year: 2006
  end-page: 179
  ident: b17
  article-title: Cortically coupled computer vision for rapid image search
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 24
  start-page: 333
  year: 2015
  end-page: 343
  ident: b42
  article-title: Improved neural signal classification in a rapid serial visual presentation task using active learning
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 28
  start-page: 2344
  year: 2020
  end-page: 2355
  ident: b70
  article-title: Reducing calibration efforts in RSVP tasks with multi-source adversarial domain adaptation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– reference: (pp. 1604–1610).
– volume: 229
  year: 2023
  ident: b45
  article-title: Multi-modal fusion using fine-tuned self-attention and transfer learning for veracity analysis of web information
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 430
  year: 2016
  ident: b69
  article-title: Spectral transfer learning using information geometry for a user-independent brain-computer interface
  publication-title: Frontiers in Neuroscience
– volume: 30
  start-page: 1727
  year: 2022
  end-page: 1736
  ident: b15
  article-title: DC-tCNN: A deep model for EEG-based detection of dim targets
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b56
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– reference: Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In
– volume: 9
  year: 2008
  ident: b37
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., & Wang, Y. (2022). Multimodal token fusion for vision transformers. In
– year: 2023
  ident: b36
  article-title: A dual-branch spatio-temporal-spectral transformer feature fusion network for EEG-based visual recognition
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2022
  ident: b7
  article-title: Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals
  publication-title: Journal of Computer Science
– volume: 19
  year: 2022
  ident: b71
  article-title: ERP prototypical matching net: a meta-learning method for zero-calibration RSVP-based image retrieval
  publication-title: Journal of Neural Engineering
– volume: 51
  start-page: 1057
  year: 2004
  end-page: 1061
  ident: b6
  article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram
  publication-title: IEEE Transactions on Biomedical engineering
– reference: Shan, H., Liu, Y., & Stefanov, T. P. (2018). A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain Computer Interface. In
– volume: 64
  start-page: 959
  year: 2016
  end-page: 969
  ident: b44
  article-title: Brain–computer interfaces for detection and localization of targets in aerial images
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 12
  start-page: 1211
  year: 2012
  end-page: 1279
  ident: b50
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
– volume: 28
  start-page: 1081
  year: 2020
  end-page: 1090
  ident: b54
  article-title: How sensitive are EEG results to preprocessing methods: a benchmarking study
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– start-page: 97
  year: 2021
  end-page: 110
  ident: b68
  article-title: Spatten: Efficient sparse attention architecture with cascade token and head pruning
  publication-title: 2021 IEEE international symposium on high-performance computer architecture
– volume: 70
  start-page: 510
  year: 1988
  end-page: 523
  ident: b16
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalography and clinical Neurophysiology
– volume: 159
  start-page: 296
  year: 2020
  end-page: 307
  ident: b31
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b27
  article-title: Deep learning
  publication-title: Nature
– volume: 13
  start-page: 2218
  year: 2022
  end-page: 2228
  ident: b61
  article-title: A dual-branch dynamic graph convolution based adaptive TransFormer feature fusion network for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 15
  year: 2018
  ident: b29
  article-title: A review of rapid serial visual presentation-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– volume: 164
  start-page: 521
  year: 2023
  end-page: 534
  ident: b13
  article-title: A Transformer-based deep neural network model for SSVEP classification
  publication-title: Neural Networks
– volume: 31
  start-page: 1863
  year: 2018
  end-page: 1883
  ident: b34
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 1251–1258).
– volume: 17
  start-page: 1
  year: 2018
  end-page: 16
  ident: b73
  article-title: Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation
  publication-title: Biomedical Engineering Online
– volume: 295
  start-page: 690
  year: 2002
  end-page: 694
  ident: b39
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: b38
  article-title: Mining event-related brain dynamics
  publication-title: Trends in Cognitive Sciences
– volume: 7
  start-page: 267
  year: 2013
  ident: b19
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Frontiers in Neuroinformatics
– volume: 124
  start-page: 901
  year: 2013
  end-page: 908
  ident: b1
  article-title: Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP)
  publication-title: Clinical Neurophysiology
– reference: (pp. 4555–4563).
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2024.106844_b26
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– volume: 64
  start-page: 959
  issue: 4
  year: 2016
  ident: 10.1016/j.neunet.2024.106844_b44
  article-title: Brain–computer interfaces for detection and localization of targets in aerial images
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2016.2583200
– volume: 61
  start-page: 2290
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2024.106844_b2
  article-title: Spatiotemporal representations of rapid visual target detection: A single-trial EEG classification algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2013.2289898
– volume: 9
  start-page: 270
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b43
  article-title: The effect of target and non-target similarity on neural classification performance: a boost from confidence
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2015.00270
– volume: 15
  start-page: 1
  issue: 3
  year: 2024
  ident: 10.1016/j.neunet.2024.106844_b10
  article-title: A survey on evaluation of large language models
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/3641289
– volume: 124
  start-page: 901
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2024.106844_b1
  article-title: Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP)
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2012.12.050
– year: 2023
  ident: 10.1016/j.neunet.2024.106844_b81
  article-title: UAV target detection for IoT via enhancing ERP component by brain computer interface system
  publication-title: IEEE Internet of Things Journal
– volume: 17
  start-page: 1357
  issue: 5
  year: 2023
  ident: 10.1016/j.neunet.2024.106844_b35
  article-title: 3D convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-022-09906-y
– volume: 229
  year: 2023
  ident: 10.1016/j.neunet.2024.106844_b20
  article-title: An efficient deep learning framework for P300 evoked related potential detection in EEG signal
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2022.107324
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.neunet.2024.106844_b37
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 8685
  issue: 9
  year: 2022
  ident: 10.1016/j.neunet.2024.106844_b62
  article-title: An interpretable convolutional neural network for P300 detection: Analysis of time frequency features for limited data
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3159475
– year: 2009
  ident: 10.1016/j.neunet.2024.106844_b64
– ident: 10.1016/j.neunet.2024.106844_b78
  doi: 10.1109/CVPR.2019.00631
– volume: 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106844_b66
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: 10.1016/j.neunet.2024.106844_b24
– volume: 29
  start-page: 1534
  year: 2021
  ident: 10.1016/j.neunet.2024.106844_b30
  article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3099908
– ident: 10.1016/j.neunet.2024.106844_b33
  doi: 10.1145/3503161.3548269
– volume: 159
  start-page: 296
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b31
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2019.11.023
– volume: 7
  start-page: 139
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2024.106844_b3
  article-title: Brain-computer interface in stroke rehabilitation
  publication-title: Journal of Computing Science and Engineering
  doi: 10.5626/JCSE.2013.7.2.139
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2024.106844_b56
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– ident: 10.1016/j.neunet.2024.106844_b23
  doi: 10.1145/3534678.3539260
– ident: 10.1016/j.neunet.2024.106844_b67
  doi: 10.1109/CVPR52688.2022.01187
– volume: 28
  start-page: 2344
  issue: 11
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b70
  article-title: Reducing calibration efforts in RSVP tasks with multi-source adversarial domain adaptation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3023761
– ident: 10.1016/j.neunet.2024.106844_b58
  doi: 10.24963/ijcai.2018/222
– volume: 109
  start-page: 43
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b82
  article-title: A comprehensive survey on transfer learning
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2020.3004555
– year: 2023
  ident: 10.1016/j.neunet.2024.106844_b36
  article-title: A dual-branch spatio-temporal-spectral transformer feature fusion network for EEG-based visual recognition
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 244
  start-page: 52
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b47
  article-title: DARPA-funded efforts in the development of novel brain–computer interface technologies
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2014.07.019
– start-page: 1597
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b12
  article-title: A simple framework for contrastive learning of visual representations
– volume: 14
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b80
  article-title: A benchmark dataset for RSVP-based brain–computer interfaces
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.568000
– volume: 34
  start-page: 907
  issue: 5
  year: 2008
  ident: 10.1016/j.neunet.2024.106844_b53
  article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbn093
– year: 2014
  ident: 10.1016/j.neunet.2024.106844_b4
– volume: 18
  start-page: 357
  issue: 2
  year: 2024
  ident: 10.1016/j.neunet.2024.106844_b11
  article-title: EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-024-10073-5
– volume: 14
  start-page: 174
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2024.106844_b17
  article-title: Cortically coupled computer vision for rapid image search
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2006.875550
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b27
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 5
  start-page: 243
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2024.106844_b46
  article-title: Time-locked and phase-locked features of P300 event-related potentials (ERPs) for brain–computer interface speller
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2010.08.001
– volume: 17
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2024.106844_b73
  article-title: Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation
  publication-title: Biomedical Engineering Online
  doi: 10.1186/s12938-018-0483-7
– volume: 30
  start-page: 1727
  year: 2022
  ident: 10.1016/j.neunet.2024.106844_b15
  article-title: DC-tCNN: A deep model for EEG-based detection of dim targets
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3184725
– start-page: 3690
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b18
  article-title: Power-bert: Accelerating bert inference via progressive word-vector elimination
– volume: 28
  start-page: 2773
  issue: 12
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b55
  article-title: EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3048106
– volume: 164
  start-page: 521
  year: 2023
  ident: 10.1016/j.neunet.2024.106844_b13
  article-title: A Transformer-based deep neural network model for SSVEP classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.04.045
– start-page: 6558
  year: 2019
  ident: 10.1016/j.neunet.2024.106844_b65
  article-title: Multimodal transformer for unaligned multimodal language sequences
– volume: 32
  year: 2019
  ident: 10.1016/j.neunet.2024.106844_b52
  article-title: Stand-alone self-attention in vision models
  publication-title: Advances in Neural Information Processing Systems
– volume: 295
  start-page: 690
  issue: 5555
  year: 2002
  ident: 10.1016/j.neunet.2024.106844_b39
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
  doi: 10.1126/science.1066168
– volume: 41
  start-page: 123
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b5
  article-title: A brain–computer interface (BCI) for the detection of mine-like objects in sidescan sonar imagery
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/JOE.2015.2408471
– volume: 15
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2024.106844_b29
  article-title: A review of rapid serial visual presentation-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aa9817
– volume: 31
  start-page: 1863
  issue: 10
  year: 2018
  ident: 10.1016/j.neunet.2024.106844_b34
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2872063
– volume: 118
  start-page: 2128
  issue: 10
  year: 2007
  ident: 10.1016/j.neunet.2024.106844_b51
  article-title: Updating P300: an integrative theory of P3a and P3b
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2007.04.019
– volume: 111
  start-page: 167
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b48
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.015
– volume: 31
  start-page: 710
  year: 2022
  ident: 10.1016/j.neunet.2024.106844_b59
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3230250
– volume: 193
  start-page: 1142
  issue: 4258
  year: 1976
  ident: 10.1016/j.neunet.2024.106844_b60
  article-title: The effect of stimulus sequence on the waveform of the cortical event-related potential
  publication-title: Science
  doi: 10.1126/science.959831
– volume: 28
  start-page: 1081
  issue: 5
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b54
  article-title: How sensitive are EEG results to preprocessing methods: a benchmarking study
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.2980223
– start-page: 97
  year: 2021
  ident: 10.1016/j.neunet.2024.106844_b68
  article-title: Spatten: Efficient sparse attention architecture with cascade token and head pruning
– volume: 10
  start-page: 430
  year: 2016
  ident: 10.1016/j.neunet.2024.106844_b69
  article-title: Spectral transfer learning using information geometry for a user-independent brain-computer interface
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00430
– volume: 8
  start-page: 204
  issue: 5
  year: 2004
  ident: 10.1016/j.neunet.2024.106844_b38
  article-title: Mining event-related brain dynamics
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2004.03.008
– year: 2021
  ident: 10.1016/j.neunet.2024.106844_b32
  article-title: Phase preservation neural network for electroencephalography classification in rapid serial visual presentation task
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 7
  start-page: 267
  year: 2013
  ident: 10.1016/j.neunet.2024.106844_b19
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Frontiers in Neuroinformatics
– ident: 10.1016/j.neunet.2024.106844_b57
  doi: 10.1109/CVPR.2015.7298682
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.neunet.2024.106844_b72
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00057-3
– start-page: 2790
  year: 2019
  ident: 10.1016/j.neunet.2024.106844_b21
  article-title: Parameter-efficient transfer learning for NLP
– ident: 10.1016/j.neunet.2024.106844_b74
  doi: 10.1145/3503161.3548107
– volume: 25
  year: 2012
  ident: 10.1016/j.neunet.2024.106844_b25
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  year: 2021
  ident: 10.1016/j.neunet.2024.106844_b49
  article-title: Intriguing properties of vision transformers
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 1211
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2024.106844_b50
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 70
  start-page: 510
  issue: 6
  year: 1988
  ident: 10.1016/j.neunet.2024.106844_b16
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalography and clinical Neurophysiology
  doi: 10.1016/0013-4694(88)90149-6
– volume: 19
  issue: 2
  year: 2022
  ident: 10.1016/j.neunet.2024.106844_b71
  article-title: ERP prototypical matching net: a meta-learning method for zero-calibration RSVP-based image retrieval
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac5eb7
– volume: 229
  year: 2023
  ident: 10.1016/j.neunet.2024.106844_b45
  article-title: Multi-modal fusion using fine-tuned self-attention and transfer learning for veracity analysis of web information
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120537
– volume: 24
  start-page: 333
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b42
  article-title: Improved neural signal classification in a rapid serial visual presentation task using active learning
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2015.2502323
– volume: 18
  start-page: 0460c8
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2024.106844_b77
  article-title: A deep learning method for single-trial EEG classification in RSVP task based on spatiotemporal features of ERPs
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac1610
– volume: 8
  start-page: 74385
  year: 2020
  ident: 10.1016/j.neunet.2024.106844_b28
  article-title: CNN with large data achieves true zero-training in online P300 brain-computer interface
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988057
– year: 2024
  ident: 10.1016/j.neunet.2024.106844_b79
  article-title: Vision-language models for vision tasks: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2024
  ident: 10.1016/j.neunet.2024.106844_b22
  article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2024.3390805
– volume: 9
  start-page: 146
  year: 2015
  ident: 10.1016/j.neunet.2024.106844_b40
  article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2015.00146
– volume: 33
  start-page: 433
  issue: 3
  year: 2010
  ident: 10.1016/j.neunet.2024.106844_b9
  article-title: Convolutional neural networks for P300 detection with application to brain-computer interfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.125
– volume: 13
  start-page: 2218
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106844_b61
  article-title: A dual-branch dynamic graph convolution based adaptive TransFormer feature fusion network for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2022.3199075
– year: 2022
  ident: 10.1016/j.neunet.2024.106844_b7
  article-title: Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals
  publication-title: Journal of Computer Science
  doi: 10.1016/j.jocs.2021.101544
– ident: 10.1016/j.neunet.2024.106844_b14
  doi: 10.1109/CVPR.2017.195
– volume: 161
  start-page: 65
  year: 2023
  ident: 10.1016/j.neunet.2024.106844_b41
  article-title: Cross-modal guiding and reweighting network for multi-modal RSVP-based target detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.01.009
– volume: 27
  start-page: 1962
  issue: 10
  year: 2019
  ident: 10.1016/j.neunet.2024.106844_b63
  article-title: Deep multi-view feature learning for EEG-based epileptic seizure detection
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2019.2940485
– year: 2023
  ident: 10.1016/j.neunet.2024.106844_b75
  article-title: Multimodal learning with transformers: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2023.3275156
– volume: 51
  start-page: 1057
  issue: 6
  year: 2004
  ident: 10.1016/j.neunet.2024.106844_b6
  article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram
  publication-title: IEEE Transactions on Biomedical engineering
  doi: 10.1109/TBME.2004.826702
– volume: 25
  start-page: 2030
  issue: 11
  year: 2014
  ident: 10.1016/j.neunet.2024.106844_b8
  article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2302898
– year: 2024
  ident: 10.1016/j.neunet.2024.106844_b76
  article-title: Bridge graph attention based graph convolution network with multi-scale transformer for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
SSID ssj0006843
Score 2.4554172
Snippet The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography...
The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106844
SubjectTerms Adapter-based fine-tuning
Adult
Algorithms
Brain - physiology
Brain-Computer Interfaces
Brain–Computer Interface (BCI)
Electroencephalography - methods
Humans
Male
Multi-view learning
Photic Stimulation - methods
Rapid Serial Visual Presentation (RSVP)
Signal Processing, Computer-Assisted
Transformer
Visual Perception - physiology
Title A temporal–spectral fusion transformer with subject-specific adapter for enhancing RSVP-BCI decoding
URI https://dx.doi.org/10.1016/j.neunet.2024.106844
https://www.ncbi.nlm.nih.gov/pubmed/39509814
https://www.proquest.com/docview/3128318591
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYieuHSUugjfURG4uomXntfxzRqFEBEqCkVN8trj0sQ2kRN9or6H_oP-0uY2QeIA6rEbWWNvd4Ze2Z2PJ-HsSOpo1HuIik8amChMyrzonDj2cQHHezIJUDg5LN5MrvQJ5fxZY9NOiwMpVW2ur_R6bW2bluGLTeH6-VyuBihqU0IKqrr4yQC_Gqd0ir_cvuQ5pFkTeYcEgui7uBzdY5XCVUJlFEZaWxCUv2UeXrK_azN0HSPvWz9Rz5upvia9aDcZ6-62gy83aoHLIx5e-vUzb8_f2s8JT7yUFF0jG87dxW7UCSWb6qCAjKCCCl5iFtv1zQgEnEor-hWjvIX_774eS6-To65x79Wsnpv2MX024_JTLQ1FYRTUm5FSuB3a6GwGToywUcB8OvBpyB9FhfeK1e44F0hbXAZRCmA9jHEIfaJ8rlUb9lOuSrhPeMqzkfeaRom1kkW5SGSKHGvUofiUNBnomOlWTdXZ5gup-zaNKw3xHrTsL7P0o7f5tESMKjd_9PzsBOPwd1BRx62hFW1MQrNL-HDc9ln7xq53c9F5egsZVJ_ePZ7P7LdiMoB1xGZT2xn-7uCz-ijbItBvQgH7MX4-HQ2vwOCSulH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThwxzKLLob1A32yfqdRrtJtJ5nXcrop2C6yqAhW3KJM4FISGVdm59x_6h3xJ7Xkg9YAq9TaK7EzGTmyP4wfAR2WSaekTJQNJYGkKbvOi6eC5LEQT3dRnyMnJR6tscWq-nKVnWzAfcmE4rLKX_Z1Mb6V1PzLpqTlZX1xMjqekajNOFTXtdVLxALa5OlU6gu3Z8mCxuhPIWdEFzxG8ZIQhg64N86qxqZGDKhNDQwRq7tNQ91mgrSbafww7vQkpZt0qn8AW1k9hd2jPIPrT-gziTPSFp65uf_1uUyrpUcSGHWRiM1ishMLOWHHTVOyTkQzI8UPCBbfmCQlIYP2DC3PU5-Lb8fev8tN8KQL9uLLiew6n-59P5gvZt1WQXiu1kTnnvzuHlSvIlokhiUhfjyFHFYq0CkH7ysfgK-WiLzDJEU1IMY1pyHQolX4Bo_q6xj0QOi2nwRueJjVZkZQxUcT0oHNPHNE4BjmQ0q676hl2CCu7tB3pLZPedqQfQz7Q2_61CywJ-H9gfhjYY-mA8K2Hq_G6ubGaNDCniJdqDC87vt2tRZdkLxXKvPrv976Hh4uTo0N7uFwdvIZHCXcHbh00b2C0-dngWzJZNtW7fkv-AYAB6_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+temporal-spectral+fusion+transformer+with+subject-specific+adapter+for+enhancing+RSVP-BCI+decoding&rft.jtitle=Neural+networks&rft.au=Li%2C+Xujin&rft.au=Wei%2C+Wei&rft.au=Qiu%2C+Shuang&rft.au=He%2C+Huiguang&rft.date=2025-01-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=181&rft.spage=106844&rft_id=info:doi/10.1016%2Fj.neunet.2024.106844&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon