A temporal–spectral fusion transformer with subject-specific adapter for enhancing RSVP-BCI decoding
The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subje...
Saved in:
Published in | Neural networks Vol. 181; p. 106844 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.
•Temporal and spectral information of EEG signals are integrated for RSVP decoding.•Common features across two views are extracted and fused to enhance performance.•A subject-specific adapter is proposed for fast deployment of models to new subjects.•The proposed model achieves superior performance and reduces preparation time of BCI. |
---|---|
AbstractList | The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.
•Temporal and spectral information of EEG signals are integrated for RSVP decoding.•Common features across two views are extracted and fused to enhance performance.•A subject-specific adapter is proposed for fast deployment of models to new subjects.•The proposed model achieves superior performance and reduces preparation time of BCI. The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use. The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use. |
ArticleNumber | 106844 |
Author | Wei, Wei Li, Xujin He, Huiguang Qiu, Shuang |
Author_xml | – sequence: 1 givenname: Xujin orcidid: 0000-0001-5591-1029 surname: Li fullname: Li, Xujin organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 2 givenname: Wei orcidid: 0000-0001-8042-1574 surname: Wei fullname: Wei, Wei organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 3 givenname: Shuang surname: Qiu fullname: Qiu, Shuang email: shuang.qiu@ia.ac.cn organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 4 givenname: Huiguang orcidid: 0000-0002-0684-1711 surname: He fullname: He, Huiguang email: huiguang.he@ia.ac.cn organization: Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39509814$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9OGzEQxq0K1IS0b1AhH3vZYK93s95LpRC1gBQJRP9cLa89Jo6y9tbeBXHjHXhDnqQOGzj2NKOZ3zfSN98JOnLeAUJfKJlTQhdn27mDwUE_z0lepNGCF8UHNKW8qrO84vkRmhJes2xBOJmgkxi3hOwh9hFNWF2SmtNiiswS99B2Psjdy9Nz7ED1qcVmiNY7nHoXjQ8tBPxg-w2OQ7NNSLYHrbEKSy27Pm0ThMFtpFPW3eHbn39usvPVFdagvE6TT-jYyF2Ez4c6Q79_fP-1uszW1xdXq-U6U4zSPqvysmBSQiM5LWujcwPJHegKqOZlozVTjTJaNVQaxSGvAApdQmlKvWC6pmyGvo53u-D_DhB70dqoYLeTDvwQBaM5Z5SXr-jpAR2aFrTogm1leBRvv0lAMQIq-BgDmHeEErGPQGzFGIHYRyDGCJLs2yiD5PPeQhBRWXAKtA3pdUJ7-_8D_wDMY5Pp |
Cites_doi | 10.1088/1741-2552/aace8c 10.1109/TBME.2016.2583200 10.1109/TBME.2013.2289898 10.3389/fnins.2015.00270 10.1145/3641289 10.1016/j.clinph.2012.12.050 10.1007/s11571-022-09906-y 10.1016/j.cmpb.2022.107324 10.1109/JSEN.2022.3159475 10.1109/CVPR.2019.00631 10.1109/TNSRE.2021.3099908 10.1145/3503161.3548269 10.1016/j.isprsjprs.2019.11.023 10.5626/JCSE.2013.7.2.139 10.1002/hbm.23730 10.1145/3534678.3539260 10.1109/CVPR52688.2022.01187 10.1109/TNSRE.2020.3023761 10.24963/ijcai.2018/222 10.1109/JPROC.2020.3004555 10.1016/j.jneumeth.2014.07.019 10.3389/fnins.2020.568000 10.1093/schbul/sbn093 10.1007/s11571-024-10073-5 10.1109/TNSRE.2006.875550 10.1038/nature14539 10.1016/j.bspc.2010.08.001 10.1186/s12938-018-0483-7 10.1109/TNSRE.2022.3184725 10.1109/TNSRE.2020.3048106 10.1016/j.neunet.2023.04.045 10.1126/science.1066168 10.1109/JOE.2015.2408471 10.1088/1741-2552/aa9817 10.1109/TKDE.2018.2872063 10.1016/j.clinph.2007.04.019 10.1016/j.neuroimage.2015.02.015 10.1109/TNSRE.2022.3230250 10.1126/science.959831 10.1109/TNSRE.2020.2980223 10.3389/fnins.2016.00430 10.1016/j.tics.2004.03.008 10.1109/CVPR.2015.7298682 10.1016/S1388-2457(02)00057-3 10.1145/3503161.3548107 10.3390/s120201211 10.1016/0013-4694(88)90149-6 10.1088/1741-2552/ac5eb7 10.1016/j.eswa.2023.120537 10.1109/TNSRE.2015.2502323 10.1088/1741-2552/ac1610 10.1109/ACCESS.2020.2988057 10.1109/TCYB.2024.3390805 10.3389/fncom.2015.00146 10.1109/TPAMI.2010.125 10.1109/TAFFC.2022.3199075 10.1016/j.jocs.2021.101544 10.1109/CVPR.2017.195 10.1016/j.neunet.2023.01.009 10.1109/TNSRE.2019.2940485 10.1109/TPAMI.2023.3275156 10.1109/TBME.2004.826702 10.1109/TNNLS.2014.2302898 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2024.106844 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
ExternalDocumentID | 39509814 10_1016_j_neunet_2024_106844 S0893608024007688 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c311t-72543aaeba8159fd2fe202ed7e1d85bdd3cbcfdcb1afc8e27ee4d5e5f5d63d913 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Thu Jul 10 19:56:22 EDT 2025 Thu Apr 03 07:00:12 EDT 2025 Tue Jul 01 03:32:21 EDT 2025 Sat Jan 11 15:48:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rapid Serial Visual Presentation (RSVP) Adapter-based fine-tuning Transformer Brain–Computer Interface (BCI) Multi-view learning |
Language | English |
License | Copyright © 2024. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-72543aaeba8159fd2fe202ed7e1d85bdd3cbcfdcb1afc8e27ee4d5e5f5d63d913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8042-1574 0000-0001-5591-1029 0000-0002-0684-1711 |
PMID | 39509814 |
PQID | 3128318591 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3128318591 pubmed_primary_39509814 crossref_primary_10_1016_j_neunet_2024_106844 elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 2025-Jan 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wei, Qiu, Ma, Li, Wang, He (b70) 2020; 28 Song, Zheng, Liu, Gao (b59) 2022; 31 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (b56) 2017; 38 Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., & Wang, Y. (2022). Multimodal token fusion for vision transformers. In Li, Guo, Liu, Liu, Meng (b30) 2021; 29 Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Meel, Vishwakarma (b45) 2023; 229 (pp. 815–823). Matran-Fernandez, Poli (b44) 2016; 64 Van der Maaten, Hinton (b37) 2008; 9 Wang, Zhang, Han (b68) 2021 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b26) 2018; 15 Alpert, Manor, Spanier, Deouell, Geva (b2) 2013; 61 Polich (b51) 2007; 118 (pp. 51–59). Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Shan, H., Liu, Y., & Stefanov, T. P. (2018). A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain Computer Interface. In (pp. 4555–4563). Barachant, Congedo (b4) 2014 Lees, Dayan, Cecotti, McCullagh, Maguire, Lotte (b29) 2018; 15 Acqualagna, Blankertz (b1) 2013; 124 Cecotti, Graser (b9) 2010; 33 Chen, Zhang, Pan, Xu, Guan (b13) 2023; 164 Goyal, Choudhury, Raje, Chakaravarthy, Sabharwal, Verma (b18) 2020 Zhang, Wang, Zhang, Gao (b80) 2020; 14 Wei, Qiu, Zhang, Mao, He (b71) 2022; 19 Ming, An, Xi, Hu, Wan, Qi (b46) 2010; 5 Tajmirriahi, Amini, Rabbani, Kafieh (b62) 2022; 22 Tsai, Bai, Liang, Kolter, Morency, Salakhutdinov (b65) 2019 Farwell, Donchin (b16) 1988; 70 Makeig, Debener, Onton, Delorme (b38) 2004; 8 Tian, Deng, Ying, Choi, Wu, Qin (b63) 2019; 27 (pp. 1251–1258). Li, Yang, Zhang (b34) 2018; 31 Li, Wang, Li, Wu, Fu, Ji (b32) 2021 Roach, Mathalon (b53) 2008; 34 Li, X., Wei, W., Qiu, S., & He, H. (2022). TFF-Former: Temporal-frequency fusion transformer for zero-training decoding of two BCI tasks. In Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck (b19) 2013; 7 Xie, C.-W., Wu, J., Zheng, Y., Pan, P., & Hua, X.-S. (2022). Token embeddings alignment for cross-modal retrieval. In (pp. 12186–12195). Krizhevsky, Sutskever, Hinton (b25) 2012; 25 Wu, Yan, Zeng, Zhang, Tong (b73) 2018; 17 Xu, Zhu, Clifton (b75) 2023 Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen, J., et al. (2019). Deep surface normal estimation with hierarchical rgb-d fusion. In Lee, Won, Kwon, Jun, Ahn (b28) 2020; 8 Waytowich, Lawhern, Bohannon, Ball, Lance (b69) 2016; 10 Ramachandran, Parmar, Vaswani, Bello, Levskaya, Shlens (b52) 2019; 32 Chen, Fan, Gao, Qiu, Wei, He (b11) 2024; 18 Marathe, Ries, Lawhern, Lance, Touryan, McDowell (b43) 2015; 9 Miranda, Casebeer, Hein, Judy, Krotkov, Laabs (b47) 2015; 244 Santamaria-Vazquez, Martinez-Cagigal, Vaquerizo-Villar, Hornero (b55) 2020; 28 (pp. 6153–6162). Zhuang, Qi, Duan, Xi, Zhu, Zhu (b82) 2020; 109 (pp. 784–794). (pp. 1604–1610). Liu, Wang, Liu, Zhao, Liu (b35) 2023; 17 Yan, Guo, Xing, Xu (b76) 2024 Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne (b39) 2002; 295 Robbins, Touryan, Mullen, Kothe, Bigdely-Shamlo (b54) 2020; 28 Luo, Cui, Xu, Wang, Li, Liao (b36) 2023 Chen, Kornblith, Norouzi, Hinton (b12) 2020 Nicolas-Alonso, Gomez-Gil (b50) 2012; 12 Bostanov (b6) 2004; 51 LeCun, Bengio, Hinton (b27) 2015; 521 Mao, Qiu, Wei, He (b41) 2023; 161 Zhang, Zhang, Gao, Zhang, Yang (b81) 2023 Fan, Shen, Xie, Su, Yu, Hu (b15) 2022; 30 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b72) 2002; 113 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b66) 2017; 30 Ang, Guan (b3) 2013; 7 Jin, Xu, Daly, Zhao, Wang, Cichocki (b22) 2024 Casal, Di Persia, Schlotthauer (b7) 2022 Houlsby, Giurgiu, Jastrzebski, Morrone, De Laroussilhe, Gesmundo (b21) 2019 Li, Wan, Cheng, Meng, Han (b31) 2020; 159 Barngrover, Althoff, DeGuzman, Kastner (b5) 2015; 41 Havaei, Zekri, Mahmoudzadeh, Rabbani (b20) 2023; 229 Marathe, Lawhern, Wu, Slayback, Lance (b42) 2015; 24 Manor, Geva (b40) 2015; 9 Zang, Lin, Liu, Gao (b77) 2021; 18 Morioka, Kanemura, Hirayama, Shikauchi, Ogawa, Ikeda (b48) 2015; 111 Gerson, Parra, Sajda (b17) 2006; 14 Chang, Wang, Wang, Wu, Yang, Zhu (b10) 2024; 15 Cecotti, Eckstein, Giesbrecht (b8) 2014; 25 Torralba, Murphy, Freeman (b64) 2009 Squires, Wickens, Squires, Donchin (b60) 1976; 193 Zhang, Huang, Jin, Lu (b79) 2024 Kingma, Ba (b24) 2014 Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W., Hassoun, J., et al. (2022). Learned token pruning for transformers. In Sun, Cui, Yu, Han, Hu, Li (b61) 2022; 13 Naseer, Ranasinghe, Khan, Hayat, Shahbaz Khan, Yang (b49) 2021; 34 Jin (10.1016/j.neunet.2024.106844_b22) 2024 Vaswani (10.1016/j.neunet.2024.106844_b66) 2017; 30 Ming (10.1016/j.neunet.2024.106844_b46) 2010; 5 Bostanov (10.1016/j.neunet.2024.106844_b6) 2004; 51 Luo (10.1016/j.neunet.2024.106844_b36) 2023 Chen (10.1016/j.neunet.2024.106844_b12) 2020 Wang (10.1016/j.neunet.2024.106844_b68) 2021 Miranda (10.1016/j.neunet.2024.106844_b47) 2015; 244 Morioka (10.1016/j.neunet.2024.106844_b48) 2015; 111 Makeig (10.1016/j.neunet.2024.106844_b39) 2002; 295 Sun (10.1016/j.neunet.2024.106844_b61) 2022; 13 Casal (10.1016/j.neunet.2024.106844_b7) 2022 Gerson (10.1016/j.neunet.2024.106844_b17) 2006; 14 Naseer (10.1016/j.neunet.2024.106844_b49) 2021; 34 Manor (10.1016/j.neunet.2024.106844_b40) 2015; 9 Zhuang (10.1016/j.neunet.2024.106844_b82) 2020; 109 Meel (10.1016/j.neunet.2024.106844_b45) 2023; 229 Wolpaw (10.1016/j.neunet.2024.106844_b72) 2002; 113 Schirrmeister (10.1016/j.neunet.2024.106844_b56) 2017; 38 Zhang (10.1016/j.neunet.2024.106844_b81) 2023 Li (10.1016/j.neunet.2024.106844_b34) 2018; 31 10.1016/j.neunet.2024.106844_b74 Ang (10.1016/j.neunet.2024.106844_b3) 2013; 7 10.1016/j.neunet.2024.106844_b33 Wei (10.1016/j.neunet.2024.106844_b70) 2020; 28 10.1016/j.neunet.2024.106844_b78 Li (10.1016/j.neunet.2024.106844_b31) 2020; 159 Barngrover (10.1016/j.neunet.2024.106844_b5) 2015; 41 Song (10.1016/j.neunet.2024.106844_b59) 2022; 31 Goyal (10.1016/j.neunet.2024.106844_b18) 2020 Fan (10.1016/j.neunet.2024.106844_b15) 2022; 30 Squires (10.1016/j.neunet.2024.106844_b60) 1976; 193 Alpert (10.1016/j.neunet.2024.106844_b2) 2013; 61 Li (10.1016/j.neunet.2024.106844_b32) 2021 Santamaria-Vazquez (10.1016/j.neunet.2024.106844_b55) 2020; 28 Zhang (10.1016/j.neunet.2024.106844_b80) 2020; 14 Lees (10.1016/j.neunet.2024.106844_b29) 2018; 15 Mao (10.1016/j.neunet.2024.106844_b41) 2023; 161 Marathe (10.1016/j.neunet.2024.106844_b43) 2015; 9 Marathe (10.1016/j.neunet.2024.106844_b42) 2015; 24 Yan (10.1016/j.neunet.2024.106844_b76) 2024 Gramfort (10.1016/j.neunet.2024.106844_b19) 2013; 7 10.1016/j.neunet.2024.106844_b23 Robbins (10.1016/j.neunet.2024.106844_b54) 2020; 28 10.1016/j.neunet.2024.106844_b67 Tsai (10.1016/j.neunet.2024.106844_b65) 2019 Chen (10.1016/j.neunet.2024.106844_b11) 2024; 18 Farwell (10.1016/j.neunet.2024.106844_b16) 1988; 70 Krizhevsky (10.1016/j.neunet.2024.106844_b25) 2012; 25 Liu (10.1016/j.neunet.2024.106844_b35) 2023; 17 Makeig (10.1016/j.neunet.2024.106844_b38) 2004; 8 Tajmirriahi (10.1016/j.neunet.2024.106844_b62) 2022; 22 Wu (10.1016/j.neunet.2024.106844_b73) 2018; 17 Zang (10.1016/j.neunet.2024.106844_b77) 2021; 18 Lawhern (10.1016/j.neunet.2024.106844_b26) 2018; 15 LeCun (10.1016/j.neunet.2024.106844_b27) 2015; 521 Li (10.1016/j.neunet.2024.106844_b30) 2021; 29 Kingma (10.1016/j.neunet.2024.106844_b24) 2014 Nicolas-Alonso (10.1016/j.neunet.2024.106844_b50) 2012; 12 Zhang (10.1016/j.neunet.2024.106844_b79) 2024 Chen (10.1016/j.neunet.2024.106844_b13) 2023; 164 Polich (10.1016/j.neunet.2024.106844_b51) 2007; 118 Matran-Fernandez (10.1016/j.neunet.2024.106844_b44) 2016; 64 Roach (10.1016/j.neunet.2024.106844_b53) 2008; 34 Cecotti (10.1016/j.neunet.2024.106844_b9) 2010; 33 Ramachandran (10.1016/j.neunet.2024.106844_b52) 2019; 32 Van der Maaten (10.1016/j.neunet.2024.106844_b37) 2008; 9 Chang (10.1016/j.neunet.2024.106844_b10) 2024; 15 10.1016/j.neunet.2024.106844_b57 10.1016/j.neunet.2024.106844_b14 10.1016/j.neunet.2024.106844_b58 Havaei (10.1016/j.neunet.2024.106844_b20) 2023; 229 Torralba (10.1016/j.neunet.2024.106844_b64) 2009 Lee (10.1016/j.neunet.2024.106844_b28) 2020; 8 Tian (10.1016/j.neunet.2024.106844_b63) 2019; 27 Cecotti (10.1016/j.neunet.2024.106844_b8) 2014; 25 Waytowich (10.1016/j.neunet.2024.106844_b69) 2016; 10 Xu (10.1016/j.neunet.2024.106844_b75) 2023 Acqualagna (10.1016/j.neunet.2024.106844_b1) 2013; 124 Houlsby (10.1016/j.neunet.2024.106844_b21) 2019 Barachant (10.1016/j.neunet.2024.106844_b4) 2014 Wei (10.1016/j.neunet.2024.106844_b71) 2022; 19 |
References_xml | – volume: 14 year: 2020 ident: b80 article-title: A benchmark dataset for RSVP-based brain–computer interfaces publication-title: Frontiers in Neuroscience – volume: 41 start-page: 123 year: 2015 end-page: 138 ident: b5 article-title: A brain–computer interface (BCI) for the detection of mine-like objects in sidescan sonar imagery publication-title: IEEE Journal of Oceanic Engineering – volume: 61 start-page: 2290 year: 2013 end-page: 2303 ident: b2 article-title: Spatiotemporal representations of rapid visual target detection: A single-trial EEG classification algorithm publication-title: IEEE Transactions on Biomedical Engineering – year: 2014 ident: b4 article-title: A plug&play P300 BCI using information geometry – reference: (pp. 51–59). – volume: 28 start-page: 2773 year: 2020 end-page: 2782 ident: b55 article-title: EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 15 year: 2018 ident: b26 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering – volume: 29 start-page: 1534 year: 2021 end-page: 1545 ident: b30 article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 17 start-page: 1357 year: 2023 end-page: 1380 ident: b35 article-title: 3D convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification publication-title: Cognitive Neurodynamics – volume: 9 start-page: 270 year: 2015 ident: b43 article-title: The effect of target and non-target similarity on neural classification performance: a boost from confidence publication-title: Frontiers in Neuroscience – year: 2023 ident: b81 article-title: UAV target detection for IoT via enhancing ERP component by brain computer interface system publication-title: IEEE Internet of Things Journal – reference: Li, X., Wei, W., Qiu, S., & He, H. (2022). TFF-Former: Temporal-frequency fusion transformer for zero-training decoding of two BCI tasks. In – volume: 229 year: 2023 ident: b20 article-title: An efficient deep learning framework for P300 evoked related potential detection in EEG signal publication-title: Computer Methods and Programs in Biomedicine – reference: Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In – reference: Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W., Hassoun, J., et al. (2022). Learned token pruning for transformers. In – volume: 27 start-page: 1962 year: 2019 end-page: 1972 ident: b63 article-title: Deep multi-view feature learning for EEG-based epileptic seizure detection publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – start-page: 6558 year: 2019 ident: b65 article-title: Multimodal transformer for unaligned multimodal language sequences publication-title: Proceedings of the conference. Association for computational linguistics. Meeting, 2019 – volume: 22 start-page: 8685 year: 2022 end-page: 8692 ident: b62 article-title: An interpretable convolutional neural network for P300 detection: Analysis of time frequency features for limited data publication-title: IEEE Sensors Journal – reference: Xie, C.-W., Wu, J., Zheng, Y., Pan, P., & Hua, X.-S. (2022). Token embeddings alignment for cross-modal retrieval. In – volume: 15 start-page: 1 year: 2024 end-page: 45 ident: b10 article-title: A survey on evaluation of large language models publication-title: ACM Transactions on Intelligent Systems and Technology – year: 2023 ident: b75 article-title: Multimodal learning with transformers: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen, J., et al. (2019). Deep surface normal estimation with hierarchical rgb-d fusion. In – start-page: 3690 year: 2020 end-page: 3699 ident: b18 article-title: Power-bert: Accelerating bert inference via progressive word-vector elimination publication-title: International conference on machine learning – reference: (pp. 784–794). – volume: 25 start-page: 2030 year: 2014 end-page: 2042 ident: b8 article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 33 start-page: 433 year: 2010 end-page: 445 ident: b9 article-title: Convolutional neural networks for P300 detection with application to brain-computer interfaces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 2790 year: 2019 end-page: 2799 ident: b21 article-title: Parameter-efficient transfer learning for NLP publication-title: International conference on machine learning – start-page: 1597 year: 2020 end-page: 1607 ident: b12 article-title: A simple framework for contrastive learning of visual representations publication-title: International conference on machine learning – year: 2021 ident: b32 article-title: Phase preservation neural network for electroencephalography classification in rapid serial visual presentation task publication-title: IEEE Transactions on Biomedical Engineering – reference: (pp. 6153–6162). – volume: 25 year: 2012 ident: b25 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 8 start-page: 74385 year: 2020 end-page: 74400 ident: b28 article-title: CNN with large data achieves true zero-training in online P300 brain-computer interface publication-title: IEEE Access – reference: (pp. 12186–12195). – year: 2024 ident: b79 article-title: Vision-language models for vision tasks: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 30 year: 2017 ident: b66 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 34 year: 2021 ident: b49 article-title: Intriguing properties of vision transformers publication-title: Advances in Neural Information Processing Systems – volume: 32 year: 2019 ident: b52 article-title: Stand-alone self-attention in vision models publication-title: Advances in Neural Information Processing Systems – volume: 34 start-page: 907 year: 2008 end-page: 926 ident: b53 article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia publication-title: Schizophrenia Bulletin – volume: 109 start-page: 43 year: 2020 end-page: 76 ident: b82 article-title: A comprehensive survey on transfer learning publication-title: Proceedings of the IEEE – volume: 244 start-page: 52 year: 2015 end-page: 67 ident: b47 article-title: DARPA-funded efforts in the development of novel brain–computer interface technologies publication-title: Journal of Neuroscience Methods – volume: 193 start-page: 1142 year: 1976 end-page: 1146 ident: b60 article-title: The effect of stimulus sequence on the waveform of the cortical event-related potential publication-title: Science – volume: 9 start-page: 146 year: 2015 ident: b40 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI publication-title: Frontiers in Computational Neuroscience – volume: 118 start-page: 2128 year: 2007 end-page: 2148 ident: b51 article-title: Updating P300: an integrative theory of P3a and P3b publication-title: Clinical Neurophysiology – volume: 31 start-page: 710 year: 2022 end-page: 719 ident: b59 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 161 start-page: 65 year: 2023 end-page: 82 ident: b41 article-title: Cross-modal guiding and reweighting network for multi-modal RSVP-based target detection publication-title: Neural Networks – volume: 111 start-page: 167 year: 2015 end-page: 178 ident: b48 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage – volume: 18 start-page: 357 year: 2024 end-page: 370 ident: b11 article-title: EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method publication-title: Cognitive Neurodynamics – year: 2024 ident: b76 article-title: Bridge graph attention based graph convolution network with multi-scale transformer for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – year: 2009 ident: b64 article-title: The MIT-CSAIL database of objects and scenes – year: 2024 ident: b22 article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces publication-title: IEEE Transactions on Cybernetics – year: 2014 ident: b24 article-title: Adam: A method for stochastic optimization – volume: 5 start-page: 243 year: 2010 end-page: 251 ident: b46 article-title: Time-locked and phase-locked features of P300 event-related potentials (ERPs) for brain–computer interface speller publication-title: Biomedical Signal Processing and Control – volume: 18 start-page: 0460c8 year: 2021 ident: b77 article-title: A deep learning method for single-trial EEG classification in RSVP task based on spatiotemporal features of ERPs publication-title: Journal of Neural Engineering – volume: 7 start-page: 139 year: 2013 end-page: 146 ident: b3 article-title: Brain-computer interface in stroke rehabilitation publication-title: Journal of Computing Science and Engineering – reference: (pp. 815–823). – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: b72 article-title: Brain–computer interfaces for communication and control publication-title: Clinical Neurophysiology – volume: 14 start-page: 174 year: 2006 end-page: 179 ident: b17 article-title: Cortically coupled computer vision for rapid image search publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 24 start-page: 333 year: 2015 end-page: 343 ident: b42 article-title: Improved neural signal classification in a rapid serial visual presentation task using active learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 28 start-page: 2344 year: 2020 end-page: 2355 ident: b70 article-title: Reducing calibration efforts in RSVP tasks with multi-source adversarial domain adaptation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – reference: (pp. 1604–1610). – volume: 229 year: 2023 ident: b45 article-title: Multi-modal fusion using fine-tuned self-attention and transfer learning for veracity analysis of web information publication-title: Expert Systems with Applications – volume: 10 start-page: 430 year: 2016 ident: b69 article-title: Spectral transfer learning using information geometry for a user-independent brain-computer interface publication-title: Frontiers in Neuroscience – volume: 30 start-page: 1727 year: 2022 end-page: 1736 ident: b15 article-title: DC-tCNN: A deep model for EEG-based detection of dim targets publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b56 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping – reference: Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In – volume: 9 year: 2008 ident: b37 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – reference: Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., & Wang, Y. (2022). Multimodal token fusion for vision transformers. In – year: 2023 ident: b36 article-title: A dual-branch spatio-temporal-spectral transformer feature fusion network for EEG-based visual recognition publication-title: IEEE Transactions on Industrial Informatics – year: 2022 ident: b7 article-title: Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals publication-title: Journal of Computer Science – volume: 19 year: 2022 ident: b71 article-title: ERP prototypical matching net: a meta-learning method for zero-calibration RSVP-based image retrieval publication-title: Journal of Neural Engineering – volume: 51 start-page: 1057 year: 2004 end-page: 1061 ident: b6 article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram publication-title: IEEE Transactions on Biomedical engineering – reference: Shan, H., Liu, Y., & Stefanov, T. P. (2018). A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain Computer Interface. In – volume: 64 start-page: 959 year: 2016 end-page: 969 ident: b44 article-title: Brain–computer interfaces for detection and localization of targets in aerial images publication-title: IEEE Transactions on Biomedical Engineering – volume: 12 start-page: 1211 year: 2012 end-page: 1279 ident: b50 article-title: Brain computer interfaces, a review publication-title: Sensors – volume: 28 start-page: 1081 year: 2020 end-page: 1090 ident: b54 article-title: How sensitive are EEG results to preprocessing methods: a benchmarking study publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – start-page: 97 year: 2021 end-page: 110 ident: b68 article-title: Spatten: Efficient sparse attention architecture with cascade token and head pruning publication-title: 2021 IEEE international symposium on high-performance computer architecture – volume: 70 start-page: 510 year: 1988 end-page: 523 ident: b16 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalography and clinical Neurophysiology – volume: 159 start-page: 296 year: 2020 end-page: 307 ident: b31 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b27 article-title: Deep learning publication-title: Nature – volume: 13 start-page: 2218 year: 2022 end-page: 2228 ident: b61 article-title: A dual-branch dynamic graph convolution based adaptive TransFormer feature fusion network for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 15 year: 2018 ident: b29 article-title: A review of rapid serial visual presentation-based brain–computer interfaces publication-title: Journal of Neural Engineering – volume: 164 start-page: 521 year: 2023 end-page: 534 ident: b13 article-title: A Transformer-based deep neural network model for SSVEP classification publication-title: Neural Networks – volume: 31 start-page: 1863 year: 2018 end-page: 1883 ident: b34 article-title: A survey of multi-view representation learning publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 1251–1258). – volume: 17 start-page: 1 year: 2018 end-page: 16 ident: b73 article-title: Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation publication-title: Biomedical Engineering Online – volume: 295 start-page: 690 year: 2002 end-page: 694 ident: b39 article-title: Dynamic brain sources of visual evoked responses publication-title: Science – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: b38 article-title: Mining event-related brain dynamics publication-title: Trends in Cognitive Sciences – volume: 7 start-page: 267 year: 2013 ident: b19 article-title: MEG and EEG data analysis with MNE-Python publication-title: Frontiers in Neuroinformatics – volume: 124 start-page: 901 year: 2013 end-page: 908 ident: b1 article-title: Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP) publication-title: Clinical Neurophysiology – reference: (pp. 4555–4563). – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.neunet.2024.106844_b26 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aace8c – volume: 64 start-page: 959 issue: 4 year: 2016 ident: 10.1016/j.neunet.2024.106844_b44 article-title: Brain–computer interfaces for detection and localization of targets in aerial images publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2016.2583200 – volume: 61 start-page: 2290 issue: 8 year: 2013 ident: 10.1016/j.neunet.2024.106844_b2 article-title: Spatiotemporal representations of rapid visual target detection: A single-trial EEG classification algorithm publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2013.2289898 – volume: 9 start-page: 270 year: 2015 ident: 10.1016/j.neunet.2024.106844_b43 article-title: The effect of target and non-target similarity on neural classification performance: a boost from confidence publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2015.00270 – volume: 15 start-page: 1 issue: 3 year: 2024 ident: 10.1016/j.neunet.2024.106844_b10 article-title: A survey on evaluation of large language models publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/3641289 – volume: 124 start-page: 901 issue: 5 year: 2013 ident: 10.1016/j.neunet.2024.106844_b1 article-title: Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP) publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2012.12.050 – year: 2023 ident: 10.1016/j.neunet.2024.106844_b81 article-title: UAV target detection for IoT via enhancing ERP component by brain computer interface system publication-title: IEEE Internet of Things Journal – volume: 17 start-page: 1357 issue: 5 year: 2023 ident: 10.1016/j.neunet.2024.106844_b35 article-title: 3D convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-022-09906-y – volume: 229 year: 2023 ident: 10.1016/j.neunet.2024.106844_b20 article-title: An efficient deep learning framework for P300 evoked related potential detection in EEG signal publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2022.107324 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.neunet.2024.106844_b37 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 22 start-page: 8685 issue: 9 year: 2022 ident: 10.1016/j.neunet.2024.106844_b62 article-title: An interpretable convolutional neural network for P300 detection: Analysis of time frequency features for limited data publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3159475 – year: 2009 ident: 10.1016/j.neunet.2024.106844_b64 – ident: 10.1016/j.neunet.2024.106844_b78 doi: 10.1109/CVPR.2019.00631 – volume: 30 year: 2017 ident: 10.1016/j.neunet.2024.106844_b66 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – year: 2014 ident: 10.1016/j.neunet.2024.106844_b24 – volume: 29 start-page: 1534 year: 2021 ident: 10.1016/j.neunet.2024.106844_b30 article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3099908 – ident: 10.1016/j.neunet.2024.106844_b33 doi: 10.1145/3503161.3548269 – volume: 159 start-page: 296 year: 2020 ident: 10.1016/j.neunet.2024.106844_b31 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2019.11.023 – volume: 7 start-page: 139 issue: 2 year: 2013 ident: 10.1016/j.neunet.2024.106844_b3 article-title: Brain-computer interface in stroke rehabilitation publication-title: Journal of Computing Science and Engineering doi: 10.5626/JCSE.2013.7.2.139 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.neunet.2024.106844_b56 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – ident: 10.1016/j.neunet.2024.106844_b23 doi: 10.1145/3534678.3539260 – ident: 10.1016/j.neunet.2024.106844_b67 doi: 10.1109/CVPR52688.2022.01187 – volume: 28 start-page: 2344 issue: 11 year: 2020 ident: 10.1016/j.neunet.2024.106844_b70 article-title: Reducing calibration efforts in RSVP tasks with multi-source adversarial domain adaptation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3023761 – ident: 10.1016/j.neunet.2024.106844_b58 doi: 10.24963/ijcai.2018/222 – volume: 109 start-page: 43 issue: 1 year: 2020 ident: 10.1016/j.neunet.2024.106844_b82 article-title: A comprehensive survey on transfer learning publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2020.3004555 – year: 2023 ident: 10.1016/j.neunet.2024.106844_b36 article-title: A dual-branch spatio-temporal-spectral transformer feature fusion network for EEG-based visual recognition publication-title: IEEE Transactions on Industrial Informatics – volume: 244 start-page: 52 year: 2015 ident: 10.1016/j.neunet.2024.106844_b47 article-title: DARPA-funded efforts in the development of novel brain–computer interface technologies publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2014.07.019 – start-page: 1597 year: 2020 ident: 10.1016/j.neunet.2024.106844_b12 article-title: A simple framework for contrastive learning of visual representations – volume: 14 year: 2020 ident: 10.1016/j.neunet.2024.106844_b80 article-title: A benchmark dataset for RSVP-based brain–computer interfaces publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2020.568000 – volume: 34 start-page: 907 issue: 5 year: 2008 ident: 10.1016/j.neunet.2024.106844_b53 article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbn093 – year: 2014 ident: 10.1016/j.neunet.2024.106844_b4 – volume: 18 start-page: 357 issue: 2 year: 2024 ident: 10.1016/j.neunet.2024.106844_b11 article-title: EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-024-10073-5 – volume: 14 start-page: 174 issue: 2 year: 2006 ident: 10.1016/j.neunet.2024.106844_b17 article-title: Cortically coupled computer vision for rapid image search publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2006.875550 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neunet.2024.106844_b27 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 5 start-page: 243 issue: 4 year: 2010 ident: 10.1016/j.neunet.2024.106844_b46 article-title: Time-locked and phase-locked features of P300 event-related potentials (ERPs) for brain–computer interface speller publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2010.08.001 – volume: 17 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neunet.2024.106844_b73 article-title: Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation publication-title: Biomedical Engineering Online doi: 10.1186/s12938-018-0483-7 – volume: 30 start-page: 1727 year: 2022 ident: 10.1016/j.neunet.2024.106844_b15 article-title: DC-tCNN: A deep model for EEG-based detection of dim targets publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3184725 – start-page: 3690 year: 2020 ident: 10.1016/j.neunet.2024.106844_b18 article-title: Power-bert: Accelerating bert inference via progressive word-vector elimination – volume: 28 start-page: 2773 issue: 12 year: 2020 ident: 10.1016/j.neunet.2024.106844_b55 article-title: EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3048106 – volume: 164 start-page: 521 year: 2023 ident: 10.1016/j.neunet.2024.106844_b13 article-title: A Transformer-based deep neural network model for SSVEP classification publication-title: Neural Networks doi: 10.1016/j.neunet.2023.04.045 – start-page: 6558 year: 2019 ident: 10.1016/j.neunet.2024.106844_b65 article-title: Multimodal transformer for unaligned multimodal language sequences – volume: 32 year: 2019 ident: 10.1016/j.neunet.2024.106844_b52 article-title: Stand-alone self-attention in vision models publication-title: Advances in Neural Information Processing Systems – volume: 295 start-page: 690 issue: 5555 year: 2002 ident: 10.1016/j.neunet.2024.106844_b39 article-title: Dynamic brain sources of visual evoked responses publication-title: Science doi: 10.1126/science.1066168 – volume: 41 start-page: 123 issue: 1 year: 2015 ident: 10.1016/j.neunet.2024.106844_b5 article-title: A brain–computer interface (BCI) for the detection of mine-like objects in sidescan sonar imagery publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/JOE.2015.2408471 – volume: 15 issue: 2 year: 2018 ident: 10.1016/j.neunet.2024.106844_b29 article-title: A review of rapid serial visual presentation-based brain–computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aa9817 – volume: 31 start-page: 1863 issue: 10 year: 2018 ident: 10.1016/j.neunet.2024.106844_b34 article-title: A survey of multi-view representation learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2872063 – volume: 118 start-page: 2128 issue: 10 year: 2007 ident: 10.1016/j.neunet.2024.106844_b51 article-title: Updating P300: an integrative theory of P3a and P3b publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2007.04.019 – volume: 111 start-page: 167 year: 2015 ident: 10.1016/j.neunet.2024.106844_b48 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.015 – volume: 31 start-page: 710 year: 2022 ident: 10.1016/j.neunet.2024.106844_b59 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3230250 – volume: 193 start-page: 1142 issue: 4258 year: 1976 ident: 10.1016/j.neunet.2024.106844_b60 article-title: The effect of stimulus sequence on the waveform of the cortical event-related potential publication-title: Science doi: 10.1126/science.959831 – volume: 28 start-page: 1081 issue: 5 year: 2020 ident: 10.1016/j.neunet.2024.106844_b54 article-title: How sensitive are EEG results to preprocessing methods: a benchmarking study publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.2980223 – start-page: 97 year: 2021 ident: 10.1016/j.neunet.2024.106844_b68 article-title: Spatten: Efficient sparse attention architecture with cascade token and head pruning – volume: 10 start-page: 430 year: 2016 ident: 10.1016/j.neunet.2024.106844_b69 article-title: Spectral transfer learning using information geometry for a user-independent brain-computer interface publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00430 – volume: 8 start-page: 204 issue: 5 year: 2004 ident: 10.1016/j.neunet.2024.106844_b38 article-title: Mining event-related brain dynamics publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2004.03.008 – year: 2021 ident: 10.1016/j.neunet.2024.106844_b32 article-title: Phase preservation neural network for electroencephalography classification in rapid serial visual presentation task publication-title: IEEE Transactions on Biomedical Engineering – volume: 7 start-page: 267 year: 2013 ident: 10.1016/j.neunet.2024.106844_b19 article-title: MEG and EEG data analysis with MNE-Python publication-title: Frontiers in Neuroinformatics – ident: 10.1016/j.neunet.2024.106844_b57 doi: 10.1109/CVPR.2015.7298682 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.neunet.2024.106844_b72 article-title: Brain–computer interfaces for communication and control publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00057-3 – start-page: 2790 year: 2019 ident: 10.1016/j.neunet.2024.106844_b21 article-title: Parameter-efficient transfer learning for NLP – ident: 10.1016/j.neunet.2024.106844_b74 doi: 10.1145/3503161.3548107 – volume: 25 year: 2012 ident: 10.1016/j.neunet.2024.106844_b25 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 34 year: 2021 ident: 10.1016/j.neunet.2024.106844_b49 article-title: Intriguing properties of vision transformers publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 1211 issue: 2 year: 2012 ident: 10.1016/j.neunet.2024.106844_b50 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 70 start-page: 510 issue: 6 year: 1988 ident: 10.1016/j.neunet.2024.106844_b16 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalography and clinical Neurophysiology doi: 10.1016/0013-4694(88)90149-6 – volume: 19 issue: 2 year: 2022 ident: 10.1016/j.neunet.2024.106844_b71 article-title: ERP prototypical matching net: a meta-learning method for zero-calibration RSVP-based image retrieval publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ac5eb7 – volume: 229 year: 2023 ident: 10.1016/j.neunet.2024.106844_b45 article-title: Multi-modal fusion using fine-tuned self-attention and transfer learning for veracity analysis of web information publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120537 – volume: 24 start-page: 333 issue: 3 year: 2015 ident: 10.1016/j.neunet.2024.106844_b42 article-title: Improved neural signal classification in a rapid serial visual presentation task using active learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2015.2502323 – volume: 18 start-page: 0460c8 issue: 4 year: 2021 ident: 10.1016/j.neunet.2024.106844_b77 article-title: A deep learning method for single-trial EEG classification in RSVP task based on spatiotemporal features of ERPs publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ac1610 – volume: 8 start-page: 74385 year: 2020 ident: 10.1016/j.neunet.2024.106844_b28 article-title: CNN with large data achieves true zero-training in online P300 brain-computer interface publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988057 – year: 2024 ident: 10.1016/j.neunet.2024.106844_b79 article-title: Vision-language models for vision tasks: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2024 ident: 10.1016/j.neunet.2024.106844_b22 article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2024.3390805 – volume: 9 start-page: 146 year: 2015 ident: 10.1016/j.neunet.2024.106844_b40 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2015.00146 – volume: 33 start-page: 433 issue: 3 year: 2010 ident: 10.1016/j.neunet.2024.106844_b9 article-title: Convolutional neural networks for P300 detection with application to brain-computer interfaces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.125 – volume: 13 start-page: 2218 issue: 4 year: 2022 ident: 10.1016/j.neunet.2024.106844_b61 article-title: A dual-branch dynamic graph convolution based adaptive TransFormer feature fusion network for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3199075 – year: 2022 ident: 10.1016/j.neunet.2024.106844_b7 article-title: Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals publication-title: Journal of Computer Science doi: 10.1016/j.jocs.2021.101544 – ident: 10.1016/j.neunet.2024.106844_b14 doi: 10.1109/CVPR.2017.195 – volume: 161 start-page: 65 year: 2023 ident: 10.1016/j.neunet.2024.106844_b41 article-title: Cross-modal guiding and reweighting network for multi-modal RSVP-based target detection publication-title: Neural Networks doi: 10.1016/j.neunet.2023.01.009 – volume: 27 start-page: 1962 issue: 10 year: 2019 ident: 10.1016/j.neunet.2024.106844_b63 article-title: Deep multi-view feature learning for EEG-based epileptic seizure detection publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2019.2940485 – year: 2023 ident: 10.1016/j.neunet.2024.106844_b75 article-title: Multimodal learning with transformers: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2023.3275156 – volume: 51 start-page: 1057 issue: 6 year: 2004 ident: 10.1016/j.neunet.2024.106844_b6 article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram publication-title: IEEE Transactions on Biomedical engineering doi: 10.1109/TBME.2004.826702 – volume: 25 start-page: 2030 issue: 11 year: 2014 ident: 10.1016/j.neunet.2024.106844_b8 article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2302898 – year: 2024 ident: 10.1016/j.neunet.2024.106844_b76 article-title: Bridge graph attention based graph convolution network with multi-scale transformer for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing |
SSID | ssj0006843 |
Score | 2.4554172 |
Snippet | The Rapid Serial Visual Presentation (RSVP)-based Brain–Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography... The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106844 |
SubjectTerms | Adapter-based fine-tuning Adult Algorithms Brain - physiology Brain-Computer Interfaces Brain–Computer Interface (BCI) Electroencephalography - methods Humans Male Multi-view learning Photic Stimulation - methods Rapid Serial Visual Presentation (RSVP) Signal Processing, Computer-Assisted Transformer Visual Perception - physiology |
Title | A temporal–spectral fusion transformer with subject-specific adapter for enhancing RSVP-BCI decoding |
URI | https://dx.doi.org/10.1016/j.neunet.2024.106844 https://www.ncbi.nlm.nih.gov/pubmed/39509814 https://www.proquest.com/docview/3128318591 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYieuHSUugjfURG4uomXntfxzRqFEBEqCkVN8trj0sQ2kRN9or6H_oP-0uY2QeIA6rEbWWNvd4Ze2Z2PJ-HsSOpo1HuIik8amChMyrzonDj2cQHHezIJUDg5LN5MrvQJ5fxZY9NOiwMpVW2ur_R6bW2bluGLTeH6-VyuBihqU0IKqrr4yQC_Gqd0ir_cvuQ5pFkTeYcEgui7uBzdY5XCVUJlFEZaWxCUv2UeXrK_azN0HSPvWz9Rz5upvia9aDcZ6-62gy83aoHLIx5e-vUzb8_f2s8JT7yUFF0jG87dxW7UCSWb6qCAjKCCCl5iFtv1zQgEnEor-hWjvIX_774eS6-To65x79Wsnpv2MX024_JTLQ1FYRTUm5FSuB3a6GwGToywUcB8OvBpyB9FhfeK1e44F0hbXAZRCmA9jHEIfaJ8rlUb9lOuSrhPeMqzkfeaRom1kkW5SGSKHGvUofiUNBnomOlWTdXZ5gup-zaNKw3xHrTsL7P0o7f5tESMKjd_9PzsBOPwd1BRx62hFW1MQrNL-HDc9ln7xq53c9F5egsZVJ_ePZ7P7LdiMoB1xGZT2xn-7uCz-ijbItBvQgH7MX4-HQ2vwOCSulH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThwxzKLLob1A32yfqdRrtJtJ5nXcrop2C6yqAhW3KJM4FISGVdm59x_6h3xJ7Xkg9YAq9TaK7EzGTmyP4wfAR2WSaekTJQNJYGkKbvOi6eC5LEQT3dRnyMnJR6tscWq-nKVnWzAfcmE4rLKX_Z1Mb6V1PzLpqTlZX1xMjqekajNOFTXtdVLxALa5OlU6gu3Z8mCxuhPIWdEFzxG8ZIQhg64N86qxqZGDKhNDQwRq7tNQ91mgrSbafww7vQkpZt0qn8AW1k9hd2jPIPrT-gziTPSFp65uf_1uUyrpUcSGHWRiM1ishMLOWHHTVOyTkQzI8UPCBbfmCQlIYP2DC3PU5-Lb8fev8tN8KQL9uLLiew6n-59P5gvZt1WQXiu1kTnnvzuHlSvIlokhiUhfjyFHFYq0CkH7ysfgK-WiLzDJEU1IMY1pyHQolX4Bo_q6xj0QOi2nwRueJjVZkZQxUcT0oHNPHNE4BjmQ0q676hl2CCu7tB3pLZPedqQfQz7Q2_61CywJ-H9gfhjYY-mA8K2Hq_G6ubGaNDCniJdqDC87vt2tRZdkLxXKvPrv976Hh4uTo0N7uFwdvIZHCXcHbh00b2C0-dngWzJZNtW7fkv-AYAB6_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+temporal-spectral+fusion+transformer+with+subject-specific+adapter+for+enhancing+RSVP-BCI+decoding&rft.jtitle=Neural+networks&rft.au=Li%2C+Xujin&rft.au=Wei%2C+Wei&rft.au=Qiu%2C+Shuang&rft.au=He%2C+Huiguang&rft.date=2025-01-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=181&rft.spage=106844&rft_id=info:doi/10.1016%2Fj.neunet.2024.106844&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |