Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition
We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90° off-axis substrates with an applied substrate bias. Capacitive measurements of Ta 2 O 5 deposited on unbiased off-axis substrates...
Saved in:
Published in | Journal of applied physics Vol. 106; no. 10; pp. 104110 - 104110-9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
15.11.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90° off-axis substrates with an applied substrate bias. Capacitive measurements of
Ta
2
O
5
deposited on unbiased off-axis substrates indicate low frequency dielectric constants as high as
ε
r
∼
300
. Low frequency loss tangents are high,
tan
δ
>
0.5
, and have a pronounced frequency dependence. Deposition of the film off-axis with sufficient applied rf bias to the substrate (negative bias
>
−
70
V
) recovers the on-axis properties typical of
Ta
2
O
5
, e.g.,
ε
r
∼
22
and
tan
δ
∼
0.02
. The recovery of normal dielectric behavior is attributed to the ion bombardment of the growing film under substrate bias, similar to on-axis depositions but absent from depositions on off-axis substrates with no applied substrate bias. We suggest that insufficiently bombarded films develop a Maxwell-Wagner type polarization along columnar voids. The void structure and the associated dielectric response vary with distance from the sputtering source due to variations in ion density and angle from the sputtering source. A similar dielectric response is observed in depositions on on-axis substrates as a function of angle from the central sputter gun axis. Our results suggest that ion bombardment is necessary for good quality sputtered dielectric films but that a controlled
Ar
+
flux is essentially equivalent to the uncontrolled
O
2
−
/
O
2
−
flux of on-axis reactive sputtering. |
---|---|
AbstractList | We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90 deg. off-axis substrates with an applied substrate bias. Capacitive measurements of Ta{sub 2}O{sub 5} deposited on unbiased off-axis substrates indicate low frequency dielectric constants as high as epsilon{sub r}approx300. Low frequency loss tangents are high, tan delta>0.5, and have a pronounced frequency dependence. Deposition of the film off-axis with sufficient applied rf bias to the substrate (negative bias >-70 V) recovers the on-axis properties typical of Ta{sub 2}O{sub 5}, e.g., epsilon{sub r}approx22 and tan deltaapprox0.02. The recovery of normal dielectric behavior is attributed to the ion bombardment of the growing film under substrate bias, similar to on-axis depositions but absent from depositions on off-axis substrates with no applied substrate bias. We suggest that insufficiently bombarded films develop a Maxwell-Wagner type polarization along columnar voids. The void structure and the associated dielectric response vary with distance from the sputtering source due to variations in ion density and angle from the sputtering source. A similar dielectric response is observed in depositions on on-axis substrates as a function of angle from the central sputter gun axis. Our results suggest that ion bombardment is necessary for good quality sputtered dielectric films but that a controlled Ar{sup +} flux is essentially equivalent to the uncontrolled O{sub 2}{sup -}/O{sup 2-} flux of on-axis reactive sputtering. We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90° off-axis substrates with an applied substrate bias. Capacitive measurements of Ta 2 O 5 deposited on unbiased off-axis substrates indicate low frequency dielectric constants as high as ε r ∼ 300 . Low frequency loss tangents are high, tan δ > 0.5 , and have a pronounced frequency dependence. Deposition of the film off-axis with sufficient applied rf bias to the substrate (negative bias > − 70 V ) recovers the on-axis properties typical of Ta 2 O 5 , e.g., ε r ∼ 22 and tan δ ∼ 0.02 . The recovery of normal dielectric behavior is attributed to the ion bombardment of the growing film under substrate bias, similar to on-axis depositions but absent from depositions on off-axis substrates with no applied substrate bias. We suggest that insufficiently bombarded films develop a Maxwell-Wagner type polarization along columnar voids. The void structure and the associated dielectric response vary with distance from the sputtering source due to variations in ion density and angle from the sputtering source. A similar dielectric response is observed in depositions on on-axis substrates as a function of angle from the central sputter gun axis. Our results suggest that ion bombardment is necessary for good quality sputtered dielectric films but that a controlled Ar + flux is essentially equivalent to the uncontrolled O 2 − / O 2 − flux of on-axis reactive sputtering. We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90° off-axis substrates with an applied substrate bias. Capacitive measurements of Ta2O5 deposited on unbiased off-axis substrates indicate low frequency dielectric constants as high as εr∼300. Low frequency loss tangents are high, tan δ>0.5, and have a pronounced frequency dependence. Deposition of the film off-axis with sufficient applied rf bias to the substrate (negative bias >−70 V) recovers the on-axis properties typical of Ta2O5, e.g., εr∼22 and tan δ∼0.02. The recovery of normal dielectric behavior is attributed to the ion bombardment of the growing film under substrate bias, similar to on-axis depositions but absent from depositions on off-axis substrates with no applied substrate bias. We suggest that insufficiently bombarded films develop a Maxwell–Wagner type polarization along columnar voids. The void structure and the associated dielectric response vary with distance from the sputtering source due to variations in ion density and angle from the sputtering source. A similar dielectric response is observed in depositions on on-axis substrates as a function of angle from the central sputter gun axis. Our results suggest that ion bombardment is necessary for good quality sputtered dielectric films but that a controlled Ar+ flux is essentially equivalent to the uncontrolled O2−/O2− flux of on-axis reactive sputtering. |
Author | Barron, S. C. Noginov, M. M. Werder, D. van Dover, R. B. Schneemeyer, L. F. |
Author_xml | – sequence: 1 givenname: S. surname: Barron middlename: C. fullname: Barron, S. C. organization: Department of Materials Science and Engineering, Cornell University, Ithaca,New York 14853, USA – sequence: 2 givenname: M. surname: Noginov middlename: M. fullname: Noginov, M. M. organization: Department of Materials Science and Engineering, Cornell University, Ithaca,New York 14853, USA – sequence: 3 givenname: D. surname: Werder fullname: Werder, D. organization: Department of Materials Science and Engineering, Cornell University, Ithaca,New York 14853, USA – sequence: 4 givenname: L. surname: Schneemeyer middlename: F. fullname: Schneemeyer, L. F. organization: Department of Materials Science and Engineering, Cornell University, Ithaca,New York 14853, USA – sequence: 5 givenname: R. surname: van Dover middlename: B. fullname: van Dover, R. B. email: vandover@cornell.edu. organization: Department of Materials Science and Engineering, Cornell University, Ithaca,New York 14853, USA |
BackLink | https://www.osti.gov/biblio/21361935$$D View this record in Osti.gov |
BookMark | eNp1kc9LwzAcxYMouE0P_gcBTx665ZusaXPwIPMnDLzoubTpt5rRJjVJQf97O7YhiJ7e5fMevPem5Ng6i4RcAJsDk2IBc8FTkYE6IhNguUqyNGXHZMIYhyRXmTol0xA2jAHkQk3I5tZgizp6o6nH0DsbkLqGxtLGsh066j5NjTQM1WakaHTU2HrQWFPjLK1cV5W-7tBGWg_e2DfqqtZ8DKOjH2JET2vsXTBxpM_ISVO2Ac_3OiOv93cvq8dk_fzwtLpZJ1oAxERqtsyzpZZS5U2qVc1zlBKgydKaK845LJHJSpeCa1blWgjIG0SepRWmmWrEjFzucl2IpgjaRNTv2lk7Fig4CAlKpCN1taO0dyF4bIrem670XwWwYjtlAcV-ypFd_GLH0HLbKfrStH86rneOcCD_j_95oDg8IL4BZsGNtA |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1063_1_5022336 crossref_primary_10_1021_co4000375 crossref_primary_10_1142_S2010135X15500101 crossref_primary_10_1063_1_4748158 crossref_primary_10_1142_S2010135X21500090 crossref_primary_10_1063_1_5134098 |
Cites_doi | 10.1063/1.124089 10.1063/1.2759196 10.1063/1.1603341 10.1063/1.2715112 10.1063/1.353856 10.1063/1.1856137 10.1063/1.1417991 10.1116/1.569109 10.1016/S0927-796X(97)00023-5 10.1016/0250-6874(84)80009-8 10.1088/0022-3727/17/10/020 10.1016/0925-4005(94)01268-M 10.1038/21612 10.1038/32381 10.1063/1.113343 10.1080/00207218208901467 10.1063/1.122191 10.1039/df9715200239 10.1364/AO.28.002466 10.1166/sl.2005.045 10.1116/1.1885011 10.1116/1.578074 10.1116/1.569886 10.1063/1.1661054 10.1063/1.1636532 10.1111/j.1151-2916.1980.tb10724.x 10.1021/j100187a040 10.1021/j100856a051 10.1109/JSEN.2005.859359 10.1063/1.1567460 10.1063/1.1574594 10.1063/1.339559 10.1063/1.1410871 10.1063/1.2361170 10.1063/1.126214 10.1149/1.1390740 10.1063/1.1855395 10.1063/1.1712008 10.1557/mrs2002.97 |
ContentType | Journal Article |
Copyright | 2009 American Institute of Physics |
Copyright_xml | – notice: 2009 American Institute of Physics |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1063/1.3253719 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
EndPage | 104110-9 |
ExternalDocumentID | 21361935 10_1063_1_3253719 jap |
GrantInformation_xml | – fundername: NSF grantid: ECS-0335765 – fundername: UNSPECIFIED grantid: DMR-0520404 – fundername: DOE grantid: DE-FG02-06ER06-15 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 6TJ 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH AAYJJ ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B OHT P0- P2P RIP RNS ROL RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ZCG ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 0ZJ 6XO ABPTK AGIHO OTOTI TAF UE8 |
ID | FETCH-LOGICAL-c311t-6c04874c6698f5c9d28e6611f75d2922214e06bca32c0b8c3318fee275be579f3 |
ISSN | 0021-8979 |
IngestDate | Fri May 19 01:42:39 EDT 2023 Tue Jul 01 03:48:02 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Fri Jun 21 00:18:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c311t-6c04874c6698f5c9d28e6611f75d2922214e06bca32c0b8c3318fee275be579f3 |
ParticipantIDs | osti_scitechconnect_21361935 crossref_primary_10_1063_1_3253719 crossref_citationtrail_10_1063_1_3253719 scitation_primary_10_1063_1_3253719Dielectric_response |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-15 |
PublicationDateYYYYMMDD | 2009-11-15 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of applied physics |
PublicationYear | 2009 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Petrov, I.; Hultman, L.; Sundgren, J.; Greene, J. 1992; 10 Motohiro, T.; Taga, Y. 1989; 28 Sillars, R. 1937; 80 Tsui, B.; Chang, H. 2003; 93 Chaneliere, C.; Autran, J.; Devine, R.; Balland, B. 1998; 22 Cuomo, J.; Gambino, R. 1977; 14 Edon, V.; Li, Z.; Hugon, M.; Agius, B.; Krug, C.; Baumvol, I.; Durand, O.; Eypert, C. 2007; 90 Steele, J.; Gospodyn, J.; Sit, J.; Brett, M. 2006; 6 Lee, B.; Jeon, Y.; Zawadzki, K.; Qi, W.; Lee, J. 1999; 74 Khanna, V.; Nahar, R. 1984; 5 Brassard, D.; El Khakani, M.; Ouellet, L. 2007; 102 Chen, Z.; Lu, C. 2005; 3 Ramanathan, S.; Wilk, G.; Muller, D.; Park, C.; McIntyre, P. 2001; 79 Le Bellac, D.; Azens, A.; Granqvist, C. 1995; 66 Nahar, R.; Khanna, V. 1982; 52 Huang, A.; Chu, P.; Yan, H.; Zhu, M. 2005; 23 Hoffman, D.; Thorton, J. 1979; 16 Auciello, O.; Fan, W.; Kabius, B.; Saha, S.; Carlisles, J.; Chang, R.; Lopez, C.; Irene, E.; Baragiola, R. 2005; 86 Alers, G.; Werder, D.; Chabal, Y.; Lu, H.; Gusev, E.; Garfunkel, E.; Gustafsson, T.; Urdahl, R. 1998; 73 van Dover, R.; Schneemeyer, L.; Fleming, R. 1998; 392 Traversa, E. 1995; 23 Anderson, J.; Parks, G. 1968; 72 Lee, B.; Kang, L.; Nieh, R.; Qi, W.; Lee, J. 2000; 76 Robbie, K.; Broer, D.; Brett, M. 1999; 399 Takeuchi, I.; van Dover, R.; Koinuma, H. 2002; 27 Muller, K. 1987; 62 van Dover, R.; Green, M.; Manchanda, L.; Schneemeyer, L.; Siegrist, T. 2003; 83 Beaglehole, D.; Christenson, H. 1992; 96 Iosad, N.; Ruis, G.; Morks, E.; Morpurgo, A.; van der Pers, N.; Alkemade, P.; Sivel, V. 2004; 95 Nahar, R.; Khanna, V.; Khokle, W. 1984; 17 Kohl, A.; Mimna, R.; Shick, R.; Rhodes, L.; Wang, Z.; Kohl, P. 1999; 2 Maex, K.; Baklanov, M.; Shamiryan, D.; Lacopi, F.; Brongersma, S.; Yanovitskaya, Z. 2003; 93 Callegari, A.; Cartier, E.; Gribelyuk, M.; Okorn-Schmidt, H.; Zabel, T. 2001; 90 McCafferty, E.; Zettlemoyer, A. 1971; 52 Sivasubramani, P.; Kim, J.; Kim, M.; Gnade, B.; Wallace, R. 2006; 89 Jun, S.; Rack, P.; McKnight, T.; Melechko, A.; Simpson, M. 2005; 97 Ramanathan, S.; McIntyre, P.; Guha, S.; Gusev, E. 2004; 84 Coburn, J.; Kay, E. 1972; 43 Nitta, T.; Terada, Z.; Hayakawa, S. 1980; 63 Shannon, R. 1993; 73 (2023070320591149100_c17) 1977; 14 (2023070320591149100_c23) 1993; 73 (2023070320591149100_c12) 2004; 95 (2023070320591149100_c14) 2007; 102 (2023070320591149100_c24) 1998; 22 (2023070320591149100_c16) 2002 (2023070320591149100_c22) 2001; 90 (2023070320591149100_c25) 1992; 10 Maissel (2023070320591149100_c13) 1970 (2023070320591149100_c30) 2006; 6 (2023070320591149100_c8) 2001; 79 (2023070320591149100_c19) 1998; 73 (2023070320591149100_c40) 2005; 3 (2023070320591149100_c33) 1982; 52 (2023070320591149100_c9) 2004; 84 (2023070320591149100_c29) 1999; 399 (2023070320591149100_c10) 2007; 90 (2023070320591149100_c1) 2002; 27 (2023070320591149100_c15) 2005; 23 (2023070320591149100_c44) 2003; 93 (2023070320591149100_c20) 1999; 74 (2023070320591149100_c7) 2005; 86 Auciello (2023070320591149100_c18) 1984 (2023070320591149100_c2) 2005; 97 (2023070320591149100_c39) 1995; 23 (2023070320591149100_c41) 1983 (2023070320591149100_c3) 1972; 43 (2023070320591149100_c5) 1998; 392 (2023070320591149100_c27) 1989; 28 (2023070320591149100_c36) 1980; 63 (2023070320591149100_c11) 2006; 89 (2023070320591149100_c26) 1987; 62 (2023070320591149100_c31) 1979; 16 (2023070320591149100_c37) 1992; 96 (2023070320591149100_c6) 2000; 76 (2023070320591149100_c34) 1984; 5 (2023070320591149100_c21) 2003; 93 (2023070320591149100_c28) 1995; 66 (2023070320591149100_c4) 2003; 83 (2023070320591149100_c38) 1984; 17 (2023070320591149100_c43) 1999; 2 (2023070320591149100_c35) 1971; 52 (2023070320591149100_c42) 1968; 72 (2023070320591149100_c32) 1937; 80 |
References_xml | – volume: 74 start-page: 3143 year: 1999 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124089 – volume: 102 start-page: 034106 year: 2007 publication-title: J. Appl. Phys. doi: 10.1063/1.2759196 – volume: 83 start-page: 1459 year: 2003 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1603341 – volume: 90 start-page: 122905 year: 2007 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2715112 – volume: 73 start-page: 348 year: 1993 publication-title: J. Appl. Phys. doi: 10.1063/1.353856 – volume: 86 start-page: 042904 year: 2005 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1856137 – volume: 90 start-page: 6466 year: 2001 publication-title: J. Appl. Phys. doi: 10.1063/1.1417991 – volume: 14 start-page: 152 year: 1977 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.569109 – volume: 22 start-page: 269 year: 1998 publication-title: Mater. Sci. Eng. R. doi: 10.1016/S0927-796X(97)00023-5 – volume: 5 start-page: 187 year: 1984 publication-title: Sens. Actuators doi: 10.1016/0250-6874(84)80009-8 – volume: 17 start-page: 2087 year: 1984 publication-title: J. Phys. D doi: 10.1088/0022-3727/17/10/020 – volume: 23 start-page: 135 year: 1995 publication-title: Sens. Actuators B doi: 10.1016/0925-4005(94)01268-M – volume: 399 start-page: 764 year: 1999 publication-title: Nature (London) doi: 10.1038/21612 – volume: 392 start-page: 162 year: 1998 publication-title: Nature (London) doi: 10.1038/32381 – volume: 66 start-page: 1715 year: 1995 publication-title: Appl. Phys. Lett. doi: 10.1063/1.113343 – volume: 52 start-page: 557 year: 1982 publication-title: Int. J. Electron. doi: 10.1080/00207218208901467 – volume: 27 start-page: 301 year: 2002 publication-title: MRS Bull. – volume: 73 start-page: 1517 year: 1998 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122191 – volume: 52 start-page: 239 year: 1971 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9715200239 – volume: 28 start-page: 2466 year: 1989 publication-title: Appl. Opt. doi: 10.1364/AO.28.002466 – volume: 3 start-page: 274 year: 2005 publication-title: Sens. Lett. doi: 10.1166/sl.2005.045 – volume: 23 start-page: 566 year: 2005 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1885011 – volume: 10 start-page: 265 year: 1992 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.578074 – volume: 16 start-page: 134 year: 1979 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.569886 – volume: 43 start-page: 4965 year: 1972 publication-title: J. Appl. Phys. doi: 10.1063/1.1661054 – volume: 84 start-page: 389 year: 2004 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1636532 – volume: 63 start-page: 295 year: 1980 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1980.tb10724.x – volume: 96 start-page: 3395 year: 1992 publication-title: J. Phys. Chem. doi: 10.1021/j100187a040 – volume: 72 start-page: 3662 year: 1968 publication-title: J. Phys. Chem. doi: 10.1021/j100856a051 – volume: 6 start-page: 24 year: 2006 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2005.859359 – volume: 93 start-page: 8793 year: 2003 publication-title: J. Appl. Phys. doi: 10.1063/1.1567460 – volume: 93 start-page: 10119 year: 2003 publication-title: J. Appl. Phys. doi: 10.1063/1.1574594 – volume: 62 start-page: 1796 year: 1987 publication-title: J. Appl. Phys. doi: 10.1063/1.339559 – volume: 79 start-page: 2621 year: 2001 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1410871 – volume: 80 start-page: 378 year: 1937 publication-title: J. Inst. Electr. Eng. – volume: 89 start-page: 152903 year: 2006 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2361170 – volume: 76 start-page: 1926 year: 2000 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126214 – volume: 2 start-page: 77 year: 1999 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1390740 – volume: 97 start-page: 054906 year: 2005 publication-title: J. Appl. Phys. doi: 10.1063/1.1855395 – volume: 95 start-page: 8087 year: 2004 publication-title: J. Appl. Phys. doi: 10.1063/1.1712008 – volume: 22 start-page: 269 year: 1998 ident: 2023070320591149100_c24 publication-title: Mater. Sci. Eng. R. doi: 10.1016/S0927-796X(97)00023-5 – volume: 73 start-page: 348 year: 1993 ident: 2023070320591149100_c23 publication-title: J. Appl. Phys. doi: 10.1063/1.353856 – volume: 3 start-page: 274 year: 2005 ident: 2023070320591149100_c40 publication-title: Sens. Lett. doi: 10.1166/sl.2005.045 – volume: 96 start-page: 3395 year: 1992 ident: 2023070320591149100_c37 publication-title: J. Phys. Chem. doi: 10.1021/j100187a040 – volume: 102 start-page: 034106 year: 2007 ident: 2023070320591149100_c14 publication-title: J. Appl. Phys. doi: 10.1063/1.2759196 – volume: 5 start-page: 187 year: 1984 ident: 2023070320591149100_c34 publication-title: Sens. Actuators doi: 10.1016/0250-6874(84)80009-8 – volume: 27 start-page: 301 year: 2002 ident: 2023070320591149100_c1 publication-title: MRS Bull. doi: 10.1557/mrs2002.97 – volume: 90 start-page: 122905 year: 2007 ident: 2023070320591149100_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2715112 – volume: 86 start-page: 042904 year: 2005 ident: 2023070320591149100_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1856137 – volume: 95 start-page: 8087 year: 2004 ident: 2023070320591149100_c12 publication-title: J. Appl. Phys. doi: 10.1063/1.1712008 – volume: 79 start-page: 2621 year: 2001 ident: 2023070320591149100_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1410871 – volume: 6 start-page: 24 year: 2006 ident: 2023070320591149100_c30 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2005.859359 – volume-title: Dielectric Relaxation in Solids year: 1983 ident: 2023070320591149100_c41 – volume: 73 start-page: 1517 year: 1998 ident: 2023070320591149100_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122191 – volume: 72 start-page: 3662 year: 1968 ident: 2023070320591149100_c42 publication-title: J. Phys. Chem. doi: 10.1021/j100856a051 – volume: 93 start-page: 10119 year: 2003 ident: 2023070320591149100_c21 publication-title: J. Appl. Phys. doi: 10.1063/1.1574594 – volume: 28 start-page: 2466 year: 1989 ident: 2023070320591149100_c27 publication-title: Appl. Opt. doi: 10.1364/AO.28.002466 – volume: 90 start-page: 6466 year: 2001 ident: 2023070320591149100_c22 publication-title: J. Appl. Phys. doi: 10.1063/1.1417991 – volume: 52 start-page: 239 year: 1971 ident: 2023070320591149100_c35 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9715200239 – volume: 63 start-page: 295 year: 1980 ident: 2023070320591149100_c36 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1980.tb10724.x – volume-title: Handbook of Thin Film Technology year: 1970 ident: 2023070320591149100_c13 – volume: 66 start-page: 1715 year: 1995 ident: 2023070320591149100_c28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.113343 – volume: 17 start-page: 2087 year: 1984 ident: 2023070320591149100_c38 publication-title: J. Phys. D doi: 10.1088/0022-3727/17/10/020 – volume: 392 start-page: 162 year: 1998 ident: 2023070320591149100_c5 publication-title: Nature (London) doi: 10.1038/32381 – volume: 62 start-page: 1796 year: 1987 ident: 2023070320591149100_c26 publication-title: J. Appl. Phys. doi: 10.1063/1.339559 – volume: 76 start-page: 1926 year: 2000 ident: 2023070320591149100_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126214 – volume: 80 start-page: 378 year: 1937 ident: 2023070320591149100_c32 publication-title: J. Inst. Electr. Eng. – volume: 23 start-page: 135 year: 1995 ident: 2023070320591149100_c39 publication-title: Sens. Actuators B doi: 10.1016/0925-4005(94)01268-M – volume: 97 start-page: 054906 year: 2005 ident: 2023070320591149100_c2 publication-title: J. Appl. Phys. doi: 10.1063/1.1855395 – volume: 43 start-page: 4965 year: 1972 ident: 2023070320591149100_c3 publication-title: J. Appl. Phys. doi: 10.1063/1.1661054 – volume: 14 start-page: 152 year: 1977 ident: 2023070320591149100_c17 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.569109 – volume: 2 start-page: 77 year: 1999 ident: 2023070320591149100_c43 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1390740 – volume: 16 start-page: 134 year: 1979 ident: 2023070320591149100_c31 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.569886 – volume: 84 start-page: 389 year: 2004 ident: 2023070320591149100_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1636532 – volume-title: Ion Bombardment Modification of Surfaces: Fundamentals and Applications year: 1984 ident: 2023070320591149100_c18 – volume: 52 start-page: 557 year: 1982 ident: 2023070320591149100_c33 publication-title: Int. J. Electron. doi: 10.1080/00207218208901467 – volume-title: Materials Science of Thin Films: Deposition and Structure year: 2002 ident: 2023070320591149100_c16 – volume: 74 start-page: 3143 year: 1999 ident: 2023070320591149100_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124089 – volume: 89 start-page: 152903 year: 2006 ident: 2023070320591149100_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2361170 – volume: 93 start-page: 8793 year: 2003 ident: 2023070320591149100_c44 publication-title: J. Appl. Phys. doi: 10.1063/1.1567460 – volume: 399 start-page: 764 year: 1999 ident: 2023070320591149100_c29 publication-title: Nature (London) doi: 10.1038/21612 – volume: 83 start-page: 1459 year: 2003 ident: 2023070320591149100_c4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1603341 – volume: 23 start-page: 566 year: 2005 ident: 2023070320591149100_c15 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1885011 – volume: 10 start-page: 265 year: 1992 ident: 2023070320591149100_c25 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.578074 |
SSID | ssj0011839 |
Score | 1.9786173 |
Snippet | We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive... |
SourceID | osti crossref scitation |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 104110 |
SubjectTerms | ARGON IONS BEAMS CHALCOGENIDES CHARGED PARTICLES DEPOSITION DIELECTRIC MATERIALS DIELECTRIC PROPERTIES ELECTRICAL PROPERTIES FREQUENCY DEPENDENCE ION BEAMS IONS MATERIALS MATERIALS SCIENCE OXIDES OXYGEN COMPOUNDS OXYGEN IONS PERMITTIVITY PHYSICAL PROPERTIES POLARIZATION REFRACTORY METAL COMPOUNDS SPUTTERING SUBSTRATES TANTALUM COMPOUNDS TANTALUM OXIDES THIN FILMS TRANSITION ELEMENT COMPOUNDS |
Title | Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition |
URI | http://dx.doi.org/10.1063/1.3253719 https://www.osti.gov/biblio/21361935 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3va9QwGA56Q3QfRKfi6ZQgfhCO1iZp0vbj2DmGbCJsg30rlzRlk911bD1R_3rft0nTm95gCkc5cr3m6PPc2ydv3h-EvM9RtqUMU7csLFAqbOSeyTTiuWIgMArLKsxGPvyi9k_Sz6fydPDpdtklrY7Nr7V5Jf-DKowBrpgl-w_IhovCALwHfOEICMPxThhPz10Xm64Mcxfr6vb8Z5jiuJxPmh_nlZ1cLzU6W1BlwgJ8iRv-iLlu5hro0QUD-GTFRl905VyvL7v21Rgm62O6btGwM69hnX9k8LhjZUfnWI0nu3FwOGPgePO988HG8Bp2ha4qx5xpGDsyZwtr5_an--AgnuzFNzwUBabquRzNkDHAorxwTWNi6wxtkhdRJl3R2WCJE7VKuWStiQdNhd6GWHApMm9ub5TR_uPxFoIOu-12JUpW-q_eJxscFhd8RDZ2pocHR2H3CVWjCw1yv7uvSKXExzDvDR0zasAeb5KHoFpcAMWKRjl-Qh57YOiOY8pTcs8utsjmSsnJLfLgq4PqGfk2sIf27KFNTXv20I491LOHtg317KEwM11hD3XsoZ491LOHDux5Tk72Ph3v7ke-80ZkBGNtpAwY9iw1ShV5LU1R8dyCkGN1JitegKRkqU2UNjPBTaJzI-DJUFvLM6mtzIpavCCjRbOwLwlNai5gyVCwKtOptViNqUorWIbI2s6yJB-TD_19LPu7h91RLsq_8BqTd-HUS1eLZd1J2whGiVBYc2YwXMy0JWcCLI-QY6ICSLdfZACg7AF4dZfJX5NHwx9gm4zaq6V9A6K11W89x34DFmGWug |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+response+of+tantalum+oxide+subject+to+induced+ion+bombardment+during+oblique+sputter+deposition&rft.jtitle=Journal+of+applied+physics&rft.au=Barron%2C+S.+C.&rft.au=Noginov%2C+M.+M.&rft.au=Werder%2C+D.&rft.au=Schneemeyer%2C+L.+F.&rft.date=2009-11-15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=106&rft.issue=10&rft_id=info:doi/10.1063%2F1.3253719&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3253719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |