Evaluation of Human Perception Thresholds Using Knowledge-Based Pattern Recognition
This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques are based on the processes of cognitive resonance and can be applied to the division and reconstruction of images using threshold algorithms. T...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 4; p. 736 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics13040736 |
Cover
Loading…
Abstract | This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques are based on the processes of cognitive resonance and can be applied to the division and reconstruction of images using threshold algorithms. The research presented here considers the most important parameters that affect the determination of visual perception thresholds. These parameters are the thematic knowledge and personal expectations that arise at the time of image observation and recognition. The determination of perceptual thresholds has been carried out using visual pattern splitting techniques through threshold methods. The reconstruction of the divided patterns was carried out by combining successive components that, as information was gathered, allowed more and more details to become apparent in the image until the observer could recognize it correctly. The study being carried out in this way made it possible to determine individual perceptual thresholds for dozens of test subjects. The results of the study also showed strong correlations between the determined perceptual thresholds and the participants’ accumulated thematic knowledge, expectations and experiences from a previous recognition of similar image patterns. |
---|---|
AbstractList | This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques are based on the processes of cognitive resonance and can be applied to the division and reconstruction of images using threshold algorithms. The research presented here considers the most important parameters that affect the determination of visual perception thresholds. These parameters are the thematic knowledge and personal expectations that arise at the time of image observation and recognition. The determination of perceptual thresholds has been carried out using visual pattern splitting techniques through threshold methods. The reconstruction of the divided patterns was carried out by combining successive components that, as information was gathered, allowed more and more details to become apparent in the image until the observer could recognize it correctly. The study being carried out in this way made it possible to determine individual perceptual thresholds for dozens of test subjects. The results of the study also showed strong correlations between the determined perceptual thresholds and the participants’ accumulated thematic knowledge, expectations and experiences from a previous recognition of similar image patterns. |
Audience | Academic |
Author | Ogiela, Urszula Ogiela, Marek R. |
Author_xml | – sequence: 1 givenname: Marek R. orcidid: 0000-0002-8298-8627 surname: Ogiela fullname: Ogiela, Marek R. – sequence: 2 givenname: Urszula surname: Ogiela fullname: Ogiela, Urszula |
BookMark | eNptkM1OwzAQhC0EEqX0CbhE4pzin9Sxj6UqFFGJCtpz5NjrNFVqFzsB8faklAMHdg-7Gs23K80VOnfeAUI3BI8Zk_gOGtBt8K7WkTCc4ZzxMzSgOJeppJKe_9kv0SjGHe5LEiYYHqC3-YdqOtXW3iXeJotur1yygqDh8KOttwHi1jcmJptYuyp5dv6zAVNBeq8imGSl2haCS15B-8rVR-gaXVjVRBj9ziHaPMzXs0W6fHl8mk2XqWaEtClXE0HkRBqBpS2BG8CUS0LthDIwikCpSqMtlbzMuNGZ1RyELgGwzDEoyYbo9nT3EPx7B7Etdr4Lrn9ZUMmwEIJnR9f45KpUA0XtrG-D0n0b2Ne6j9LWvT7NRYaZyDnuAXYCdPAxBrDFIdR7Fb4Kgotj4sU_ibNvomt6BQ |
Cites_doi | 10.1016/j.jvcir.2023.103848 10.1016/j.neucom.2018.06.042 10.1016/j.radi.2019.06.009 10.1007/978-3-642-25246-4 10.1016/j.datak.2018.07.006 10.1109/TCYB.2020.3010960 10.3390/s20123458 10.1016/j.knosys.2021.106812 10.1093/oso/9780198238904.001.0001 10.1016/j.ergon.2022.103280 10.1016/j.neucom.2021.08.048 10.1016/j.eswa.2024.123349 10.1016/j.cognition.2020.104365 10.1016/j.neucom.2019.11.105 10.1016/j.jvcir.2023.104019 10.1016/j.patcog.2016.02.005 10.1007/978-3-642-03958-4_28 10.1016/j.jvcir.2020.102768 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/electronics13040736 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A784038760 10_3390_electronics13040736 |
GeographicLocations | Poland |
GeographicLocations_xml | – name: Poland |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c311t-6a581959d809fbe6de026912f523eda1ebabdcf296b46dc4fc6e8cbee0970ea93 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sun Jul 13 05:36:05 EDT 2025 Tue Jun 10 21:13:28 EDT 2025 Tue Jul 01 01:48:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-6a581959d809fbe6de026912f523eda1ebabdcf296b46dc4fc6e8cbee0970ea93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8298-8627 |
OpenAccessLink | https://www.proquest.com/docview/2930888649?pq-origsite=%requestingapplication% |
PQID | 2930888649 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2930888649 gale_infotracacademiconefile_A784038760 crossref_primary_10_3390_electronics13040736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wu (ref_3) 2021; 463 Sardar (ref_9) 2020; 68 Zhang (ref_14) 2017; 394–395 Panoutsos (ref_15) 2020; 389 Zhang (ref_7) 2021; 216 ref_11 Balaji (ref_17) 2024; 98 ref_1 Chen (ref_13) 2016; 59 ref_2 Rastgoo (ref_16) 2024; 247 Weiland (ref_6) 2018; 117 Taylor (ref_8) 2020; 26 Ogiela (ref_10) 2009; 244 Li (ref_18) 2022; 88 Zeng (ref_19) 2018; 313 Yu (ref_20) 2023; 94 Zhang (ref_12) 2020; 52 Perconti (ref_5) 2020; 203 ref_4 |
References_xml | – volume: 94 start-page: 103848 year: 2023 ident: ref_20 article-title: A hybrid indicator for realistic blurred image quality assessment publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2023.103848 – volume: 313 start-page: 111 year: 2018 ident: ref_19 article-title: No-reference image quality assessment for photographic images based on robust statistics publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.042 – volume: 26 start-page: 42 year: 2020 ident: ref_8 article-title: Students’ perceptions of a near-peer Objective Structured Clinical Examination (OSCE) in medical imaging publication-title: Radiography doi: 10.1016/j.radi.2019.06.009 – ident: ref_1 doi: 10.1007/978-3-642-25246-4 – volume: 394–395 start-page: 1 year: 2017 ident: ref_14 article-title: Weighted sparse coding regularized nonconvex matrix regression for robust face recognition publication-title: Inf. Sci. – ident: ref_2 – volume: 117 start-page: 114 year: 2018 ident: ref_6 article-title: Knowledge-rich image gist understanding beyond literal meaning publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2018.07.006 – volume: 52 start-page: 3276 year: 2020 ident: ref_12 article-title: Global Convergence Guarantees of (A)GIST for a Family of Nonconvex Sparse Learning Problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3010960 – ident: ref_11 doi: 10.3390/s20123458 – volume: 216 start-page: 106812 year: 2021 ident: ref_7 article-title: Deep discriminative image feature learning for cross-modal semantics understanding publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106812 – ident: ref_4 doi: 10.1093/oso/9780198238904.001.0001 – volume: 88 start-page: 103280 year: 2022 ident: ref_18 article-title: Evaluating the impact of wait indicators on user visual imagery and speed perception in mobile application interfaces publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2022.103280 – volume: 463 start-page: 17 year: 2021 ident: ref_3 article-title: VP-NIQE: An opinion-unaware visual perception natural image quality evaluator publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.048 – volume: 247 start-page: 123349 year: 2024 ident: ref_16 article-title: Multi-modal zero-shot dynamic hand gesture recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123349 – volume: 203 start-page: 104365 year: 2020 ident: ref_5 article-title: Deep learning and cognitive science publication-title: Cognition doi: 10.1016/j.cognition.2020.104365 – volume: 389 start-page: 42 year: 2020 ident: ref_15 article-title: A Multilayer Interval Type-2 Fuzzy Extreme Learning Machine for the recognition of walking activities and gait events using wearable sensors publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.105 – volume: 98 start-page: 104019 year: 2024 ident: ref_17 article-title: Multimodal fusion hierarchical self-attention network for dynamic hand gesture recognition publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2023.104019 – volume: 59 start-page: 26 year: 2016 ident: ref_13 article-title: Adaptive noise dictionary construction via IRRPCA for face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.02.005 – volume: 244 start-page: 327 year: 2009 ident: ref_10 article-title: Secure Information Splitting Using Grammar Schemes publication-title: Stud. Comput. Intell. doi: 10.1007/978-3-642-03958-4_28 – volume: 68 start-page: 102768 year: 2020 ident: ref_9 article-title: A new lossless secret color image sharing scheme with small shadow size publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2020.102768 |
SSID | ssj0000913830 |
Score | 2.274133 |
Snippet | This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 736 |
SubjectTerms | Algorithms Classification Cognition & reasoning Image processing Image reconstruction Knowledge Object recognition (Computers) Parameters Pattern recognition Semantics Thresholds Visual perception |
Title | Evaluation of Human Perception Thresholds Using Knowledge-Based Pattern Recognition |
URI | https://www.proquest.com/docview/2930888649 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIryqDwgsWDVSZzEmVALLYiXqrZIbJGfY1pI-f-c06RlQMweIt3Z3913d_kO4CpiUshUp5RbJSg3MaMZN44KmcQBniAe-n-HX9-Sx3f-9BF_1AW3sh6rbDCxAmoz175G3sOwhA9CJDy7XXxSvzXKd1frFRrb0EYIFki-2oPh23iyrrJ41UsRsZXcUIT8vrfZLlMifCOdqcSZNyHpb2Cuos1oH_bqNJH0V349gC1bHMLuL_HAI5gO10LdZO5IVY0n4_WcCpmhl0rfXCpJNRdAnpvyGR1g6DJkXElrFmTSzBDNi2N4Hw1nd4-0XpFAdRQES5rI2DfCMiNY5pRNjEVOlQWhQ35pjQyskspoF2aJ4onR3OnECq2sZVnKrMyiE2gV88KeAnE-llvpwlRJHqdG8YDJyGkbKx0yJztw01gpX6yUMHJkEN6o-R9G7cC1t2Tu38nyS2pZj_vjx7ziVN5PkVpGiMWsAxeNsfP6AZX5xt1n_x-fw06IecZqkPoCWsuvb3uJecJSdWFbjB660O7fv75Mu_XV-AGZ8MQm |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB0hKIACcYpwbgGiYcXaXl8FQlwhIQFFECQ6s2fpAA5C_BTfyKwdJxQRHfUUlsYz8-baNwAHAROJiFVMuZEJ5TpkNOXa0kREoYcSjIfu7fDdfdR64rfP4fMMfNdvYdxaZR0Ty0CtB8r1yE8QltAhkoinZ69v1F2NctPV-oRGZRYd8_WJJVtx2r7C_3vo-83r_mWLjq4KUBV43pBGInSzo1QnLLXSRNpgGZJ6vsWSzGjhGSmkVtZPI8kjrbhVkUmUNIalMTPCkS9hyJ_jQZA6j0qaN-OejuPYTAJWkRuhnJ1MbtkUCBZYPJVU0BMAnA4DJbY1l2FplJSS88qKVmDG5Kuw-IuqcA0er8e04GRgSdn7J73xVgzpo00UbpRVkHILgXTqZh29QKDUpFcSeebkod5YGuTr8PQvqtuA2XyQm00g1mUORlg_loKHsZbcYyKwyoRS-cyKBhzXWspeK96NDOsVp9RsilIbcOQ0mTmvHL4LJUaPC_Bjjt8qO4-xkA0w8rMG7NTKzkbuWmQT49r6W7wP863-XTfrtu8727DgY4ZTrXDvwOzw_cPsYoYylHulWRB4-W87_AEnNv9E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgNBEC0kguhBXDGufVC82KRnpmc7iLgkqNEQXMDb2Otxok5E_DW_zupZEg_izXMzDFS_rlfVVf0KYD9gIhGxiik3MqFch4ymXFuaiCj0cAX9oXs7fDuILh_59VP4NANfzVsY11bZ-MTSUeuRcnfkHaQlPBBJxNOOrdsihhe9k5dX6iZIuUprM06jgkjffH5g-lYcX13gXh_4fq_7cH5J6wkDVAWeN6aRCF0dKdUJS600kTaYkqSebzE9M1p4RgqplfXTSPJIK25VZBIljWFpzIxwQkzo_mdjzIpYC2bPuoPh3eSGxyluJgGrpI6CIGWd6WSbAqkDPyqFoad0-DsplEzXW4LFOkQlpxWmlmHG5Cuw8EO4cBXuuxORcDKypKwEkOGkR4Y8IEIKV9gqSNmTQPrN1R09Q9rUZFjKeubkrulfGuVr8PgvxluHVj7KzQYQ6-III6wfS8HDWEvuMRFYZUKpfGZFG44aK2UvlQpHhtmLM2r2i1HbcOgsmbkzOn4TStRPDfBnTu0qO40xrQ2QB1gbthtjZ_XhLbIp1Db_Xt6DOcRgdnM16G_BvI_hTtXPvQ2t8du72cFwZSx3a1wQeP5vKH4DtrIE5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Human+Perception+Thresholds+Using+Knowledge-Based+Pattern+Recognition&rft.jtitle=Electronics+%28Basel%29&rft.au=Ogiela%2C+Marek+R&rft.au=Ogiela%2C+Urszula&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=13&rft.issue=4&rft.spage=736&rft_id=info:doi/10.3390%2Felectronics13040736&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |