Evaluation of Human Perception Thresholds Using Knowledge-Based Pattern Recognition

This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques are based on the processes of cognitive resonance and can be applied to the division and reconstruction of images using threshold algorithms. T...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 4; p. 736
Main Authors Ogiela, Marek R., Ogiela, Urszula
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics13040736

Cover

Loading…
Abstract This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques are based on the processes of cognitive resonance and can be applied to the division and reconstruction of images using threshold algorithms. The research presented here considers the most important parameters that affect the determination of visual perception thresholds. These parameters are the thematic knowledge and personal expectations that arise at the time of image observation and recognition. The determination of perceptual thresholds has been carried out using visual pattern splitting techniques through threshold methods. The reconstruction of the divided patterns was carried out by combining successive components that, as information was gathered, allowed more and more details to become apparent in the image until the observer could recognize it correctly. The study being carried out in this way made it possible to determine individual perceptual thresholds for dozens of test subjects. The results of the study also showed strong correlations between the determined perceptual thresholds and the participants’ accumulated thematic knowledge, expectations and experiences from a previous recognition of similar image patterns.
AbstractList This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques are based on the processes of cognitive resonance and can be applied to the division and reconstruction of images using threshold algorithms. The research presented here considers the most important parameters that affect the determination of visual perception thresholds. These parameters are the thematic knowledge and personal expectations that arise at the time of image observation and recognition. The determination of perceptual thresholds has been carried out using visual pattern splitting techniques through threshold methods. The reconstruction of the divided patterns was carried out by combining successive components that, as information was gathered, allowed more and more details to become apparent in the image until the observer could recognize it correctly. The study being carried out in this way made it possible to determine individual perceptual thresholds for dozens of test subjects. The results of the study also showed strong correlations between the determined perceptual thresholds and the participants’ accumulated thematic knowledge, expectations and experiences from a previous recognition of similar image patterns.
Audience Academic
Author Ogiela, Urszula
Ogiela, Marek R.
Author_xml – sequence: 1
  givenname: Marek R.
  orcidid: 0000-0002-8298-8627
  surname: Ogiela
  fullname: Ogiela, Marek R.
– sequence: 2
  givenname: Urszula
  surname: Ogiela
  fullname: Ogiela, Urszula
BookMark eNptkM1OwzAQhC0EEqX0CbhE4pzin9Sxj6UqFFGJCtpz5NjrNFVqFzsB8faklAMHdg-7Gs23K80VOnfeAUI3BI8Zk_gOGtBt8K7WkTCc4ZzxMzSgOJeppJKe_9kv0SjGHe5LEiYYHqC3-YdqOtXW3iXeJotur1yygqDh8KOttwHi1jcmJptYuyp5dv6zAVNBeq8imGSl2haCS15B-8rVR-gaXVjVRBj9ziHaPMzXs0W6fHl8mk2XqWaEtClXE0HkRBqBpS2BG8CUS0LthDIwikCpSqMtlbzMuNGZ1RyELgGwzDEoyYbo9nT3EPx7B7Etdr4Lrn9ZUMmwEIJnR9f45KpUA0XtrG-D0n0b2Ne6j9LWvT7NRYaZyDnuAXYCdPAxBrDFIdR7Fb4Kgotj4sU_ibNvomt6BQ
Cites_doi 10.1016/j.jvcir.2023.103848
10.1016/j.neucom.2018.06.042
10.1016/j.radi.2019.06.009
10.1007/978-3-642-25246-4
10.1016/j.datak.2018.07.006
10.1109/TCYB.2020.3010960
10.3390/s20123458
10.1016/j.knosys.2021.106812
10.1093/oso/9780198238904.001.0001
10.1016/j.ergon.2022.103280
10.1016/j.neucom.2021.08.048
10.1016/j.eswa.2024.123349
10.1016/j.cognition.2020.104365
10.1016/j.neucom.2019.11.105
10.1016/j.jvcir.2023.104019
10.1016/j.patcog.2016.02.005
10.1007/978-3-642-03958-4_28
10.1016/j.jvcir.2020.102768
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics13040736
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A784038760
10_3390_electronics13040736
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c311t-6a581959d809fbe6de026912f523eda1ebabdcf296b46dc4fc6e8cbee0970ea93
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Jul 13 05:36:05 EDT 2025
Tue Jun 10 21:13:28 EDT 2025
Tue Jul 01 01:48:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-6a581959d809fbe6de026912f523eda1ebabdcf296b46dc4fc6e8cbee0970ea93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8298-8627
OpenAccessLink https://www.proquest.com/docview/2930888649?pq-origsite=%requestingapplication%
PQID 2930888649
PQPubID 2032404
ParticipantIDs proquest_journals_2930888649
gale_infotracacademiconefile_A784038760
crossref_primary_10_3390_electronics13040736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_3) 2021; 463
Sardar (ref_9) 2020; 68
Zhang (ref_14) 2017; 394–395
Panoutsos (ref_15) 2020; 389
Zhang (ref_7) 2021; 216
ref_11
Balaji (ref_17) 2024; 98
ref_1
Chen (ref_13) 2016; 59
ref_2
Rastgoo (ref_16) 2024; 247
Weiland (ref_6) 2018; 117
Taylor (ref_8) 2020; 26
Ogiela (ref_10) 2009; 244
Li (ref_18) 2022; 88
Zeng (ref_19) 2018; 313
Yu (ref_20) 2023; 94
Zhang (ref_12) 2020; 52
Perconti (ref_5) 2020; 203
ref_4
References_xml – volume: 94
  start-page: 103848
  year: 2023
  ident: ref_20
  article-title: A hybrid indicator for realistic blurred image quality assessment
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2023.103848
– volume: 313
  start-page: 111
  year: 2018
  ident: ref_19
  article-title: No-reference image quality assessment for photographic images based on robust statistics
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.042
– volume: 26
  start-page: 42
  year: 2020
  ident: ref_8
  article-title: Students’ perceptions of a near-peer Objective Structured Clinical Examination (OSCE) in medical imaging
  publication-title: Radiography
  doi: 10.1016/j.radi.2019.06.009
– ident: ref_1
  doi: 10.1007/978-3-642-25246-4
– volume: 394–395
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Weighted sparse coding regularized nonconvex matrix regression for robust face recognition
  publication-title: Inf. Sci.
– ident: ref_2
– volume: 117
  start-page: 114
  year: 2018
  ident: ref_6
  article-title: Knowledge-rich image gist understanding beyond literal meaning
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2018.07.006
– volume: 52
  start-page: 3276
  year: 2020
  ident: ref_12
  article-title: Global Convergence Guarantees of (A)GIST for a Family of Nonconvex Sparse Learning Problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3010960
– ident: ref_11
  doi: 10.3390/s20123458
– volume: 216
  start-page: 106812
  year: 2021
  ident: ref_7
  article-title: Deep discriminative image feature learning for cross-modal semantics understanding
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106812
– ident: ref_4
  doi: 10.1093/oso/9780198238904.001.0001
– volume: 88
  start-page: 103280
  year: 2022
  ident: ref_18
  article-title: Evaluating the impact of wait indicators on user visual imagery and speed perception in mobile application interfaces
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2022.103280
– volume: 463
  start-page: 17
  year: 2021
  ident: ref_3
  article-title: VP-NIQE: An opinion-unaware visual perception natural image quality evaluator
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.048
– volume: 247
  start-page: 123349
  year: 2024
  ident: ref_16
  article-title: Multi-modal zero-shot dynamic hand gesture recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123349
– volume: 203
  start-page: 104365
  year: 2020
  ident: ref_5
  article-title: Deep learning and cognitive science
  publication-title: Cognition
  doi: 10.1016/j.cognition.2020.104365
– volume: 389
  start-page: 42
  year: 2020
  ident: ref_15
  article-title: A Multilayer Interval Type-2 Fuzzy Extreme Learning Machine for the recognition of walking activities and gait events using wearable sensors
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.105
– volume: 98
  start-page: 104019
  year: 2024
  ident: ref_17
  article-title: Multimodal fusion hierarchical self-attention network for dynamic hand gesture recognition
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2023.104019
– volume: 59
  start-page: 26
  year: 2016
  ident: ref_13
  article-title: Adaptive noise dictionary construction via IRRPCA for face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.02.005
– volume: 244
  start-page: 327
  year: 2009
  ident: ref_10
  article-title: Secure Information Splitting Using Grammar Schemes
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-642-03958-4_28
– volume: 68
  start-page: 102768
  year: 2020
  ident: ref_9
  article-title: A new lossless secret color image sharing scheme with small shadow size
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2020.102768
SSID ssj0000913830
Score 2.274133
Snippet This paper presents research on determining individual perceptual thresholds in cognitive analyses and the understanding of visual patterns. Such techniques...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 736
SubjectTerms Algorithms
Classification
Cognition & reasoning
Image processing
Image reconstruction
Knowledge
Object recognition (Computers)
Parameters
Pattern recognition
Semantics
Thresholds
Visual perception
Title Evaluation of Human Perception Thresholds Using Knowledge-Based Pattern Recognition
URI https://www.proquest.com/docview/2930888649
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIryqDwgsWDVSZzEmVALLYiXqrZIbJGfY1pI-f-c06RlQMweIt3Z3913d_kO4CpiUshUp5RbJSg3MaMZN44KmcQBniAe-n-HX9-Sx3f-9BF_1AW3sh6rbDCxAmoz175G3sOwhA9CJDy7XXxSvzXKd1frFRrb0EYIFki-2oPh23iyrrJ41UsRsZXcUIT8vrfZLlMifCOdqcSZNyHpb2Cuos1oH_bqNJH0V349gC1bHMLuL_HAI5gO10LdZO5IVY0n4_WcCpmhl0rfXCpJNRdAnpvyGR1g6DJkXElrFmTSzBDNi2N4Hw1nd4-0XpFAdRQES5rI2DfCMiNY5pRNjEVOlQWhQ35pjQyskspoF2aJ4onR3OnECq2sZVnKrMyiE2gV88KeAnE-llvpwlRJHqdG8YDJyGkbKx0yJztw01gpX6yUMHJkEN6o-R9G7cC1t2Tu38nyS2pZj_vjx7ziVN5PkVpGiMWsAxeNsfP6AZX5xt1n_x-fw06IecZqkPoCWsuvb3uJecJSdWFbjB660O7fv75Mu_XV-AGZ8MQm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB0hKIACcYpwbgGiYcXaXl8FQlwhIQFFECQ6s2fpAA5C_BTfyKwdJxQRHfUUlsYz8-baNwAHAROJiFVMuZEJ5TpkNOXa0kREoYcSjIfu7fDdfdR64rfP4fMMfNdvYdxaZR0Ty0CtB8r1yE8QltAhkoinZ69v1F2NctPV-oRGZRYd8_WJJVtx2r7C_3vo-83r_mWLjq4KUBV43pBGInSzo1QnLLXSRNpgGZJ6vsWSzGjhGSmkVtZPI8kjrbhVkUmUNIalMTPCkS9hyJ_jQZA6j0qaN-OejuPYTAJWkRuhnJ1MbtkUCBZYPJVU0BMAnA4DJbY1l2FplJSS88qKVmDG5Kuw-IuqcA0er8e04GRgSdn7J73xVgzpo00UbpRVkHILgXTqZh29QKDUpFcSeebkod5YGuTr8PQvqtuA2XyQm00g1mUORlg_loKHsZbcYyKwyoRS-cyKBhzXWspeK96NDOsVp9RsilIbcOQ0mTmvHL4LJUaPC_Bjjt8qO4-xkA0w8rMG7NTKzkbuWmQT49r6W7wP863-XTfrtu8727DgY4ZTrXDvwOzw_cPsYoYylHulWRB4-W87_AEnNv9E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgNBEC0kguhBXDGufVC82KRnpmc7iLgkqNEQXMDb2Otxok5E_DW_zupZEg_izXMzDFS_rlfVVf0KYD9gIhGxiik3MqFch4ymXFuaiCj0cAX9oXs7fDuILh_59VP4NANfzVsY11bZ-MTSUeuRcnfkHaQlPBBJxNOOrdsihhe9k5dX6iZIuUprM06jgkjffH5g-lYcX13gXh_4fq_7cH5J6wkDVAWeN6aRCF0dKdUJS600kTaYkqSebzE9M1p4RgqplfXTSPJIK25VZBIljWFpzIxwQkzo_mdjzIpYC2bPuoPh3eSGxyluJgGrpI6CIGWd6WSbAqkDPyqFoad0-DsplEzXW4LFOkQlpxWmlmHG5Cuw8EO4cBXuuxORcDKypKwEkOGkR4Y8IEIKV9gqSNmTQPrN1R09Q9rUZFjKeubkrulfGuVr8PgvxluHVj7KzQYQ6-III6wfS8HDWEvuMRFYZUKpfGZFG44aK2UvlQpHhtmLM2r2i1HbcOgsmbkzOn4TStRPDfBnTu0qO40xrQ2QB1gbthtjZ_XhLbIp1Db_Xt6DOcRgdnM16G_BvI_hTtXPvQ2t8du72cFwZSx3a1wQeP5vKH4DtrIE5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Human+Perception+Thresholds+Using+Knowledge-Based+Pattern+Recognition&rft.jtitle=Electronics+%28Basel%29&rft.au=Ogiela%2C+Marek+R&rft.au=Ogiela%2C+Urszula&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=13&rft.issue=4&rft.spage=736&rft_id=info:doi/10.3390%2Felectronics13040736&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon