PAIBoard: A Neuromorphic Computing Platform for Hybrid Neural Networks in Robot Dog Application
Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution towards generic artificial intelligence. There is a prevailing trend towards designing unified SNN-ANN paradigm neuromorphic computing chips...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 18; p. 3619 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution towards generic artificial intelligence. There is a prevailing trend towards designing unified SNN-ANN paradigm neuromorphic computing chips to support HNNs, but developing platforms to advance neuromorphic computing systems is equally essential. This paper presents the PAIBoard platform, which is designed to facilitate the implementation of HNNs. The platform comprises three main components: the upper computer, the communication module, and the neuromorphic computing chip. Both hardware and software performance measurements indicate that our platform achieves low power consumption, high energy efficiency and comparable task accuracy. Furthermore, PAIBoard is applied in a robot dog for tracking and obstacle avoidance system. The tracking module combines data from ultra-wide band (UWB) transceivers and vision, while the obstacle avoidance module utilizes depth information from an RGB-D camera, which further underscores the potential of our platform to tackle challenging tasks in real-world applications. |
---|---|
AbstractList | Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution towards generic artificial intelligence. There is a prevailing trend towards designing unified SNN-ANN paradigm neuromorphic computing chips to support HNNs, but developing platforms to advance neuromorphic computing systems is equally essential. This paper presents the PAIBoard platform, which is designed to facilitate the implementation of HNNs. The platform comprises three main components: the upper computer, the communication module, and the neuromorphic computing chip. Both hardware and software performance measurements indicate that our platform achieves low power consumption, high energy efficiency and comparable task accuracy. Furthermore, PAIBoard is applied in a robot dog for tracking and obstacle avoidance system. The tracking module combines data from ultra-wide band (UWB) transceivers and vision, while the obstacle avoidance module utilizes depth information from an RGB-D camera, which further underscores the potential of our platform to tackle challenging tasks in real-world applications. |
Audience | Academic |
Author | Zou, Chenglong Chen, Guang Zhang, Xing Wang, Yuan Cao, Jian Feng, Shuo Zhong, Yi |
Author_xml | – sequence: 1 givenname: Guang orcidid: 0009-0007-3527-0122 surname: Chen fullname: Chen, Guang – sequence: 2 givenname: Jian surname: Cao fullname: Cao, Jian – sequence: 3 givenname: Chenglong orcidid: 0000-0002-2571-3213 surname: Zou fullname: Zou, Chenglong – sequence: 4 givenname: Shuo orcidid: 0000-0002-0929-0687 surname: Feng fullname: Feng, Shuo – sequence: 5 givenname: Yi surname: Zhong fullname: Zhong, Yi – sequence: 6 givenname: Xing surname: Zhang fullname: Zhang, Xing – sequence: 7 givenname: Yuan orcidid: 0000-0002-4951-4286 surname: Wang fullname: Wang, Yuan |
BookMark | eNptUMtOwzAQtFCRKKVfwMUS5xQ7dp2YWyiPVqqgQnC2HMcuLkkcHEeof49LOXBgV9pZrWZ2pDkHo9a1GoBLjGaEcHSta62Cd61VPSY4JwzzEzBOUcYTnvJ09Gc_A9O-36FYHJOcoDEQm2J166SvbmABn_TgXeN8924VXLimG4Jtt3BTy2Ccb2AccLkvva1-qLKOEL6c_-ihbeGLK12Ad24Li66rrZLBuvYCnBpZ93r6ixPw9nD_ulgm6-fH1aJYJ4pgHJK5NLJMKZOUpTors1zltCqxYUxRijBFas4pkVLxTBqeMpJjTag2xKAo1YxMwNXxb-fd56D7IHZu8G20FNEA0Xme8yyyZkfWVtZa2Na44KWKXenGqhirsfFe5Bix6JcdBOQoUN71vddGdN420u8FRuKQvvgnffINbWx8dQ |
Cites_doi | 10.1109/JPROC.2014.2313565 10.1016/S0361-9230(99)00161-6 10.1126/science.adh1174 10.1080/00221309.1931.9918416 10.1109/IJCNN.2017.7966125 10.1007/s11432-021-3510-6 10.1109/TCAD.2015.2474396 10.1007/s11263-014-0788-3 10.1162/neco_a_01086 10.1038/s41467-022-30964-7 10.1016/j.cub.2014.08.026 10.1016/j.neucom.2023.02.026 10.1109/SC.2016.11 10.1016/j.neunet.2017.12.005 10.1109/JPROC.2014.2304638 10.3389/fnins.2018.00331 10.1109/JSSC.2020.2970709 10.1038/s41586-020-2782-y 10.1145/3448250 10.1109/SC.2014.8 10.1109/JSSC.2013.2259038 10.1038/s41586-019-1424-8 10.1109/TPAMI.2022.3146140 10.1109/82.842110 10.1016/S0893-6080(97)00011-7 10.1109/MM.2018.112130359 10.1038/s43588-021-00184-y |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics13183619 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A810659477 10_3390_electronics13183619 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c311t-5afab246a462e7b78c84db1f66c440140c5943aac97af926381e34ef3f05afe63 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sat Jul 26 01:16:39 EDT 2025 Tue Jun 10 21:02:35 EDT 2025 Tue Jul 01 04:08:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-5afab246a462e7b78c84db1f66c440140c5943aac97af926381e34ef3f05afe63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0929-0687 0000-0002-2571-3213 0009-0007-3527-0122 0000-0002-4951-4286 |
OpenAccessLink | https://www.proquest.com/docview/3110458897?pq-origsite=%requestingapplication% |
PQID | 3110458897 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3110458897 gale_infotracacademiconefile_A810659477 crossref_primary_10_3390_electronics13183619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Fang (ref_10) 2021; 34 Maass (ref_3) 1997; 10 Riherd (ref_4) 2021; 17 Painkras (ref_13) 2013; 48 ref_36 ref_35 Zhu (ref_30) 2022; 45 ref_34 Abbott (ref_31) 1999; 50 Skinner (ref_33) 1931; 5 Li (ref_21) 2023; 112 Akopyan (ref_15) 2015; 34 Pei (ref_27) 2023; 66 Boahen (ref_32) 2000; 47 Kuang (ref_29) 2021; 68 Benjamin (ref_14) 2014; 102 Davies (ref_17) 2018; 38 ref_39 ref_16 ref_38 ref_37 Modha (ref_19) 2023; 382 Cox (ref_1) 2014; 24 Zenke (ref_9) 2018; 30 Pei (ref_28) 2019; 572 Kheradpisheh (ref_7) 2018; 99 ref_25 ref_24 ref_23 Zhang (ref_20) 2020; 586 ref_40 Schuman (ref_11) 2022; 2 Zhao (ref_5) 2022; 13 Bengio (ref_2) 2021; 64 Cao (ref_6) 2015; 113 ref_26 ref_8 Yi (ref_12) 2023; 531 Furber (ref_22) 2014; 102 Deng (ref_18) 2020; 55 |
References_xml | – volume: 102 start-page: 699 year: 2014 ident: ref_14 article-title: Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2313565 – volume: 50 start-page: 303 year: 1999 ident: ref_31 article-title: Lapicque’s introduction of the integrate-and-fire model neuron (1907) publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(99)00161-6 – volume: 382 start-page: 329 year: 2023 ident: ref_19 article-title: Neural inference at the frontier of energy, space, and time publication-title: Science doi: 10.1126/science.adh1174 – volume: 5 start-page: 427 year: 1931 ident: ref_33 article-title: The concept of the reflex in the description of behavior publication-title: J. Gen. Psychol. doi: 10.1080/00221309.1931.9918416 – ident: ref_16 doi: 10.1109/IJCNN.2017.7966125 – volume: 66 start-page: 142403 year: 2023 ident: ref_27 article-title: Multi-grained system integration for hybrid-paradigm brain-inspired computing publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-021-3510-6 – volume: 34 start-page: 1537 year: 2015 ident: ref_15 article-title: Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2015.2474396 – volume: 113 start-page: 54 year: 2015 ident: ref_6 article-title: Spiking deep convolutional neural networks for energy-efficient object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0788-3 – ident: ref_26 – ident: ref_34 – volume: 30 start-page: 1514 year: 2018 ident: ref_9 article-title: Superspike: Supervised learning in multilayer spiking neural networks publication-title: Neural Comput. doi: 10.1162/neco_a_01086 – volume: 13 start-page: 3427 year: 2022 ident: ref_5 article-title: A framework for the general design and computation of hybrid neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-022-30964-7 – volume: 24 start-page: 921 year: 2014 ident: ref_1 article-title: Neural networks and neuroscience-inspired computer vision publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.08.026 – volume: 112 start-page: 544 year: 2023 ident: ref_21 article-title: Brain inspired computing: A systematic survey and future trends publication-title: TechRxiv – volume: 531 start-page: 163 year: 2023 ident: ref_12 article-title: Learning rules in spiking neural networks: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.026 – ident: ref_24 doi: 10.1109/SC.2016.11 – ident: ref_39 – ident: ref_40 – volume: 99 start-page: 56 year: 2018 ident: ref_7 article-title: STDP-based spiking deep convolutional neural networks for object recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.12.005 – ident: ref_37 – volume: 17 start-page: 33 year: 2021 ident: ref_4 article-title: Neuromorphic Computing: Explaining how Projected SNN Training will Largely Impact our Interactions with Technology publication-title: Elements – volume: 102 start-page: 652 year: 2014 ident: ref_22 article-title: The spinnaker project publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2304638 – ident: ref_35 – volume: 34 start-page: 21056 year: 2021 ident: ref_10 article-title: Deep residual learning in spiking neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_8 doi: 10.3389/fnins.2018.00331 – volume: 55 start-page: 2228 year: 2020 ident: ref_18 article-title: Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2020.2970709 – ident: ref_25 – volume: 586 start-page: 378 year: 2020 ident: ref_20 article-title: A system hierarchy for brain-inspired computing publication-title: Nature doi: 10.1038/s41586-020-2782-y – volume: 64 start-page: 58 year: 2021 ident: ref_2 article-title: Deep learning for AI publication-title: Commun. ACM doi: 10.1145/3448250 – ident: ref_23 doi: 10.1109/SC.2014.8 – volume: 48 start-page: 1943 year: 2013 ident: ref_13 article-title: SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2013.2259038 – volume: 572 start-page: 106 year: 2019 ident: ref_28 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature doi: 10.1038/s41586-019-1424-8 – volume: 45 start-page: 1233 year: 2022 ident: ref_30 article-title: Ultra-high temporal resolution visual reconstruction from a fovea-like spike camera via spiking neuron model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3146140 – ident: ref_38 – volume: 47 start-page: 416 year: 2000 ident: ref_32 article-title: Point-to-point connectivity between neuromorphic chips using address events publication-title: IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. doi: 10.1109/82.842110 – ident: ref_36 – volume: 68 start-page: 2655 year: 2021 ident: ref_29 article-title: A 64K-neuron 64M-1b-synapse 2.64 pJ/SOP neuromorphic chip with all memory on chip for spike-based models in 65nm CMOS publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 10 start-page: 1659 year: 1997 ident: ref_3 article-title: Networks of spiking neurons: The third generation of neural network models publication-title: Neural Netw. doi: 10.1016/S0893-6080(97)00011-7 – volume: 38 start-page: 82 year: 2018 ident: ref_17 article-title: Loihi: A neuromorphic manycore processor with on-chip learning publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – volume: 2 start-page: 10 year: 2022 ident: ref_11 article-title: Opportunities for neuromorphic computing algorithms and applications publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-021-00184-y |
SSID | ssj0000913830 |
Score | 2.2946432 |
Snippet | Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 3619 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Brain Communication Design Dogs Energy efficiency Interdisciplinary subjects Modules Nervous system Neural networks Neuromorphic computing Neurons Neurosciences Obstacle avoidance Robots Software Tracking Transceivers |
Title | PAIBoard: A Neuromorphic Computing Platform for Hybrid Neural Networks in Robot Dog Application |
URI | https://www.proquest.com/docview/3110458897 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIpCqTwgsRDRxo7jsKAUKAVBVfGQ2CLHcVAlaEobBv49d0lKGSqWLHEc6bPv6fN3AMcmCITQyjqKx9JBC6Ed5QrPkShYkifWF8UlsYeB7L-Iu1fvtUq4zaqyyrlOLBR1khnKkZ9xtFN0qzLwLyafDnWNotPVqoXGKtRRBStVg3r3ejB8_M2yEOul4u2SbohjfH-26C4z69B-lsSx88ckLVfMhbXpbcJG5SaysFzXLVix421Y_0MeuAPRMLztZrjA5yxkBcfGR4agjQwrOzXgIDZ81zl5pQwfrP9Nt7OKoTj1oKz_nrHRmD1mcZazq-yNhYvz7F146V0_X_adql2CYxCc3PF0qmNXSC2ka_3YV0aJJO6kUhohKJAyXiC41ibwdRq4KHgdy4VNedrGT63ke1AbZ2O7D4yyQZJIHDyaTZs49VOeJEZZjWFsyhtwOkcsmpSsGBFGEwRwtATgBpwQqhHJTD7VRlel__gzYp-KQtWh413h-w1ozoGPKmGaRYulP_j_9SGsuehzlCVgTajl0y97hD5DHrdgVfVuWlAPrx7un1rVNvkBJ5LFLQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HIAD4inGMwcQFyq2Jk1bJITKY2w8JoRA4hbSNEWTYAVWhPhT_EbsdmUcEDcuvaR1JedzbCfxZ4BNE4ZC6MA6AY-lgx5CO4ErPEeiYUmeWF8URWKXHdm6FWd33t0IfFa1MHStsloTi4U6yQztke9y9FNUVRn6B88vDnWNotPVqoVGCYtz-_GOKVt_v32M87vlus2Tm6OWM-gq4BiUkTueTnXsCqmFdK0f-4EJRBI3UimNEJRvGC8UXGsT-joNXcRnw3JhU57W8VMrOcodhXHB0ZNTZXrz9HtPhzg2A14vyY1wvL477GXTb5D1SGL0-eEAf3cDhW9rzsD0IChlUYmiWRixvTmY-kFVOA_qKmofZginPRaxgtHjKcMp6hpW9oXAl9jVo84pBmb4YK0PqgUrXkXRnfK2eZ91e-w6i7OcHWcPLBqeni_A7b-ocRHGelnPLgGjvSdJlBEeSdMmTv2UJ4kJrMakOeU12Kk0pp5LDg6FuQspWP2i4Bpsk1YVWWj-qo0eFBrgz4jrSkVBgw6The_XYLVSvBqYbl8Ngbb89_AGTLRuLi_URbtzvgKTLkY75eWzVRjLX9_sGkYrebxeQITB_X9j8guTOf5L |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED5BkRB7mGBjohsMPwzthaht7NjJpGkKlKqFraoQSLx5jmMjpK1hNNPEv7a_bnf5sfKAeOMlL3Eu0vk7n8---w7gg00SIUzsgphnMkAPYYI4FFEg0bAkz50SVZHYt6kcX4rTq-hqBf62tTCUVtmuidVCnReWzsh7HP0UVVUmquebtIjZcPTl9ldAHaToprVtp1FD5Mzd_8HwbfF5MsS5PgjD0cnF8ThoOgwEFuWVQWS8yUIhjZChU5mKbSzybOCltEJQ7GGjRHBjbKKMT0LE6sBx4Tz3ffzUSY5yV2FNUVTUgbWjk-ns_P8JDzFuxrxfUx1xnvR7y842iwHZkiR-nwfu8HGnUHm60Sa8bLaoLK0xtQUrbv4KXjwgLnwNepZOjgoE1yeWsorf42eBE3ZjWd0lAgex2Q9T0o6Y4YON76kyrBqKoqd17vmC3czZeZEVJRsW1yxd3qVvw-WzKPINdObF3O0Ao5MoSQQSEUkzNvPK8zy3sTMYQnvehcNWY_q2ZuTQGMmQgvUjCu7CR9KqJnst74w1TdkB_oyYr3QaD-hqWSjVhd1W8box5IVewu7t06_3YR3xqL9OpmfvYCPErU-dibYLnfLut9vDrUuZvW8wwuD7c8PyH1UaA-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAIBoard%3A+A+Neuromorphic+Computing+Platform+for+Hybrid+Neural+Networks+in+Robot+Dog+Application&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Guang&rft.au=Cao%2C+Jian&rft.au=Zou%2C+Chenglong&rft.au=Feng%2C+Shuo&rft.date=2024-09-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=18&rft.spage=3619&rft_id=info:doi/10.3390%2Felectronics13183619&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13183619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |