PAIBoard: A Neuromorphic Computing Platform for Hybrid Neural Networks in Robot Dog Application

Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution towards generic artificial intelligence. There is a prevailing trend towards designing unified SNN-ANN paradigm neuromorphic computing chips...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 18; p. 3619
Main Authors Chen, Guang, Cao, Jian, Zou, Chenglong, Feng, Shuo, Zhong, Yi, Zhang, Xing, Wang, Yuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution towards generic artificial intelligence. There is a prevailing trend towards designing unified SNN-ANN paradigm neuromorphic computing chips to support HNNs, but developing platforms to advance neuromorphic computing systems is equally essential. This paper presents the PAIBoard platform, which is designed to facilitate the implementation of HNNs. The platform comprises three main components: the upper computer, the communication module, and the neuromorphic computing chip. Both hardware and software performance measurements indicate that our platform achieves low power consumption, high energy efficiency and comparable task accuracy. Furthermore, PAIBoard is applied in a robot dog for tracking and obstacle avoidance system. The tracking module combines data from ultra-wide band (UWB) transceivers and vision, while the obstacle avoidance module utilizes depth information from an RGB-D camera, which further underscores the potential of our platform to tackle challenging tasks in real-world applications.
AbstractList Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution towards generic artificial intelligence. There is a prevailing trend towards designing unified SNN-ANN paradigm neuromorphic computing chips to support HNNs, but developing platforms to advance neuromorphic computing systems is equally essential. This paper presents the PAIBoard platform, which is designed to facilitate the implementation of HNNs. The platform comprises three main components: the upper computer, the communication module, and the neuromorphic computing chip. Both hardware and software performance measurements indicate that our platform achieves low power consumption, high energy efficiency and comparable task accuracy. Furthermore, PAIBoard is applied in a robot dog for tracking and obstacle avoidance system. The tracking module combines data from ultra-wide band (UWB) transceivers and vision, while the obstacle avoidance module utilizes depth information from an RGB-D camera, which further underscores the potential of our platform to tackle challenging tasks in real-world applications.
Audience Academic
Author Zou, Chenglong
Chen, Guang
Zhang, Xing
Wang, Yuan
Cao, Jian
Feng, Shuo
Zhong, Yi
Author_xml – sequence: 1
  givenname: Guang
  orcidid: 0009-0007-3527-0122
  surname: Chen
  fullname: Chen, Guang
– sequence: 2
  givenname: Jian
  surname: Cao
  fullname: Cao, Jian
– sequence: 3
  givenname: Chenglong
  orcidid: 0000-0002-2571-3213
  surname: Zou
  fullname: Zou, Chenglong
– sequence: 4
  givenname: Shuo
  orcidid: 0000-0002-0929-0687
  surname: Feng
  fullname: Feng, Shuo
– sequence: 5
  givenname: Yi
  surname: Zhong
  fullname: Zhong, Yi
– sequence: 6
  givenname: Xing
  surname: Zhang
  fullname: Zhang, Xing
– sequence: 7
  givenname: Yuan
  orcidid: 0000-0002-4951-4286
  surname: Wang
  fullname: Wang, Yuan
BookMark eNptUMtOwzAQtFCRKKVfwMUS5xQ7dp2YWyiPVqqgQnC2HMcuLkkcHEeof49LOXBgV9pZrWZ2pDkHo9a1GoBLjGaEcHSta62Cd61VPSY4JwzzEzBOUcYTnvJ09Gc_A9O-36FYHJOcoDEQm2J166SvbmABn_TgXeN8924VXLimG4Jtt3BTy2Ccb2AccLkvva1-qLKOEL6c_-ihbeGLK12Ad24Li66rrZLBuvYCnBpZ93r6ixPw9nD_ulgm6-fH1aJYJ4pgHJK5NLJMKZOUpTors1zltCqxYUxRijBFas4pkVLxTBqeMpJjTag2xKAo1YxMwNXxb-fd56D7IHZu8G20FNEA0Xme8yyyZkfWVtZa2Na44KWKXenGqhirsfFe5Bix6JcdBOQoUN71vddGdN420u8FRuKQvvgnffINbWx8dQ
Cites_doi 10.1109/JPROC.2014.2313565
10.1016/S0361-9230(99)00161-6
10.1126/science.adh1174
10.1080/00221309.1931.9918416
10.1109/IJCNN.2017.7966125
10.1007/s11432-021-3510-6
10.1109/TCAD.2015.2474396
10.1007/s11263-014-0788-3
10.1162/neco_a_01086
10.1038/s41467-022-30964-7
10.1016/j.cub.2014.08.026
10.1016/j.neucom.2023.02.026
10.1109/SC.2016.11
10.1016/j.neunet.2017.12.005
10.1109/JPROC.2014.2304638
10.3389/fnins.2018.00331
10.1109/JSSC.2020.2970709
10.1038/s41586-020-2782-y
10.1145/3448250
10.1109/SC.2014.8
10.1109/JSSC.2013.2259038
10.1038/s41586-019-1424-8
10.1109/TPAMI.2022.3146140
10.1109/82.842110
10.1016/S0893-6080(97)00011-7
10.1109/MM.2018.112130359
10.1038/s43588-021-00184-y
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13183619
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A810659477
10_3390_electronics13183619
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c311t-5afab246a462e7b78c84db1f66c440140c5943aac97af926381e34ef3f05afe63
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sat Jul 26 01:16:39 EDT 2025
Tue Jun 10 21:02:35 EDT 2025
Tue Jul 01 04:08:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-5afab246a462e7b78c84db1f66c440140c5943aac97af926381e34ef3f05afe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0929-0687
0000-0002-2571-3213
0009-0007-3527-0122
0000-0002-4951-4286
OpenAccessLink https://www.proquest.com/docview/3110458897?pq-origsite=%requestingapplication%
PQID 3110458897
PQPubID 2032404
ParticipantIDs proquest_journals_3110458897
gale_infotracacademiconefile_A810659477
crossref_primary_10_3390_electronics13183619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fang (ref_10) 2021; 34
Maass (ref_3) 1997; 10
Riherd (ref_4) 2021; 17
Painkras (ref_13) 2013; 48
ref_36
ref_35
Zhu (ref_30) 2022; 45
ref_34
Abbott (ref_31) 1999; 50
Skinner (ref_33) 1931; 5
Li (ref_21) 2023; 112
Akopyan (ref_15) 2015; 34
Pei (ref_27) 2023; 66
Boahen (ref_32) 2000; 47
Kuang (ref_29) 2021; 68
Benjamin (ref_14) 2014; 102
Davies (ref_17) 2018; 38
ref_39
ref_16
ref_38
ref_37
Modha (ref_19) 2023; 382
Cox (ref_1) 2014; 24
Zenke (ref_9) 2018; 30
Pei (ref_28) 2019; 572
Kheradpisheh (ref_7) 2018; 99
ref_25
ref_24
ref_23
Zhang (ref_20) 2020; 586
ref_40
Schuman (ref_11) 2022; 2
Zhao (ref_5) 2022; 13
Bengio (ref_2) 2021; 64
Cao (ref_6) 2015; 113
ref_26
ref_8
Yi (ref_12) 2023; 531
Furber (ref_22) 2014; 102
Deng (ref_18) 2020; 55
References_xml – volume: 102
  start-page: 699
  year: 2014
  ident: ref_14
  article-title: Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2313565
– volume: 50
  start-page: 303
  year: 1999
  ident: ref_31
  article-title: Lapicque’s introduction of the integrate-and-fire model neuron (1907)
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(99)00161-6
– volume: 382
  start-page: 329
  year: 2023
  ident: ref_19
  article-title: Neural inference at the frontier of energy, space, and time
  publication-title: Science
  doi: 10.1126/science.adh1174
– volume: 5
  start-page: 427
  year: 1931
  ident: ref_33
  article-title: The concept of the reflex in the description of behavior
  publication-title: J. Gen. Psychol.
  doi: 10.1080/00221309.1931.9918416
– ident: ref_16
  doi: 10.1109/IJCNN.2017.7966125
– volume: 66
  start-page: 142403
  year: 2023
  ident: ref_27
  article-title: Multi-grained system integration for hybrid-paradigm brain-inspired computing
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-021-3510-6
– volume: 34
  start-page: 1537
  year: 2015
  ident: ref_15
  article-title: Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2015.2474396
– volume: 113
  start-page: 54
  year: 2015
  ident: ref_6
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0788-3
– ident: ref_26
– ident: ref_34
– volume: 30
  start-page: 1514
  year: 2018
  ident: ref_9
  article-title: Superspike: Supervised learning in multilayer spiking neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01086
– volume: 13
  start-page: 3427
  year: 2022
  ident: ref_5
  article-title: A framework for the general design and computation of hybrid neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30964-7
– volume: 24
  start-page: 921
  year: 2014
  ident: ref_1
  article-title: Neural networks and neuroscience-inspired computer vision
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.08.026
– volume: 112
  start-page: 544
  year: 2023
  ident: ref_21
  article-title: Brain inspired computing: A systematic survey and future trends
  publication-title: TechRxiv
– volume: 531
  start-page: 163
  year: 2023
  ident: ref_12
  article-title: Learning rules in spiking neural networks: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.026
– ident: ref_24
  doi: 10.1109/SC.2016.11
– ident: ref_39
– ident: ref_40
– volume: 99
  start-page: 56
  year: 2018
  ident: ref_7
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.12.005
– ident: ref_37
– volume: 17
  start-page: 33
  year: 2021
  ident: ref_4
  article-title: Neuromorphic Computing: Explaining how Projected SNN Training will Largely Impact our Interactions with Technology
  publication-title: Elements
– volume: 102
  start-page: 652
  year: 2014
  ident: ref_22
  article-title: The spinnaker project
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2304638
– ident: ref_35
– volume: 34
  start-page: 21056
  year: 2021
  ident: ref_10
  article-title: Deep residual learning in spiking neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_8
  doi: 10.3389/fnins.2018.00331
– volume: 55
  start-page: 2228
  year: 2020
  ident: ref_18
  article-title: Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2020.2970709
– ident: ref_25
– volume: 586
  start-page: 378
  year: 2020
  ident: ref_20
  article-title: A system hierarchy for brain-inspired computing
  publication-title: Nature
  doi: 10.1038/s41586-020-2782-y
– volume: 64
  start-page: 58
  year: 2021
  ident: ref_2
  article-title: Deep learning for AI
  publication-title: Commun. ACM
  doi: 10.1145/3448250
– ident: ref_23
  doi: 10.1109/SC.2014.8
– volume: 48
  start-page: 1943
  year: 2013
  ident: ref_13
  article-title: SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2013.2259038
– volume: 572
  start-page: 106
  year: 2019
  ident: ref_28
  article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– volume: 45
  start-page: 1233
  year: 2022
  ident: ref_30
  article-title: Ultra-high temporal resolution visual reconstruction from a fovea-like spike camera via spiking neuron model
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3146140
– ident: ref_38
– volume: 47
  start-page: 416
  year: 2000
  ident: ref_32
  article-title: Point-to-point connectivity between neuromorphic chips using address events
  publication-title: IEEE Trans. Circuits Syst. II Analog Digit. Signal Process.
  doi: 10.1109/82.842110
– ident: ref_36
– volume: 68
  start-page: 2655
  year: 2021
  ident: ref_29
  article-title: A 64K-neuron 64M-1b-synapse 2.64 pJ/SOP neuromorphic chip with all memory on chip for spike-based models in 65nm CMOS
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 10
  start-page: 1659
  year: 1997
  ident: ref_3
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(97)00011-7
– volume: 38
  start-page: 82
  year: 2018
  ident: ref_17
  article-title: Loihi: A neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– volume: 2
  start-page: 10
  year: 2022
  ident: ref_11
  article-title: Opportunities for neuromorphic computing algorithms and applications
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00184-y
SSID ssj0000913830
Score 2.2946432
Snippet Hybrid neural networks (HNNs), integrating the strengths of artificial neural networks (ANNs) and spiking neural networks (SNNs), provide a promising solution...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 3619
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Brain
Communication
Design
Dogs
Energy efficiency
Interdisciplinary subjects
Modules
Nervous system
Neural networks
Neuromorphic computing
Neurons
Neurosciences
Obstacle avoidance
Robots
Software
Tracking
Transceivers
Title PAIBoard: A Neuromorphic Computing Platform for Hybrid Neural Networks in Robot Dog Application
URI https://www.proquest.com/docview/3110458897
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIpCqTwgsRDRxo7jsKAUKAVBVfGQ2CLHcVAlaEobBv49d0lKGSqWLHEc6bPv6fN3AMcmCITQyjqKx9JBC6Ed5QrPkShYkifWF8UlsYeB7L-Iu1fvtUq4zaqyyrlOLBR1khnKkZ9xtFN0qzLwLyafDnWNotPVqoXGKtRRBStVg3r3ejB8_M2yEOul4u2SbohjfH-26C4z69B-lsSx88ckLVfMhbXpbcJG5SaysFzXLVix421Y_0MeuAPRMLztZrjA5yxkBcfGR4agjQwrOzXgIDZ81zl5pQwfrP9Nt7OKoTj1oKz_nrHRmD1mcZazq-yNhYvz7F146V0_X_adql2CYxCc3PF0qmNXSC2ka_3YV0aJJO6kUhohKJAyXiC41ibwdRq4KHgdy4VNedrGT63ke1AbZ2O7D4yyQZJIHDyaTZs49VOeJEZZjWFsyhtwOkcsmpSsGBFGEwRwtATgBpwQqhHJTD7VRlel__gzYp-KQtWh413h-w1ozoGPKmGaRYulP_j_9SGsuehzlCVgTajl0y97hD5DHrdgVfVuWlAPrx7un1rVNvkBJ5LFLQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HIAD4inGMwcQFyq2Jk1bJITKY2w8JoRA4hbSNEWTYAVWhPhT_EbsdmUcEDcuvaR1JedzbCfxZ4BNE4ZC6MA6AY-lgx5CO4ErPEeiYUmeWF8URWKXHdm6FWd33t0IfFa1MHStsloTi4U6yQztke9y9FNUVRn6B88vDnWNotPVqoVGCYtz-_GOKVt_v32M87vlus2Tm6OWM-gq4BiUkTueTnXsCqmFdK0f-4EJRBI3UimNEJRvGC8UXGsT-joNXcRnw3JhU57W8VMrOcodhXHB0ZNTZXrz9HtPhzg2A14vyY1wvL477GXTb5D1SGL0-eEAf3cDhW9rzsD0IChlUYmiWRixvTmY-kFVOA_qKmofZginPRaxgtHjKcMp6hpW9oXAl9jVo84pBmb4YK0PqgUrXkXRnfK2eZ91e-w6i7OcHWcPLBqeni_A7b-ocRHGelnPLgGjvSdJlBEeSdMmTv2UJ4kJrMakOeU12Kk0pp5LDg6FuQspWP2i4Bpsk1YVWWj-qo0eFBrgz4jrSkVBgw6The_XYLVSvBqYbl8Ngbb89_AGTLRuLi_URbtzvgKTLkY75eWzVRjLX9_sGkYrebxeQITB_X9j8guTOf5L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED5BkRB7mGBjohsMPwzthaht7NjJpGkKlKqFraoQSLx5jmMjpK1hNNPEv7a_bnf5sfKAeOMlL3Eu0vk7n8---w7gg00SIUzsgphnMkAPYYI4FFEg0bAkz50SVZHYt6kcX4rTq-hqBf62tTCUVtmuidVCnReWzsh7HP0UVVUmquebtIjZcPTl9ldAHaToprVtp1FD5Mzd_8HwbfF5MsS5PgjD0cnF8ThoOgwEFuWVQWS8yUIhjZChU5mKbSzybOCltEJQ7GGjRHBjbKKMT0LE6sBx4Tz3ffzUSY5yV2FNUVTUgbWjk-ns_P8JDzFuxrxfUx1xnvR7y842iwHZkiR-nwfu8HGnUHm60Sa8bLaoLK0xtQUrbv4KXjwgLnwNepZOjgoE1yeWsorf42eBE3ZjWd0lAgex2Q9T0o6Y4YON76kyrBqKoqd17vmC3czZeZEVJRsW1yxd3qVvw-WzKPINdObF3O0Ao5MoSQQSEUkzNvPK8zy3sTMYQnvehcNWY_q2ZuTQGMmQgvUjCu7CR9KqJnst74w1TdkB_oyYr3QaD-hqWSjVhd1W8box5IVewu7t06_3YR3xqL9OpmfvYCPErU-dibYLnfLut9vDrUuZvW8wwuD7c8PyH1UaA-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAIBoard%3A+A+Neuromorphic+Computing+Platform+for+Hybrid+Neural+Networks+in+Robot+Dog+Application&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Guang&rft.au=Cao%2C+Jian&rft.au=Zou%2C+Chenglong&rft.au=Feng%2C+Shuo&rft.date=2024-09-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=18&rft.spage=3619&rft_id=info:doi/10.3390%2Felectronics13183619&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13183619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon