Printable and flexible wireless oxygen sensor
The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand. Particularly, it is indispensable to develop the printed flexible sensor electronics with a fast response time, high sensitivity, and selectivity, as...
Saved in:
Published in | Engineering Research Express Vol. 3; no. 1; pp. 15021 - 15028 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand. Particularly, it is indispensable to develop the printed flexible sensor electronics with a fast response time, high sensitivity, and selectivity, as well as hybrid scalable manufacturing at a low cost. Here we demonstrate a printable and flexible oxygen amperometric sensor capable of operating at room temperature, in which the printed metal features are homogenously interlinked to form a dense and highly conductive mesh structure followed by a flexible hydrogel electrolyte layer. The printed oxygen sensor shows a response time of less than 2 s with a sensor response of 94.6% and the oxygen gas detection levels as low as 1.56 ppm. The sensing attributes of the printed devices with the added wireless feature show an immense promise for monitoring the oxygen levels, which provide a new rapid-sensing pathway for the packaging processes and remote monitoring devices for averting hazardous conditions. |
---|---|
AbstractList | The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand. Particularly, it is indispensable to develop the printed flexible sensor electronics with a fast response time, high sensitivity, and selectivity, as well as hybrid scalable manufacturing at a low cost. Here we demonstrate a printable and flexible oxygen amperometric sensor capable of operating at room temperature, in which the printed metal features are homogenously interlinked to form a dense and highly conductive mesh structure followed by a flexible hydrogel electrolyte layer. The printed oxygen sensor shows a response time of less than 2 s with a sensor response of 94.6% and the oxygen gas detection levels as low as 1.56 ppm. The sensing attributes of the printed devices with the added wireless feature show an immense promise for monitoring the oxygen levels, which provide a new rapid-sensing pathway for the packaging processes and remote monitoring devices for averting hazardous conditions. |
Author | Rongala, Amith Li, Zheng Chivate, Aditya An, Lu Ren, Shenqiang Khuje, Saurabh Gogoi, Pratahdeep |
Author_xml | – sequence: 1 givenname: Amith orcidid: 0000-0001-6812-4550 surname: Rongala fullname: Rongala, Amith organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America – sequence: 2 givenname: Saurabh surname: Khuje fullname: Khuje, Saurabh organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America – sequence: 3 givenname: Zheng surname: Li fullname: Li, Zheng organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America – sequence: 4 givenname: Aditya orcidid: 0000-0001-9524-868X surname: Chivate fullname: Chivate, Aditya organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America – sequence: 5 givenname: Pratahdeep surname: Gogoi fullname: Gogoi, Pratahdeep organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America – sequence: 6 givenname: Lu surname: An fullname: An, Lu organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America – sequence: 7 givenname: Shenqiang orcidid: 0000-0002-9987-3316 surname: Ren fullname: Ren, Shenqiang email: shenren@buffalo.edu organization: The State University of New York Department of Chemistry, University at Buffalo, Buffalo, New York 14260, United States of America |
BookMark | eNp9j0tLxDAURoOM4DjO3mVXrqyTm6RpspTBFwzoQtchbW8lUpOSVJz5906piIi6ug--88E5JjMfPBJyCvQCqFIrJjnkSupiZStkZXNA5l-v2bf9iCxTchUVUoIsoZyT_CE6P9iqw8z6Jms73LrxeHcRO0wpC9vdM_osoU8hnpDD1nYJl59zQZ6urx7Xt_nm_uZufbnJaw4w5BwVCg5VzdsCQVOBSrVWa6mYqBoqrUIGqEUjS1Wj1YIVWnHNNBMl4xr5gtCpt44hpYit6aN7tXFngJrR2IxKZlQyk_EekT-Q2g12cMEP0bruP_BsAl3ozUt4i35vZjBuDTdgKBSUgembdh88_yX4Z-8H0T53Zg |
CODEN | ERENBL |
CitedBy_id | crossref_primary_10_1002_adsr_202300030 |
Cites_doi | 10.1126/science.287.5459.1801 10.1016/j.snb.2016.08.180 10.1039/D0NA00465K 10.1002/chin.200429283 10.1016/j.jpowsour.2017.08.052 10.1039/b704562j 10.1039/C6CP07799D 10.1016/j.trac.2010.01.004 10.1016/0921-5107(92)90029-9 10.1002/smll.201601049 10.1016/j.snb.2013.03.086 10.1016/0167-2738(90)90361-T 10.1038/s41598-019-43961-6 10.1016/j.snb.2008.07.017 10.1016/j.snb.2015.09.155 10.1557/S0883769400052490 10.1016/0167-2738(82)90085-6 10.1016/j.snb.2006.09.062 10.1109/95.390298 10.1021/cm0403863 10.1109/MWSYM.2010.5515965 10.3390/s100605469 10.3390/s120302610 10.3390/jsan8040057 10.3390/s20216084 10.1002/pssr.202000330 10.1149/1945-7111/ab729c 10.1002/adma.201702469 10.1016/0925-4005(96)80098-0 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/2631-8695/abe27d |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Printable and flexible wireless oxygen sensor |
EISSN | 2631-8695 |
ExternalDocumentID | 10_1088_2631_8695_abe27d erxabe27d |
GrantInformation_xml | – fundername: Army Research Laboratory grantid: W911NF-20-2-0016 funderid: https://doi.org/10.13039/100006754 |
GroupedDBID | AAYXX ABJNI ALMA_UNASSIGNED_HOLDINGS CITATION |
ID | FETCH-LOGICAL-c311t-3e8e431bc3f5e1904e88fa996824bd06a8e21e94d678cea9425983929247239e3 |
IEDL.DBID | O3W |
ISSN | 2631-8695 |
IngestDate | Tue Jul 01 02:33:20 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Wed Aug 21 03:37:34 EDT 2024 Wed Feb 24 05:40:46 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-3e8e431bc3f5e1904e88fa996824bd06a8e21e94d678cea9425983929247239e3 |
Notes | ERX-100860.R4 |
ORCID | 0000-0001-9524-868X 0000-0002-9987-3316 0000-0001-6812-4550 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1088_2631_8695_abe27d crossref_primary_10_1088_2631_8695_abe27d iop_journals_10_1088_2631_8695_abe27d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering Research Express |
PublicationTitleAbbrev | ERX |
PublicationTitleAlternate | Eng. Res. Express |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Gogoi (erxabe27dbib30) 2020; 2 Weppner (erxabe27dbib11) 1992; 15 Zulkefli (erxabe27dbib5) 2020; 14 Kwon (erxabe27dbib21) 2017; 1 Hunter (erxabe27dbib32) 2020; 167 Capone (erxabe27dbib8) 2003; 5 Jimenez-Cadena (erxabe27dbib25) 2007; 132 Luo (erxabe27dbib31) 2017; 240 Kalantar-zadeh (erxabe27dbib7) 2008 Jasiński (erxabe27dbib13) 1999; 19 Chu (erxabe27dbib15) 2016; 223 Wang (erxabe27dbib18) 2010; 29 Yang (erxabe27dbib24) 2010 Stoeckel (erxabe27dbib28) 2017; 29 Lee (erxabe27dbib19) 2005; 17 Skoog (erxabe27dbib3) 1988 Gomes (erxabe27dbib22) 2019; 8 Ricketts (erxabe27dbib17) 2008; 135 Fine (erxabe27dbib2) 2010; 10 Van Tong (erxabe27dbib23) 2013; 5 Basu (erxabe27dbib16) 2007; 123 Wang (erxabe27dbib6) 2016; 12 Yamazoe (erxabe27dbib10) 1999; 24 Yamazoe (erxabe27dbib9) 1995; 18 Weppner (erxabe27dbib12) 1990; 40 Meixner (erxabe27dbib20) 1996; 33 Sun (erxabe27dbib1) 2012; 12 Collins (erxabe27dbib26) 2000; 287 Dietz (erxabe27dbib14) 1982; 6 Zhang (erxabe27dbib27) 2017; 19 Hong (erxabe27dbib4) 2020; 20 Maity (erxabe27dbib29) 2019; 9 |
References_xml | – volume: 287 start-page: 1801 year: 2000 ident: erxabe27dbib26 article-title: Extreme oxygen sensitivity of electronic properties of carbon nanotubes publication-title: Science doi: 10.1126/science.287.5459.1801 – volume: 240 start-page: 392 year: 2017 ident: erxabe27dbib31 article-title: A low temperature co-fired ceramic based microfluidic Clark-type oxygen sensor for real-time oxygen sensing publication-title: Sensors Actuators B doi: 10.1016/j.snb.2016.08.180 – volume: 2 start-page: 3900 year: 2020 ident: erxabe27dbib30 article-title: Ductile cooling phase change material publication-title: Nanoscale Adv. doi: 10.1039/D0NA00465K – year: 2008 ident: erxabe27dbib7 – volume: 5 start-page: 1335 year: 2003 ident: erxabe27dbib8 article-title: Solid state gas sensors: state of the art and future activities publication-title: J. Optoelectron. Adv. Mater. doi: 10.1002/chin.200429283 – volume: 1 start-page: 280 year: 2017 ident: erxabe27dbib21 article-title: Effects of oxygen partial pressure on Li-air battery performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.052 – volume: 132 start-page: 1083 year: 2007 ident: erxabe27dbib25 article-title: Gas sensors based on nanostructured materials publication-title: Analyst doi: 10.1039/b704562j – volume: 19 start-page: 6313 year: 2017 ident: erxabe27dbib27 article-title: Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07799D – volume: 29 start-page: 319 year: 2010 ident: erxabe27dbib18 article-title: Optical oxygen sensors move towards colorimetric determination publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2010.01.004 – volume: 15 start-page: 48 year: 1992 ident: erxabe27dbib11 article-title: Advanced principles of sensors based on solid state ionics publication-title: Materials Science and Engineering: B doi: 10.1016/0921-5107(92)90029-9 – volume: 12 start-page: 3748 year: 2016 ident: erxabe27dbib6 article-title: Flexible transparent electronic gas sensors publication-title: Small doi: 10.1002/smll.201601049 – volume: 5 start-page: 372 year: 2013 ident: erxabe27dbib23 article-title: Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors publication-title: Sensors Actuators B doi: 10.1016/j.snb.2013.03.086 – volume: 40 start-page: 369 year: 1990 ident: erxabe27dbib12 article-title: Surface modification of solid electrolytes for gas sensors publication-title: Solid State Ionics doi: 10.1016/0167-2738(90)90361-T – volume: 9 start-page: 1 year: 2019 ident: erxabe27dbib29 article-title: High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material publication-title: Sci. Rep. doi: 10.1038/s41598-019-43961-6 – volume: 135 start-page: 46 year: 2008 ident: erxabe27dbib17 publication-title: Sensors Actuators B doi: 10.1016/j.snb.2008.07.017 – volume: 19 start-page: 49 year: 1999 ident: erxabe27dbib13 article-title: Solid state electrochemical gas sensors for environmental monitoring publication-title: Biocybernetics and Biomedical Engineering. – volume: 223 start-page: 606 year: 2016 ident: erxabe27dbib15 article-title: A new optical sensor for sensing oxygen based on phase shift detection publication-title: Sensors Actuators B doi: 10.1016/j.snb.2015.09.155 – volume: 24 start-page: 37 year: 1999 ident: erxabe27dbib10 article-title: Gas sensors using solid electrolytes publication-title: MRS Bull. doi: 10.1557/S0883769400052490 – volume: 6 start-page: 175 year: 1982 ident: erxabe27dbib14 article-title: Gas-diffusion-controlled solid-electrolyte oxygen sensors publication-title: Solid State Ionics doi: 10.1016/0167-2738(82)90085-6 – volume: 123 start-page: 568 year: 2007 ident: erxabe27dbib16 publication-title: Sensors Actuators B doi: 10.1016/j.snb.2006.09.062 – volume: 18 start-page: 252 year: 1995 ident: erxabe27dbib9 article-title: Development of gas sensors for environmental protection publication-title: IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A doi: 10.1109/95.390298 – year: 1988 ident: erxabe27dbib3 – volume: 17 start-page: 2744 year: 2005 ident: erxabe27dbib19 article-title: Novel UV-activated colorimetric oxygen indicator publication-title: Chem. Mater. doi: 10.1021/cm0403863 – start-page: 1528 year: 2010 ident: erxabe27dbib24 article-title: Battery-free RFID-enabled wireless sensors doi: 10.1109/MWSYM.2010.5515965 – volume: 10 start-page: 5469 year: 2010 ident: erxabe27dbib2 article-title: Metal oxide semi-conductor gas sensors in environmental monitoring publication-title: Sensors doi: 10.3390/s100605469 – volume: 12 start-page: 2610 year: 2012 ident: erxabe27dbib1 article-title: Metal oxide nanostructures and their gas sensing properties: a review publication-title: Sensors (Basel) doi: 10.3390/s120302610 – volume: 8 start-page: 57 year: 2019 ident: erxabe27dbib22 article-title: IoT-enabled gas sensors: technologies, applications, and opportunities publication-title: Journal of Sensor and Actuator Networks. doi: 10.3390/jsan8040057 – volume: 20 start-page: 6084 year: 2020 ident: erxabe27dbib4 article-title: Oxygen gas sensing with photothermal spectroscopy in a hollow-core negative curvature fiber publication-title: Sensors doi: 10.3390/s20216084 – volume: 14 year: 2020 ident: erxabe27dbib5 article-title: Light‐assisted and gate‐tunable oxygen gas sensor based on rhenium disulfide field‐effect transistors publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.202000330 – volume: 167 year: 2020 ident: erxabe27dbib32 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab729c – volume: 29 year: 2017 ident: erxabe27dbib28 article-title: Reversible, fast, and wide‐range oxygen sensor based on nanostructured organometal halide perovskite publication-title: Adv. Mater. doi: 10.1002/adma.201702469 – volume: 33 start-page: 198 year: 1996 ident: erxabe27dbib20 article-title: Metal oxide sensors publication-title: Sensors Actuators B doi: 10.1016/0925-4005(96)80098-0 |
SSID | ssib046616717 ssib037096498 ssib052001916 |
Score | 2.1448584 |
Snippet | The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand.... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 15021 |
SubjectTerms | ink materials nanowires Printed Electronics sensor |
Title | Printable and flexible wireless oxygen sensor |
URI | https://iopscience.iop.org/article/10.1088/2631-8695/abe27d |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bvHgRRcX5MXvQg4e65qNpiicRxxR0OzjcLbTpKwijHV2F-d_70nbTgQxvDbwm7eMlv_dL3nsh5Co0wL3YCJdSgwQlgNhVvhQuGPRNI04TE9jk5JdXOZyI56k_bZG7dS5MPm-W_lt8rAsF1ypsAuJUn0lOXSVDvx_FwIKkTXa4ksoyrxF_XxkTD9A5Fz9cQiAQSeQuzVHlXx1tQFMbh_-FNIN9ste4iM59_UEHpAXZIXHHxUdW2jwnB7m_k9o6lrZhSw3PcLVy8uUX2oKzQFqaF0dkMnh8exi6zVUHruGUli4HBQjlseGpD4jRApRKI-Qiiok48WSkgFEIRYLYYiAKcaaFlWvDRMB4CPyYdLI8gxPiRJFMkNca6kEqDBiE_MgI6ScKvCANTJf0V3-pTVMH3F5HMdPVebRS2upFW73oWi9dcrN-Y17XwNgie42K081EWGyRu9yQg2KpuababsAwqudJevrPns7ILrNxJlVc2DnplMUnXKCjUMY90n4ajXuVWXwDy8-28Q |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9ugngRRcX5tR704KF2adI0PYo65tfcweFuIU1fQRjt6CrM_96Xtn4MZHhr4TWkry_5vV_zPgg5iwywXmy4S6lBghJC7MpAcBcM-qaa0cSENjn5aSgGY34_CSZNn9MqFyafNVv_JV7WhYJrFTYBcdLzBaOuFFHg6Rj8MPFmSdoi6wETwvZueGavXwbFQnTQ-Q-f4AhGAvlLc1z512BL8NTCKfxCm_422WrcROeqntQOWYNsl7ij4i0rba6Tg_zfSW0tS3tjyw1Pccdy8sUH2oMzR2qaF3tk3L99uR64TbsD1zBKS5eBBITz2LA0AMRpDlKmGvmI9Hmc9ISW4FOIeIL4YkBHuNqiyr3xeeizCNg-aWd5BgfE0VokyG0N7UHKDRiEfW24CBIJvTANTYd4X2-pTFML3LakmKrqTFpKZfWirF5UrZcOufh-YlbXwVghe46KU81imK-Q6y7JQbFQTFFlf8L4VOFnPfznSF2yMbrpq8e74cMR2fRt2EkVJnZM2mXxDifoN5TxaWUbn-4rudc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printable+and+flexible+wireless+oxygen+sensor&rft.jtitle=Engineering+Research+Express&rft.au=Rongala%2C+Amith&rft.au=Khuje%2C+Saurabh&rft.au=Li%2C+Zheng&rft.au=Chivate%2C+Aditya&rft.date=2021-03-01&rft.issn=2631-8695&rft.eissn=2631-8695&rft.volume=3&rft.issue=1&rft.spage=15021&rft_id=info:doi/10.1088%2F2631-8695%2Fabe27d&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2631_8695_abe27d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |