Printable and flexible wireless oxygen sensor

The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand. Particularly, it is indispensable to develop the printed flexible sensor electronics with a fast response time, high sensitivity, and selectivity, as...

Full description

Saved in:
Bibliographic Details
Published inEngineering Research Express Vol. 3; no. 1; pp. 15021 - 15028
Main Authors Rongala, Amith, Khuje, Saurabh, Li, Zheng, Chivate, Aditya, Gogoi, Pratahdeep, An, Lu, Ren, Shenqiang
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand. Particularly, it is indispensable to develop the printed flexible sensor electronics with a fast response time, high sensitivity, and selectivity, as well as hybrid scalable manufacturing at a low cost. Here we demonstrate a printable and flexible oxygen amperometric sensor capable of operating at room temperature, in which the printed metal features are homogenously interlinked to form a dense and highly conductive mesh structure followed by a flexible hydrogel electrolyte layer. The printed oxygen sensor shows a response time of less than 2 s with a sensor response of 94.6% and the oxygen gas detection levels as low as 1.56 ppm. The sensing attributes of the printed devices with the added wireless feature show an immense promise for monitoring the oxygen levels, which provide a new rapid-sensing pathway for the packaging processes and remote monitoring devices for averting hazardous conditions.
AbstractList The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand. Particularly, it is indispensable to develop the printed flexible sensor electronics with a fast response time, high sensitivity, and selectivity, as well as hybrid scalable manufacturing at a low cost. Here we demonstrate a printable and flexible oxygen amperometric sensor capable of operating at room temperature, in which the printed metal features are homogenously interlinked to form a dense and highly conductive mesh structure followed by a flexible hydrogel electrolyte layer. The printed oxygen sensor shows a response time of less than 2 s with a sensor response of 94.6% and the oxygen gas detection levels as low as 1.56 ppm. The sensing attributes of the printed devices with the added wireless feature show an immense promise for monitoring the oxygen levels, which provide a new rapid-sensing pathway for the packaging processes and remote monitoring devices for averting hazardous conditions.
Author Rongala, Amith
Li, Zheng
Chivate, Aditya
An, Lu
Ren, Shenqiang
Khuje, Saurabh
Gogoi, Pratahdeep
Author_xml – sequence: 1
  givenname: Amith
  orcidid: 0000-0001-6812-4550
  surname: Rongala
  fullname: Rongala, Amith
  organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America
– sequence: 2
  givenname: Saurabh
  surname: Khuje
  fullname: Khuje, Saurabh
  organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America
– sequence: 3
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America
– sequence: 4
  givenname: Aditya
  orcidid: 0000-0001-9524-868X
  surname: Chivate
  fullname: Chivate, Aditya
  organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America
– sequence: 5
  givenname: Pratahdeep
  surname: Gogoi
  fullname: Gogoi, Pratahdeep
  organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America
– sequence: 6
  givenname: Lu
  surname: An
  fullname: An, Lu
  organization: The State University of New York Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, Buffalo, New York 14260, United States of America
– sequence: 7
  givenname: Shenqiang
  orcidid: 0000-0002-9987-3316
  surname: Ren
  fullname: Ren, Shenqiang
  email: shenren@buffalo.edu
  organization: The State University of New York Department of Chemistry, University at Buffalo, Buffalo, New York 14260, United States of America
BookMark eNp9j0tLxDAURoOM4DjO3mVXrqyTm6RpspTBFwzoQtchbW8lUpOSVJz5906piIi6ug--88E5JjMfPBJyCvQCqFIrJjnkSupiZStkZXNA5l-v2bf9iCxTchUVUoIsoZyT_CE6P9iqw8z6Jms73LrxeHcRO0wpC9vdM_osoU8hnpDD1nYJl59zQZ6urx7Xt_nm_uZufbnJaw4w5BwVCg5VzdsCQVOBSrVWa6mYqBoqrUIGqEUjS1Wj1YIVWnHNNBMl4xr5gtCpt44hpYit6aN7tXFngJrR2IxKZlQyk_EekT-Q2g12cMEP0bruP_BsAl3ozUt4i35vZjBuDTdgKBSUgembdh88_yX4Z-8H0T53Zg
CODEN ERENBL
CitedBy_id crossref_primary_10_1002_adsr_202300030
Cites_doi 10.1126/science.287.5459.1801
10.1016/j.snb.2016.08.180
10.1039/D0NA00465K
10.1002/chin.200429283
10.1016/j.jpowsour.2017.08.052
10.1039/b704562j
10.1039/C6CP07799D
10.1016/j.trac.2010.01.004
10.1016/0921-5107(92)90029-9
10.1002/smll.201601049
10.1016/j.snb.2013.03.086
10.1016/0167-2738(90)90361-T
10.1038/s41598-019-43961-6
10.1016/j.snb.2008.07.017
10.1016/j.snb.2015.09.155
10.1557/S0883769400052490
10.1016/0167-2738(82)90085-6
10.1016/j.snb.2006.09.062
10.1109/95.390298
10.1021/cm0403863
10.1109/MWSYM.2010.5515965
10.3390/s100605469
10.3390/s120302610
10.3390/jsan8040057
10.3390/s20216084
10.1002/pssr.202000330
10.1149/1945-7111/ab729c
10.1002/adma.201702469
10.1016/0925-4005(96)80098-0
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/abe27d
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Printable and flexible wireless oxygen sensor
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_abe27d
erxabe27d
GrantInformation_xml – fundername: Army Research Laboratory
  grantid: W911NF-20-2-0016
  funderid: https://doi.org/10.13039/100006754
GroupedDBID AAYXX
ABJNI
ALMA_UNASSIGNED_HOLDINGS
CITATION
ID FETCH-LOGICAL-c311t-3e8e431bc3f5e1904e88fa996824bd06a8e21e94d678cea9425983929247239e3
IEDL.DBID O3W
ISSN 2631-8695
IngestDate Tue Jul 01 02:33:20 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
Wed Aug 21 03:37:34 EDT 2024
Wed Feb 24 05:40:46 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-3e8e431bc3f5e1904e88fa996824bd06a8e21e94d678cea9425983929247239e3
Notes ERX-100860.R4
ORCID 0000-0001-9524-868X
0000-0002-9987-3316
0000-0001-6812-4550
PageCount 8
ParticipantIDs crossref_citationtrail_10_1088_2631_8695_abe27d
crossref_primary_10_1088_2631_8695_abe27d
iop_journals_10_1088_2631_8695_abe27d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Gogoi (erxabe27dbib30) 2020; 2
Weppner (erxabe27dbib11) 1992; 15
Zulkefli (erxabe27dbib5) 2020; 14
Kwon (erxabe27dbib21) 2017; 1
Hunter (erxabe27dbib32) 2020; 167
Capone (erxabe27dbib8) 2003; 5
Jimenez-Cadena (erxabe27dbib25) 2007; 132
Luo (erxabe27dbib31) 2017; 240
Kalantar-zadeh (erxabe27dbib7) 2008
Jasiński (erxabe27dbib13) 1999; 19
Chu (erxabe27dbib15) 2016; 223
Wang (erxabe27dbib18) 2010; 29
Yang (erxabe27dbib24) 2010
Stoeckel (erxabe27dbib28) 2017; 29
Lee (erxabe27dbib19) 2005; 17
Skoog (erxabe27dbib3) 1988
Gomes (erxabe27dbib22) 2019; 8
Ricketts (erxabe27dbib17) 2008; 135
Fine (erxabe27dbib2) 2010; 10
Van Tong (erxabe27dbib23) 2013; 5
Basu (erxabe27dbib16) 2007; 123
Wang (erxabe27dbib6) 2016; 12
Yamazoe (erxabe27dbib10) 1999; 24
Yamazoe (erxabe27dbib9) 1995; 18
Weppner (erxabe27dbib12) 1990; 40
Meixner (erxabe27dbib20) 1996; 33
Sun (erxabe27dbib1) 2012; 12
Collins (erxabe27dbib26) 2000; 287
Dietz (erxabe27dbib14) 1982; 6
Zhang (erxabe27dbib27) 2017; 19
Hong (erxabe27dbib4) 2020; 20
Maity (erxabe27dbib29) 2019; 9
References_xml – volume: 287
  start-page: 1801
  year: 2000
  ident: erxabe27dbib26
  article-title: Extreme oxygen sensitivity of electronic properties of carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.287.5459.1801
– volume: 240
  start-page: 392
  year: 2017
  ident: erxabe27dbib31
  article-title: A low temperature co-fired ceramic based microfluidic Clark-type oxygen sensor for real-time oxygen sensing
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2016.08.180
– volume: 2
  start-page: 3900
  year: 2020
  ident: erxabe27dbib30
  article-title: Ductile cooling phase change material
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00465K
– year: 2008
  ident: erxabe27dbib7
– volume: 5
  start-page: 1335
  year: 2003
  ident: erxabe27dbib8
  article-title: Solid state gas sensors: state of the art and future activities
  publication-title: J. Optoelectron. Adv. Mater.
  doi: 10.1002/chin.200429283
– volume: 1
  start-page: 280
  year: 2017
  ident: erxabe27dbib21
  article-title: Effects of oxygen partial pressure on Li-air battery performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.052
– volume: 132
  start-page: 1083
  year: 2007
  ident: erxabe27dbib25
  article-title: Gas sensors based on nanostructured materials
  publication-title: Analyst
  doi: 10.1039/b704562j
– volume: 19
  start-page: 6313
  year: 2017
  ident: erxabe27dbib27
  article-title: Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07799D
– volume: 29
  start-page: 319
  year: 2010
  ident: erxabe27dbib18
  article-title: Optical oxygen sensors move towards colorimetric determination
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.01.004
– volume: 15
  start-page: 48
  year: 1992
  ident: erxabe27dbib11
  article-title: Advanced principles of sensors based on solid state ionics
  publication-title: Materials Science and Engineering: B
  doi: 10.1016/0921-5107(92)90029-9
– volume: 12
  start-page: 3748
  year: 2016
  ident: erxabe27dbib6
  article-title: Flexible transparent electronic gas sensors
  publication-title: Small
  doi: 10.1002/smll.201601049
– volume: 5
  start-page: 372
  year: 2013
  ident: erxabe27dbib23
  article-title: Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2013.03.086
– volume: 40
  start-page: 369
  year: 1990
  ident: erxabe27dbib12
  article-title: Surface modification of solid electrolytes for gas sensors
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90361-T
– volume: 9
  start-page: 1
  year: 2019
  ident: erxabe27dbib29
  article-title: High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43961-6
– volume: 135
  start-page: 46
  year: 2008
  ident: erxabe27dbib17
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2008.07.017
– volume: 19
  start-page: 49
  year: 1999
  ident: erxabe27dbib13
  article-title: Solid state electrochemical gas sensors for environmental monitoring
  publication-title: Biocybernetics and Biomedical Engineering.
– volume: 223
  start-page: 606
  year: 2016
  ident: erxabe27dbib15
  article-title: A new optical sensor for sensing oxygen based on phase shift detection
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2015.09.155
– volume: 24
  start-page: 37
  year: 1999
  ident: erxabe27dbib10
  article-title: Gas sensors using solid electrolytes
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400052490
– volume: 6
  start-page: 175
  year: 1982
  ident: erxabe27dbib14
  article-title: Gas-diffusion-controlled solid-electrolyte oxygen sensors
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(82)90085-6
– volume: 123
  start-page: 568
  year: 2007
  ident: erxabe27dbib16
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2006.09.062
– volume: 18
  start-page: 252
  year: 1995
  ident: erxabe27dbib9
  article-title: Development of gas sensors for environmental protection
  publication-title: IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A
  doi: 10.1109/95.390298
– year: 1988
  ident: erxabe27dbib3
– volume: 17
  start-page: 2744
  year: 2005
  ident: erxabe27dbib19
  article-title: Novel UV-activated colorimetric oxygen indicator
  publication-title: Chem. Mater.
  doi: 10.1021/cm0403863
– start-page: 1528
  year: 2010
  ident: erxabe27dbib24
  article-title: Battery-free RFID-enabled wireless sensors
  doi: 10.1109/MWSYM.2010.5515965
– volume: 10
  start-page: 5469
  year: 2010
  ident: erxabe27dbib2
  article-title: Metal oxide semi-conductor gas sensors in environmental monitoring
  publication-title: Sensors
  doi: 10.3390/s100605469
– volume: 12
  start-page: 2610
  year: 2012
  ident: erxabe27dbib1
  article-title: Metal oxide nanostructures and their gas sensing properties: a review
  publication-title: Sensors (Basel)
  doi: 10.3390/s120302610
– volume: 8
  start-page: 57
  year: 2019
  ident: erxabe27dbib22
  article-title: IoT-enabled gas sensors: technologies, applications, and opportunities
  publication-title: Journal of Sensor and Actuator Networks.
  doi: 10.3390/jsan8040057
– volume: 20
  start-page: 6084
  year: 2020
  ident: erxabe27dbib4
  article-title: Oxygen gas sensing with photothermal spectroscopy in a hollow-core negative curvature fiber
  publication-title: Sensors
  doi: 10.3390/s20216084
– volume: 14
  year: 2020
  ident: erxabe27dbib5
  article-title: Light‐assisted and gate‐tunable oxygen gas sensor based on rhenium disulfide field‐effect transistors
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.202000330
– volume: 167
  year: 2020
  ident: erxabe27dbib32
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab729c
– volume: 29
  year: 2017
  ident: erxabe27dbib28
  article-title: Reversible, fast, and wide‐range oxygen sensor based on nanostructured organometal halide perovskite
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702469
– volume: 33
  start-page: 198
  year: 1996
  ident: erxabe27dbib20
  article-title: Metal oxide sensors
  publication-title: Sensors Actuators B
  doi: 10.1016/0925-4005(96)80098-0
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.1448584
Snippet The sensor devices are becoming an essential aspect of electronics, while an accurate, economical, and printable device is constantly in high demand....
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 15021
SubjectTerms ink materials
nanowires
Printed Electronics
sensor
Title Printable and flexible wireless oxygen sensor
URI https://iopscience.iop.org/article/10.1088/2631-8695/abe27d
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bvHgRRcX5MXvQg4e65qNpiicRxxR0OzjcLbTpKwijHV2F-d_70nbTgQxvDbwm7eMlv_dL3nsh5Co0wL3YCJdSgwQlgNhVvhQuGPRNI04TE9jk5JdXOZyI56k_bZG7dS5MPm-W_lt8rAsF1ypsAuJUn0lOXSVDvx_FwIKkTXa4ksoyrxF_XxkTD9A5Fz9cQiAQSeQuzVHlXx1tQFMbh_-FNIN9ste4iM59_UEHpAXZIXHHxUdW2jwnB7m_k9o6lrZhSw3PcLVy8uUX2oKzQFqaF0dkMnh8exi6zVUHruGUli4HBQjlseGpD4jRApRKI-Qiiok48WSkgFEIRYLYYiAKcaaFlWvDRMB4CPyYdLI8gxPiRJFMkNca6kEqDBiE_MgI6ScKvCANTJf0V3-pTVMH3F5HMdPVebRS2upFW73oWi9dcrN-Y17XwNgie42K081EWGyRu9yQg2KpuababsAwqudJevrPns7ILrNxJlVc2DnplMUnXKCjUMY90n4ajXuVWXwDy8-28Q
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9ugngRRcX5tR704KF2adI0PYo65tfcweFuIU1fQRjt6CrM_96Xtn4MZHhr4TWkry_5vV_zPgg5iwywXmy4S6lBghJC7MpAcBcM-qaa0cSENjn5aSgGY34_CSZNn9MqFyafNVv_JV7WhYJrFTYBcdLzBaOuFFHg6Rj8MPFmSdoi6wETwvZueGavXwbFQnTQ-Q-f4AhGAvlLc1z512BL8NTCKfxCm_422WrcROeqntQOWYNsl7ij4i0rba6Tg_zfSW0tS3tjyw1Pccdy8sUH2oMzR2qaF3tk3L99uR64TbsD1zBKS5eBBITz2LA0AMRpDlKmGvmI9Hmc9ISW4FOIeIL4YkBHuNqiyr3xeeizCNg-aWd5BgfE0VokyG0N7UHKDRiEfW24CBIJvTANTYd4X2-pTFML3LakmKrqTFpKZfWirF5UrZcOufh-YlbXwVghe46KU81imK-Q6y7JQbFQTFFlf8L4VOFnPfznSF2yMbrpq8e74cMR2fRt2EkVJnZM2mXxDifoN5TxaWUbn-4rudc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printable+and+flexible+wireless+oxygen+sensor&rft.jtitle=Engineering+Research+Express&rft.au=Rongala%2C+Amith&rft.au=Khuje%2C+Saurabh&rft.au=Li%2C+Zheng&rft.au=Chivate%2C+Aditya&rft.date=2021-03-01&rft.issn=2631-8695&rft.eissn=2631-8695&rft.volume=3&rft.issue=1&rft.spage=15021&rft_id=info:doi/10.1088%2F2631-8695%2Fabe27d&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2631_8695_abe27d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon