Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation

Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to confine CoOx in SBA-15 through the solid-state grinding method for CO oxidation. The characterization results showed that the aggregation of Co...

Full description

Saved in:
Bibliographic Details
Published inMicroporous and mesoporous materials Vol. 333; p. 111733
Main Authors Liu, Tao, Ju, Xiaoqiu, Hu, Zhixin, Xie, Rongrong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to confine CoOx in SBA-15 through the solid-state grinding method for CO oxidation. The characterization results showed that the aggregation of CoOx in the pores of the carrier SBA-15 was effectively inhibited by the confinement effect, which further facilitated the formation of the main catalytic site Co(III) species. The results of the density-functional theory calculations further confirmed that Co(III) was the important catalytic site for CO oxidation. Compared with the catalyst prepared through the impregnation method, catalysts CoOx@SBA-15(X) exhibited a lower CO conversion temperature and activation energy for CO oxidation. In addition, the pore size of the carrier SBA-15 had a significant impact on the catalytic activity of CoOx, and the catalyst prepared with a larger pore size SBA-15 as carrier exhibited a higher catalytic activity. This result was mainly attributed to the fact that the confinement effect could effectively enhance the defect formation in metal oxides. Furthermore, the catalyst with a larger pore size SBA-15 as a carrier presented a higher content of Co(III) species, which significantly enhanced the catalytic activity of CoOx for CO oxidation. The results demonstrated that the pore structure of SBA-15 could affect the formation of the metal oxide (CoOx) species, which further significantly affected the catalytic activity of CoOx for CO oxidation. The results are expected to provide a strategy to synthesize efficient catalysts for CO oxidation by using ordered mesoporous materials. [Display omitted] •Solid state grinding method is an effective way to confine CoOx in SBA-15 pores.•Confinement effect could enhance the catalytic activity of catalysts for CO oxidation.•SBA-15 with larger pore size was more favorable for the formation of Co(III) species.
AbstractList Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to confine CoOx in SBA-15 through the solid-state grinding method for CO oxidation. The characterization results showed that the aggregation of CoOx in the pores of the carrier SBA-15 was effectively inhibited by the confinement effect, which further facilitated the formation of the main catalytic site Co(III) species. The results of the density-functional theory calculations further confirmed that Co(III) was the important catalytic site for CO oxidation. Compared with the catalyst prepared through the impregnation method, catalysts CoOx@SBA-15(X) exhibited a lower CO conversion temperature and activation energy for CO oxidation. In addition, the pore size of the carrier SBA-15 had a significant impact on the catalytic activity of CoOx, and the catalyst prepared with a larger pore size SBA-15 as carrier exhibited a higher catalytic activity. This result was mainly attributed to the fact that the confinement effect could effectively enhance the defect formation in metal oxides. Furthermore, the catalyst with a larger pore size SBA-15 as a carrier presented a higher content of Co(III) species, which significantly enhanced the catalytic activity of CoOx for CO oxidation. The results demonstrated that the pore structure of SBA-15 could affect the formation of the metal oxide (CoOx) species, which further significantly affected the catalytic activity of CoOx for CO oxidation. The results are expected to provide a strategy to synthesize efficient catalysts for CO oxidation by using ordered mesoporous materials. [Display omitted] •Solid state grinding method is an effective way to confine CoOx in SBA-15 pores.•Confinement effect could enhance the catalytic activity of catalysts for CO oxidation.•SBA-15 with larger pore size was more favorable for the formation of Co(III) species.
ArticleNumber 111733
Author Hu, Zhixin
Liu, Tao
Xie, Rongrong
Ju, Xiaoqiu
Author_xml – sequence: 1
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
– sequence: 2
  givenname: Xiaoqiu
  surname: Ju
  fullname: Ju, Xiaoqiu
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
– sequence: 3
  givenname: Zhixin
  surname: Hu
  fullname: Hu, Zhixin
  organization: School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
– sequence: 4
  givenname: Rongrong
  orcidid: 0000-0002-2739-1107
  surname: Xie
  fullname: Xie, Rongrong
  email: xierr1118@163.com
  organization: College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
BookMark eNqNkMtKAzEUhoNUsK0-g3mBGXOSdjIuXJTiDYRZqOuQJieQMp2UJBb79qatuHCjq1y_n_N_EzIawoCEXAOrgUFzs6433sSwwRRqzjivAUAKcUbG0EpRCXYrRmUvWllBC3BBJimtGQMJHMakW4aV7jMNn94iNWFwfkBL_UAPgdsQw0eir77jVCeKzqHJflc-6qz7fcrUhUiX3RHX2Yfhkpw73Se8-l6n5P3h_m35VL10j8_LxUtlBECuhLGNa2zDy1HP0TIjW2hwjq2U3Mysdtw6bBonrJGr1bydtbrcufJskJVeU3J3yi3VU4rolPH5OEGO2vcKmDrYUWv1Y0cd7KiTncLLX_w2-o2O-3-QixOJpd7OY1TJeBwMWh-LHWWD_zPjC5TQiEg
CitedBy_id crossref_primary_10_1016_j_jece_2023_111307
crossref_primary_10_1093_chemle_upae061
crossref_primary_10_1016_j_fuel_2024_132390
crossref_primary_10_1007_s10853_023_08427_1
crossref_primary_10_1016_j_seppur_2023_125865
crossref_primary_10_1088_1361_6528_ac973a
Cites_doi 10.1039/C8GC01240G
10.1021/acscatal.9b02920
10.1021/acs.jpcc.7b05480
10.1126/science.aal3439
10.1002/adma.201704290
10.1016/j.micromeso.2008.07.020
10.1016/j.jcat.2012.09.005
10.1021/es0520924
10.1016/j.jpowsour.2013.03.173
10.1016/j.micromeso.2007.04.008
10.1016/j.jcat.2009.08.003
10.1021/acsami.7b01142
10.1039/b207378c
10.1038/nature07877
10.1016/j.cattod.2017.03.032
10.1016/S0926-860X(96)00151-2
10.1016/j.watres.2012.09.058
10.1021/acsomega.9b03280
10.1039/C9TA13488C
10.1006/jcat.2000.2924
10.1021/ja0561441
10.1016/j.apcatb.2017.07.048
10.1021/ja209662v
10.1016/j.apcatb.2003.11.003
10.1021/je300365p
10.1016/j.apsusc.2009.12.082
10.1021/jp106469x
10.1039/c3cy00193h
10.1016/0927-0256(96)00008-0
10.1038/s41565-020-0737-y
10.1016/j.cattod.2019.01.064
10.1126/science.279.5350.548
10.1016/j.cej.2013.05.041
10.1016/0021-9517(92)90206-W
10.1016/j.eti.2018.05.006
10.1002/cctc.200900115
10.1016/j.apcatb.2013.08.015
10.1021/cm8012733
10.1016/j.apcatb.2013.04.025
10.1021/la100268q
10.1155/2015/972025
10.1246/cl.1987.405
10.1016/0021-9517(89)90034-1
10.1016/j.apcatb.2004.11.010
10.1039/C0CP01138J
10.1016/j.chemosphere.2018.07.085
10.1021/acscatal.8b04064
10.1021/acscatal.8b02476
10.1023/A:1022659025068
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.micromeso.2022.111733
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3093
ExternalDocumentID 10_1016_j_micromeso_2022_111733
S1387181122000555
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c311t-3cd6f6d62c31a5ed0c7816e5e8772c4daf2dfe66f3dc7bb5848aaf2f877ce0873
IEDL.DBID .~1
ISSN 1387-1811
IngestDate Tue Jul 01 03:00:41 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Fri Feb 23 02:41:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cobalt oxide
CO oxidation
SBA-15
Confinement effect
Catalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-3cd6f6d62c31a5ed0c7816e5e8772c4daf2dfe66f3dc7bb5848aaf2f877ce0873
ORCID 0000-0002-2739-1107
ParticipantIDs crossref_citationtrail_10_1016_j_micromeso_2022_111733
crossref_primary_10_1016_j_micromeso_2022_111733
elsevier_sciencedirect_doi_10_1016_j_micromeso_2022_111733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Microporous and mesoporous materials
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Huang, Lyu, Yang, Huang (bib19) 2012; 134
Jansson (bib41) 2000; 194
Yabe, Yamada, Oguri, Higo, Ogo, Sekine (bib13) 2018; 8
Rasmussen, Vishnyakov, Thommes, Smarsly, Kleitz, Neimark (bib35) 2010; 26
Jiang, Dai (bib47) 2011; 13
Shin, Shukla, Chung (bib2) 2020; 15
Comotti, Li, Spliethoff, Schuth (bib17) 2006; 128
Jain, Reddy, Ghosalya, Gopinath (bib25) 2017; 121
Hoa, Duy, Ei-Safty, Hieu (bib7) 2015; 2015
Kanel, Greneche, Choi (bib5) 2006; 40
Wei, Wang, Liu, Liu, He, Chen, Umar, Guo, Li (bib8) 2013; 238
Omata, Takada, Kasahara, Yamada (bib40) 1996; 146
Bucko, Hafner, Lebegue, Angyán (bib46) 2010; 114
Haruta, Yamada, Kobayashi, Iijima (bib16) 1989; 115
Lin, Wang, Chiu, Chien (bib49) 2003; 86
Malta, Kondrat, Freakley, Davies, Lu, Dawson, Thetford, Gibson, Morgan, Jones, Wells, Johnston, Catlow, Kiely, Hutchings (bib20) 2017; 355
Wang, Cao, Hu, Li, Xie, Jia (bib28) 2017; 9
Shokouhimehr, Hong, Lee, Moon, Hong, Zhang, Suh, Choi, Varma, Jang (bib22) 2018; 20
Bazula, Lu, Nitz, Schueth F (bib32) 2008; 108
Liu, Dai, Deng, Zhang, Gao, Wang, Li, Xie, Guo (bib44) 2013; 140−141
Ataloglou, Vakros, Bourikas, Fountzoula, Kordulis, Lycourghiotis (bib23) 2005; 57
Ozkan, Simth, Driscoll (bib11) 1992; 134
Singh, Nagpal, Agrawal (bib10) 2018; 11
Salek, Alphonse, Dufour, Guillemet-Fritsch, Tenailleau (bib26) 2014; 147
Barczak, Skwarek, Janusz, Dąbrowski, Pikus (bib31) 2010; 256
Galarneau, Cambon, Renzo, Ryoo, Choi, Fajula (bib37) 2003; 27
Haruta, Kobayashi, Sano, Yamada (bib15) 1987; 16
Cao, Man, Kruk (bib34) 2009; 21
Xu, Yang, Li, Li, Chen (bib48) 2009; 1
Cai, Xu, Guo, Ultrathin (bib27) 2019; 9
Kwon, Shin, Soh, Chang, Kim, Lee, Ko, Kim, Kim, Hyeon (bib6) 2017; 30
Liu, Feng, Wan, Zheng, Yang, Kang, Yu, Tong, Ge, Zuo, Cao, Song (bib9) 2018; 210
Liotta, Wu, Pantaleo, Venezia (bib29) 2013; 3
Chen, Ciotonea, Ungureanu, Dumitriu, Catrinescu, Wojcieszak, Dumeignil, Royer (bib36) 2019; 334
Huang, Lyu, Yang, Huang (bib38) 2012; 134
Deb, Saikia, Chowdhury (bib4) 2019; 4
Zhao, Feng, Huo, Melosh, Fredrickson, Chmelka, Stucky (bib30) 1998; 279
Bae, Shin, Jeong, Kim, Han, Lee (bib14) 2019; 9
Yu, Takei, Ohashi, He, Zhang, Haruta (bib24) 2009; 267
Uddin, Honda, Kato, Takagi (bib12) 2017; 291
Zhang, Li, Yang, Li, Chang, Chu, Zhang, Wang, An (bib3) 2012; 57
Wang, Kavanagh, Guo, Guo, Lu, Hu (bib42) 2012; 296
Wang, Cao, Hu, Li, Xie, Jia (bib45) 2017; 9
Schmidt (bib33) 2009; 117
Xie, Yong, Liu, Haruta, Shen (bib18) 2009; 458
Peng, Li, Sun, Ren, Chen, Fu, Wu, Ye (bib21) 2018; 220
Qu, Alvarez, Li (bib1) 2013; 47
Chen, Li, Cai, Chen, Jia (bib39) 2020; 8
Grillo, Natile, Glisenti (bib50) 2004; 48
Kresse, Furthmüller (bib43) 1996; 6
Wang (10.1016/j.micromeso.2022.111733_bib42) 2012; 296
Uddin (10.1016/j.micromeso.2022.111733_bib12) 2017; 291
Liotta (10.1016/j.micromeso.2022.111733_bib29) 2013; 3
Jiang (10.1016/j.micromeso.2022.111733_bib47) 2011; 13
Haruta (10.1016/j.micromeso.2022.111733_bib16) 1989; 115
Singh (10.1016/j.micromeso.2022.111733_bib10) 2018; 11
Xu (10.1016/j.micromeso.2022.111733_bib48) 2009; 1
Wang (10.1016/j.micromeso.2022.111733_bib45) 2017; 9
Hoa (10.1016/j.micromeso.2022.111733_bib7) 2015; 2015
Xie (10.1016/j.micromeso.2022.111733_bib18) 2009; 458
Peng (10.1016/j.micromeso.2022.111733_bib21) 2018; 220
Galarneau (10.1016/j.micromeso.2022.111733_bib37) 2003; 27
Liu (10.1016/j.micromeso.2022.111733_bib44) 2013; 140−141
Bazula (10.1016/j.micromeso.2022.111733_bib32) 2008; 108
Qu (10.1016/j.micromeso.2022.111733_bib1) 2013; 47
Lin (10.1016/j.micromeso.2022.111733_bib49) 2003; 86
Kang (10.1016/j.micromeso.2022.111733_bib8b) 2013; 228
Liu (10.1016/j.micromeso.2022.111733_bib8a) 2018; 210
Comotti (10.1016/j.micromeso.2022.111733_bib17) 2006; 128
Yu (10.1016/j.micromeso.2022.111733_bib24) 2009; 267
Rasmussen (10.1016/j.micromeso.2022.111733_bib35) 2010; 26
Shokouhimehr (10.1016/j.micromeso.2022.111733_bib22) 2018; 20
Haruta (10.1016/j.micromeso.2022.111733_bib15) 1987; 16
Zhang (10.1016/j.micromeso.2022.111733_bib3) 2012; 57
Huang (10.1016/j.micromeso.2022.111733_bib19) 2012; 134
Bucko (10.1016/j.micromeso.2022.111733_bib46) 2010; 114
Wang (10.1016/j.micromeso.2022.111733_bib28) 2017; 9
Zhao (10.1016/j.micromeso.2022.111733_bib30) 1998; 279
Schmidt (10.1016/j.micromeso.2022.111733_bib33) 2009; 117
Malta (10.1016/j.micromeso.2022.111733_bib20) 2017; 355
Ataloglou (10.1016/j.micromeso.2022.111733_bib23) 2005; 57
Ozkan (10.1016/j.micromeso.2022.111733_bib11) 1992; 134
Salek (10.1016/j.micromeso.2022.111733_bib26) 2014; 147
Grillo (10.1016/j.micromeso.2022.111733_bib50) 2004; 48
Yabe (10.1016/j.micromeso.2022.111733_bib13) 2018; 8
Kwon (10.1016/j.micromeso.2022.111733_bib6) 2017; 30
Kanel (10.1016/j.micromeso.2022.111733_bib5) 2006; 40
Bae (10.1016/j.micromeso.2022.111733_bib14) 2019; 9
Jansson (10.1016/j.micromeso.2022.111733_bib41) 2000; 194
Kresse (10.1016/j.micromeso.2022.111733_bib43) 1996; 6
Shin (10.1016/j.micromeso.2022.111733_bib2) 2020; 15
Cai (10.1016/j.micromeso.2022.111733_bib27) 2019; 9
Cao (10.1016/j.micromeso.2022.111733_bib34) 2009; 21
Wei (10.1016/j.micromeso.2022.111733_bib8) 2013; 238
Deb (10.1016/j.micromeso.2022.111733_bib4) 2019; 4
Omata (10.1016/j.micromeso.2022.111733_bib40) 1996; 146
Chen (10.1016/j.micromeso.2022.111733_bib36) 2019; 334
Huang (10.1016/j.micromeso.2022.111733_bib38) 2012; 134
Barczak (10.1016/j.micromeso.2022.111733_bib31) 2010; 256
Chen (10.1016/j.micromeso.2022.111733_bib39) 2020; 8
Jain (10.1016/j.micromeso.2022.111733_bib25) 2017; 121
References_xml – volume: 117
  start-page: 372
  year: 2009
  end-page: 379
  ident: bib33
  publication-title: Microporous Mesoporous Mater.
– volume: 20
  start-page: 3809
  year: 2018
  ident: bib22
  publication-title: Green Chem.
– volume: 9
  start-page: 16128
  year: 2017
  end-page: 16137
  ident: bib45
  publication-title: ACS Appl. Mater. Interfaces
– volume: 291
  start-page: 24
  year: 2017
  end-page: 28
  ident: bib12
  publication-title: Catal. Today
– volume: 140−141
  start-page: 317
  year: 2013
  end-page: 326
  ident: bib44
  publication-title: Appl. Catal., B
– volume: 86
  start-page: 63
  year: 2003
  end-page: 68
  ident: bib49
  publication-title: Catal. Lett.
– volume: 3
  start-page: 3085
  year: 2013
  ident: bib29
  publication-title: Catal. Sci. Technol.
– volume: 48
  start-page: 267
  year: 2004
  end-page: 274
  ident: bib50
  publication-title: Appl. Catal. B Environ.
– volume: 256
  start-page: 5370
  year: 2010
  end-page: 5375
  ident: bib31
  publication-title: Appl. Surf. Sci.
– volume: 334
  start-page: 48
  year: 2019
  end-page: 58
  ident: bib36
  publication-title: Catal. Today
– volume: 13
  start-page: 978
  year: 2011
  end-page: 984
  ident: bib47
  publication-title: Phys. Chem. Chem. Phys.
– volume: 30
  start-page: 1704290
  year: 2017
  ident: bib6
  publication-title: Adv. Mater.
– volume: 2015
  start-page: 972025
  year: 2015
  ident: bib7
  publication-title: J. Nanomater.
– volume: 238
  start-page: 376
  year: 2013
  end-page: 387
  ident: bib8
  publication-title: J. Power Sources
– volume: 16
  start-page: 405
  year: 1987
  end-page: 408
  ident: bib15
  publication-title: Chem. Lett.
– volume: 210
  start-page: 907
  year: 2018
  end-page: 916
  ident: bib9
  publication-title: Chemosphere
– volume: 194
  start-page: 55
  year: 2000
  end-page: 60
  ident: bib41
  publication-title: J. Catal.
– volume: 458
  start-page: 746
  year: 2009
  end-page: 749
  ident: bib18
  publication-title: Nature
– volume: 121
  start-page: 20296
  year: 2017
  end-page: 20305
  ident: bib25
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib43
  publication-title: Comput. Mater. Sci.
– volume: 220
  start-page: 462
  year: 2018
  end-page: 470
  ident: bib21
  publication-title: Appl. Catal. B Environ.
– volume: 267
  start-page: 121
  year: 2009
  end-page: 128
  ident: bib24
  publication-title: J. Catal.
– volume: 21
  start-page: 1144
  year: 2009
  end-page: 1153
  ident: bib34
  publication-title: Chem. Mater.
– volume: 114
  start-page: 11814
  year: 2010
  end-page: 11824
  ident: bib46
  publication-title: J. Phys. Chem.
– volume: 11
  start-page: 187
  year: 2018
  end-page: 240
  ident: bib10
  publication-title: Rachna, Environ. Technol. Inno.
– volume: 1
  start-page: 384
  year: 2009
  end-page: 392
  ident: bib48
  publication-title: ChemCatChem
– volume: 115
  start-page: 301
  year: 1989
  end-page: 309
  ident: bib16
  publication-title: J. Catal.
– volume: 9
  start-page: 2558
  year: 2019
  end-page: 2567
  ident: bib27
  publication-title: ACS Catal.
– volume: 57
  start-page: 2647
  year: 2012
  end-page: 2653
  ident: bib3
  publication-title: J. Chem. Eng. Data
– volume: 9
  start-page: 10093
  year: 2019
  end-page: 10100
  ident: bib14
  publication-title: ACS Catal.
– volume: 279
  start-page: 548
  year: 1998
  ident: bib30
  publication-title: Science
– volume: 27
  start-page: 73
  year: 2003
  end-page: 79
  ident: bib37
  publication-title: New J. Chem.
– volume: 355
  start-page: 1399
  year: 2017
  end-page: 1402
  ident: bib20
  publication-title: Science
– volume: 47
  year: 2013
  ident: bib1
  publication-title: Water Res.
– volume: 4
  start-page: 20394
  year: 2019
  end-page: 20401
  ident: bib4
  publication-title: ACS Omega
– volume: 134
  start-page: 24
  year: 1992
  ident: bib11
  publication-title: J. Catal.
– volume: 108
  start-page: 266
  year: 2008
  end-page: 275
  ident: bib32
  publication-title: Microporous Mesoporous Mater.
– volume: 8
  start-page: 6619
  year: 2020
  end-page: 6630
  ident: bib39
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 10147
  year: 2010
  end-page: 10157
  ident: bib35
  publication-title: Langmuir
– volume: 146
  start-page: 255
  year: 1996
  end-page: 267
  ident: bib40
  publication-title: Appl. Catal. Gen.
– volume: 128
  start-page: 917
  year: 2006
  end-page: 924
  ident: bib17
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1470
  year: 2018
  end-page: 11477
  ident: bib13
  publication-title: ACS Catal.
– volume: 9
  start-page: 16128
  year: 2017
  end-page: 16137
  ident: bib28
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 1261
  year: 2012
  end-page: 1267
  ident: bib19
  publication-title: J. Am. Chem. Soc.
– volume: 147
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib26
  publication-title: Appl. Catal. B Environ.
– volume: 57
  start-page: 299
  year: 2005
  end-page: 312
  ident: bib23
  publication-title: Appl. Catal. B Environ.
– volume: 15
  start-page: 646
  year: 2020
  end-page: 655
  ident: bib2
  publication-title: Nat. Nanotechnol.
– volume: 40
  start-page: 2045
  year: 2006
  end-page: 2050
  ident: bib5
  publication-title: Environ. Sci. Technol.
– volume: 134
  start-page: 1261
  year: 2012
  end-page: 1267
  ident: bib38
  publication-title: J. Am. Chem. Soc.
– volume: 296
  start-page: 110
  year: 2012
  end-page: 119
  ident: bib42
  publication-title: J. Catal.
– volume: 20
  start-page: 3809
  year: 2018
  ident: 10.1016/j.micromeso.2022.111733_bib22
  publication-title: Green Chem.
  doi: 10.1039/C8GC01240G
– volume: 9
  start-page: 10093
  year: 2019
  ident: 10.1016/j.micromeso.2022.111733_bib14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02920
– volume: 121
  start-page: 20296
  year: 2017
  ident: 10.1016/j.micromeso.2022.111733_bib25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b05480
– volume: 355
  start-page: 1399
  year: 2017
  ident: 10.1016/j.micromeso.2022.111733_bib20
  publication-title: Science
  doi: 10.1126/science.aal3439
– volume: 30
  start-page: 1704290
  year: 2017
  ident: 10.1016/j.micromeso.2022.111733_bib6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704290
– volume: 117
  start-page: 372
  year: 2009
  ident: 10.1016/j.micromeso.2022.111733_bib33
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.07.020
– volume: 296
  start-page: 110
  year: 2012
  ident: 10.1016/j.micromeso.2022.111733_bib42
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.09.005
– volume: 40
  start-page: 2045
  year: 2006
  ident: 10.1016/j.micromeso.2022.111733_bib5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0520924
– volume: 238
  start-page: 376
  year: 2013
  ident: 10.1016/j.micromeso.2022.111733_bib8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.173
– volume: 108
  start-page: 266
  year: 2008
  ident: 10.1016/j.micromeso.2022.111733_bib32
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2007.04.008
– volume: 267
  start-page: 121
  year: 2009
  ident: 10.1016/j.micromeso.2022.111733_bib24
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.08.003
– volume: 9
  start-page: 16128
  year: 2017
  ident: 10.1016/j.micromeso.2022.111733_bib28
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01142
– volume: 27
  start-page: 73
  year: 2003
  ident: 10.1016/j.micromeso.2022.111733_bib37
  publication-title: New J. Chem.
  doi: 10.1039/b207378c
– volume: 458
  start-page: 746
  year: 2009
  ident: 10.1016/j.micromeso.2022.111733_bib18
  publication-title: Nature
  doi: 10.1038/nature07877
– volume: 291
  start-page: 24
  year: 2017
  ident: 10.1016/j.micromeso.2022.111733_bib12
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.03.032
– volume: 146
  start-page: 255
  year: 1996
  ident: 10.1016/j.micromeso.2022.111733_bib40
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/S0926-860X(96)00151-2
– volume: 47
  year: 2013
  ident: 10.1016/j.micromeso.2022.111733_bib1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.09.058
– volume: 4
  start-page: 20394
  year: 2019
  ident: 10.1016/j.micromeso.2022.111733_bib4
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03280
– volume: 8
  start-page: 6619
  year: 2020
  ident: 10.1016/j.micromeso.2022.111733_bib39
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA13488C
– volume: 194
  start-page: 55
  year: 2000
  ident: 10.1016/j.micromeso.2022.111733_bib41
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2924
– volume: 128
  start-page: 917
  year: 2006
  ident: 10.1016/j.micromeso.2022.111733_bib17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0561441
– volume: 220
  start-page: 462
  year: 2018
  ident: 10.1016/j.micromeso.2022.111733_bib21
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.07.048
– volume: 134
  start-page: 1261
  year: 2012
  ident: 10.1016/j.micromeso.2022.111733_bib19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209662v
– volume: 48
  start-page: 267
  year: 2004
  ident: 10.1016/j.micromeso.2022.111733_bib50
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2003.11.003
– volume: 57
  start-page: 2647
  year: 2012
  ident: 10.1016/j.micromeso.2022.111733_bib3
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je300365p
– volume: 256
  start-page: 5370
  year: 2010
  ident: 10.1016/j.micromeso.2022.111733_bib31
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.12.082
– volume: 134
  start-page: 1261
  year: 2012
  ident: 10.1016/j.micromeso.2022.111733_bib38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209662v
– volume: 9
  start-page: 16128
  year: 2017
  ident: 10.1016/j.micromeso.2022.111733_bib45
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01142
– volume: 114
  start-page: 11814
  year: 2010
  ident: 10.1016/j.micromeso.2022.111733_bib46
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp106469x
– volume: 3
  start-page: 3085
  year: 2013
  ident: 10.1016/j.micromeso.2022.111733_bib29
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy00193h
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.micromeso.2022.111733_bib43
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 15
  start-page: 646
  year: 2020
  ident: 10.1016/j.micromeso.2022.111733_bib2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0737-y
– volume: 334
  start-page: 48
  year: 2019
  ident: 10.1016/j.micromeso.2022.111733_bib36
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.01.064
– volume: 279
  start-page: 548
  year: 1998
  ident: 10.1016/j.micromeso.2022.111733_bib30
  publication-title: Science
  doi: 10.1126/science.279.5350.548
– volume: 228
  start-page: 731
  year: 2013
  ident: 10.1016/j.micromeso.2022.111733_bib8b
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.05.041
– volume: 134
  start-page: 24
  year: 1992
  ident: 10.1016/j.micromeso.2022.111733_bib11
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(92)90206-W
– volume: 11
  start-page: 187
  year: 2018
  ident: 10.1016/j.micromeso.2022.111733_bib10
  publication-title: Rachna, Environ. Technol. Inno.
  doi: 10.1016/j.eti.2018.05.006
– volume: 1
  start-page: 384
  year: 2009
  ident: 10.1016/j.micromeso.2022.111733_bib48
  publication-title: ChemCatChem
  doi: 10.1002/cctc.200900115
– volume: 147
  start-page: 1
  year: 2014
  ident: 10.1016/j.micromeso.2022.111733_bib26
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.08.015
– volume: 21
  start-page: 1144
  year: 2009
  ident: 10.1016/j.micromeso.2022.111733_bib34
  publication-title: Chem. Mater.
  doi: 10.1021/cm8012733
– volume: 140−141
  start-page: 317
  year: 2013
  ident: 10.1016/j.micromeso.2022.111733_bib44
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.04.025
– volume: 26
  start-page: 10147
  year: 2010
  ident: 10.1016/j.micromeso.2022.111733_bib35
  publication-title: Langmuir
  doi: 10.1021/la100268q
– volume: 2015
  start-page: 972025
  year: 2015
  ident: 10.1016/j.micromeso.2022.111733_bib7
  publication-title: J. Nanomater.
  doi: 10.1155/2015/972025
– volume: 16
  start-page: 405
  year: 1987
  ident: 10.1016/j.micromeso.2022.111733_bib15
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1987.405
– volume: 115
  start-page: 301
  year: 1989
  ident: 10.1016/j.micromeso.2022.111733_bib16
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(89)90034-1
– volume: 57
  start-page: 299
  year: 2005
  ident: 10.1016/j.micromeso.2022.111733_bib23
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2004.11.010
– volume: 13
  start-page: 978
  year: 2011
  ident: 10.1016/j.micromeso.2022.111733_bib47
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C0CP01138J
– volume: 210
  start-page: 907
  year: 2018
  ident: 10.1016/j.micromeso.2022.111733_bib8a
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.085
– volume: 9
  start-page: 2558
  year: 2019
  ident: 10.1016/j.micromeso.2022.111733_bib27
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04064
– volume: 8
  start-page: 1470
  year: 2018
  ident: 10.1016/j.micromeso.2022.111733_bib13
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02476
– volume: 86
  start-page: 63
  year: 2003
  ident: 10.1016/j.micromeso.2022.111733_bib49
  publication-title: Catal. Lett.
  doi: 10.1023/A:1022659025068
SSID ssj0017121
Score 2.404445
Snippet Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111733
SubjectTerms Catalyst
CO oxidation
Cobalt oxide
Confinement effect
SBA-15
Title Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation
URI https://dx.doi.org/10.1016/j.micromeso.2022.111733
Volume 333
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc1mk83GWwmW-mrFWugtJPuAiKbFRNCLv93ZPEoLQg-ekt3NsGF2MvtN-GYWoUuA3FrYPLBUoLnlSrhLRMwtkZj9jAeKlLkwjyM2nLp3M2_WQmGTC2NolbXvr3x66a3rnl6tzd4iTXsTQgHsc8ALJtvE80yiuev6xsqvfpY0D-KTOvcKPibz9BrH670kvancZAE6jnEfPqV_71Aru85gD-3WcBH3qzfaRy2VHaCdlSKCh2gcmpIeBZ5_pVJhCG81jEmcZthMCfAaYns8SccOjnNc0TfAw-Hyv813XmBArTgcl-LlKh2h6eDmJRxa9TEJlqCEFBYVkmkmmQPN2FPSFj4nTHmKA3IWroy1I7ViTFMp_CQBxMFj6NMwLJTNfXqM2tk8UycIa1hSIhIqNIQZieMHSrscMJIw1Yxd5nUQa1QTibqGuDnK4i1qyGKv0VKnkdFpVOm0g-yl4KIqo7FZ5LrRfbRmERE4-03Cp_8RPkPbplUxzc5Ru_j4VBcAPYqkW9pWF231w-eHJ3O9vR-OfgEt9dv6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPvfQazDPzaY3CZVYXwcVvIVkH5DSqtQU2n_f2SSKQsFDb8kOQ8K3m5lvNjOzAE9IuRU3WWDIQDHDFXiV8oQZPNX-jAXSKmphBkMaTd3XmTerQbiuhdFplZXtL216Ya2rkVaFZmuZZa2x5SDZZ8gXdLWJ53kH0NDdqbw6NNrdXjTc_Ezwrar8Cr8nrbCT5vVR5L3JlS4EtG1tQXzH-dtJbTmezimcVIyRtMuXOoOanJ_D8VYfwQsYhbqrR04W35mQBCNchTJBsjnRj0SGjeE9GWcjmyQrUmZwoJEjxdbNzyonSFxJOCrUi4m6hGnnZRJGRnVSgsEdy8oNhwuqqKA23iaeFCb3mUWlJxmSZ-6KRNlCSUqVI7ifpkg6WIJjCsVcmsx3rqA-X8zlNRCFs2rx1OEKI43U9gOpXIY0ieuGxi71mkDX0MS8aiOuT7N4j9f5Ym_xBtNYYxqXmDbB3Cguy04a-1We19jHO4siRnu_T_nmP8qPcBhNBv243x32buFIS8rEszuo559f8h6ZSJ4-VCvtF9h93RY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cobalt+oxide+confined+in+mesoporous+SiO2+as+effective+catalyst+for+CO+oxidation&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Liu%2C+Tao&rft.au=Ju%2C+Xiaoqiu&rft.au=Hu%2C+Zhixin&rft.au=Xie%2C+Rongrong&rft.date=2022-03-01&rft.issn=1387-1811&rft.volume=333&rft.spage=111733&rft_id=info:doi/10.1016%2Fj.micromeso.2022.111733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micromeso_2022_111733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon