Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation
Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to confine CoOx in SBA-15 through the solid-state grinding method for CO oxidation. The characterization results showed that the aggregation of Co...
Saved in:
Published in | Microporous and mesoporous materials Vol. 333; p. 111733 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to confine CoOx in SBA-15 through the solid-state grinding method for CO oxidation. The characterization results showed that the aggregation of CoOx in the pores of the carrier SBA-15 was effectively inhibited by the confinement effect, which further facilitated the formation of the main catalytic site Co(III) species. The results of the density-functional theory calculations further confirmed that Co(III) was the important catalytic site for CO oxidation. Compared with the catalyst prepared through the impregnation method, catalysts CoOx@SBA-15(X) exhibited a lower CO conversion temperature and activation energy for CO oxidation. In addition, the pore size of the carrier SBA-15 had a significant impact on the catalytic activity of CoOx, and the catalyst prepared with a larger pore size SBA-15 as carrier exhibited a higher catalytic activity. This result was mainly attributed to the fact that the confinement effect could effectively enhance the defect formation in metal oxides. Furthermore, the catalyst with a larger pore size SBA-15 as a carrier presented a higher content of Co(III) species, which significantly enhanced the catalytic activity of CoOx for CO oxidation. The results demonstrated that the pore structure of SBA-15 could affect the formation of the metal oxide (CoOx) species, which further significantly affected the catalytic activity of CoOx for CO oxidation. The results are expected to provide a strategy to synthesize efficient catalysts for CO oxidation by using ordered mesoporous materials.
[Display omitted]
•Solid state grinding method is an effective way to confine CoOx in SBA-15 pores.•Confinement effect could enhance the catalytic activity of catalysts for CO oxidation.•SBA-15 with larger pore size was more favorable for the formation of Co(III) species. |
---|---|
AbstractList | Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to confine CoOx in SBA-15 through the solid-state grinding method for CO oxidation. The characterization results showed that the aggregation of CoOx in the pores of the carrier SBA-15 was effectively inhibited by the confinement effect, which further facilitated the formation of the main catalytic site Co(III) species. The results of the density-functional theory calculations further confirmed that Co(III) was the important catalytic site for CO oxidation. Compared with the catalyst prepared through the impregnation method, catalysts CoOx@SBA-15(X) exhibited a lower CO conversion temperature and activation energy for CO oxidation. In addition, the pore size of the carrier SBA-15 had a significant impact on the catalytic activity of CoOx, and the catalyst prepared with a larger pore size SBA-15 as carrier exhibited a higher catalytic activity. This result was mainly attributed to the fact that the confinement effect could effectively enhance the defect formation in metal oxides. Furthermore, the catalyst with a larger pore size SBA-15 as a carrier presented a higher content of Co(III) species, which significantly enhanced the catalytic activity of CoOx for CO oxidation. The results demonstrated that the pore structure of SBA-15 could affect the formation of the metal oxide (CoOx) species, which further significantly affected the catalytic activity of CoOx for CO oxidation. The results are expected to provide a strategy to synthesize efficient catalysts for CO oxidation by using ordered mesoporous materials.
[Display omitted]
•Solid state grinding method is an effective way to confine CoOx in SBA-15 pores.•Confinement effect could enhance the catalytic activity of catalysts for CO oxidation.•SBA-15 with larger pore size was more favorable for the formation of Co(III) species. |
ArticleNumber | 111733 |
Author | Hu, Zhixin Liu, Tao Xie, Rongrong Ju, Xiaoqiu |
Author_xml | – sequence: 1 givenname: Tao surname: Liu fullname: Liu, Tao organization: School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China – sequence: 2 givenname: Xiaoqiu surname: Ju fullname: Ju, Xiaoqiu organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China – sequence: 3 givenname: Zhixin surname: Hu fullname: Hu, Zhixin organization: School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China – sequence: 4 givenname: Rongrong orcidid: 0000-0002-2739-1107 surname: Xie fullname: Xie, Rongrong email: xierr1118@163.com organization: College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China |
BookMark | eNqNkMtKAzEUhoNUsK0-g3mBGXOSdjIuXJTiDYRZqOuQJieQMp2UJBb79qatuHCjq1y_n_N_EzIawoCEXAOrgUFzs6433sSwwRRqzjivAUAKcUbG0EpRCXYrRmUvWllBC3BBJimtGQMJHMakW4aV7jMNn94iNWFwfkBL_UAPgdsQw0eir77jVCeKzqHJflc-6qz7fcrUhUiX3RHX2Yfhkpw73Se8-l6n5P3h_m35VL10j8_LxUtlBECuhLGNa2zDy1HP0TIjW2hwjq2U3Mysdtw6bBonrJGr1bydtbrcufJskJVeU3J3yi3VU4rolPH5OEGO2vcKmDrYUWv1Y0cd7KiTncLLX_w2-o2O-3-QixOJpd7OY1TJeBwMWh-LHWWD_zPjC5TQiEg |
CitedBy_id | crossref_primary_10_1016_j_jece_2023_111307 crossref_primary_10_1093_chemle_upae061 crossref_primary_10_1016_j_fuel_2024_132390 crossref_primary_10_1007_s10853_023_08427_1 crossref_primary_10_1016_j_seppur_2023_125865 crossref_primary_10_1088_1361_6528_ac973a |
Cites_doi | 10.1039/C8GC01240G 10.1021/acscatal.9b02920 10.1021/acs.jpcc.7b05480 10.1126/science.aal3439 10.1002/adma.201704290 10.1016/j.micromeso.2008.07.020 10.1016/j.jcat.2012.09.005 10.1021/es0520924 10.1016/j.jpowsour.2013.03.173 10.1016/j.micromeso.2007.04.008 10.1016/j.jcat.2009.08.003 10.1021/acsami.7b01142 10.1039/b207378c 10.1038/nature07877 10.1016/j.cattod.2017.03.032 10.1016/S0926-860X(96)00151-2 10.1016/j.watres.2012.09.058 10.1021/acsomega.9b03280 10.1039/C9TA13488C 10.1006/jcat.2000.2924 10.1021/ja0561441 10.1016/j.apcatb.2017.07.048 10.1021/ja209662v 10.1016/j.apcatb.2003.11.003 10.1021/je300365p 10.1016/j.apsusc.2009.12.082 10.1021/jp106469x 10.1039/c3cy00193h 10.1016/0927-0256(96)00008-0 10.1038/s41565-020-0737-y 10.1016/j.cattod.2019.01.064 10.1126/science.279.5350.548 10.1016/j.cej.2013.05.041 10.1016/0021-9517(92)90206-W 10.1016/j.eti.2018.05.006 10.1002/cctc.200900115 10.1016/j.apcatb.2013.08.015 10.1021/cm8012733 10.1016/j.apcatb.2013.04.025 10.1021/la100268q 10.1155/2015/972025 10.1246/cl.1987.405 10.1016/0021-9517(89)90034-1 10.1016/j.apcatb.2004.11.010 10.1039/C0CP01138J 10.1016/j.chemosphere.2018.07.085 10.1021/acscatal.8b04064 10.1021/acscatal.8b02476 10.1023/A:1022659025068 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.micromeso.2022.111733 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3093 |
ExternalDocumentID | 10_1016_j_micromeso_2022_111733 S1387181122000555 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSZ T5K XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c311t-3cd6f6d62c31a5ed0c7816e5e8772c4daf2dfe66f3dc7bb5848aaf2f877ce0873 |
IEDL.DBID | .~1 |
ISSN | 1387-1811 |
IngestDate | Tue Jul 01 03:00:41 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Fri Feb 23 02:41:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cobalt oxide CO oxidation SBA-15 Confinement effect Catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-3cd6f6d62c31a5ed0c7816e5e8772c4daf2dfe66f3dc7bb5848aaf2f877ce0873 |
ORCID | 0000-0002-2739-1107 |
ParticipantIDs | crossref_citationtrail_10_1016_j_micromeso_2022_111733 crossref_primary_10_1016_j_micromeso_2022_111733 elsevier_sciencedirect_doi_10_1016_j_micromeso_2022_111733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Microporous and mesoporous materials |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Huang, Lyu, Yang, Huang (bib19) 2012; 134 Jansson (bib41) 2000; 194 Yabe, Yamada, Oguri, Higo, Ogo, Sekine (bib13) 2018; 8 Rasmussen, Vishnyakov, Thommes, Smarsly, Kleitz, Neimark (bib35) 2010; 26 Jiang, Dai (bib47) 2011; 13 Shin, Shukla, Chung (bib2) 2020; 15 Comotti, Li, Spliethoff, Schuth (bib17) 2006; 128 Jain, Reddy, Ghosalya, Gopinath (bib25) 2017; 121 Hoa, Duy, Ei-Safty, Hieu (bib7) 2015; 2015 Kanel, Greneche, Choi (bib5) 2006; 40 Wei, Wang, Liu, Liu, He, Chen, Umar, Guo, Li (bib8) 2013; 238 Omata, Takada, Kasahara, Yamada (bib40) 1996; 146 Bucko, Hafner, Lebegue, Angyán (bib46) 2010; 114 Haruta, Yamada, Kobayashi, Iijima (bib16) 1989; 115 Lin, Wang, Chiu, Chien (bib49) 2003; 86 Malta, Kondrat, Freakley, Davies, Lu, Dawson, Thetford, Gibson, Morgan, Jones, Wells, Johnston, Catlow, Kiely, Hutchings (bib20) 2017; 355 Wang, Cao, Hu, Li, Xie, Jia (bib28) 2017; 9 Shokouhimehr, Hong, Lee, Moon, Hong, Zhang, Suh, Choi, Varma, Jang (bib22) 2018; 20 Bazula, Lu, Nitz, Schueth F (bib32) 2008; 108 Liu, Dai, Deng, Zhang, Gao, Wang, Li, Xie, Guo (bib44) 2013; 140−141 Ataloglou, Vakros, Bourikas, Fountzoula, Kordulis, Lycourghiotis (bib23) 2005; 57 Ozkan, Simth, Driscoll (bib11) 1992; 134 Singh, Nagpal, Agrawal (bib10) 2018; 11 Salek, Alphonse, Dufour, Guillemet-Fritsch, Tenailleau (bib26) 2014; 147 Barczak, Skwarek, Janusz, Dąbrowski, Pikus (bib31) 2010; 256 Galarneau, Cambon, Renzo, Ryoo, Choi, Fajula (bib37) 2003; 27 Haruta, Kobayashi, Sano, Yamada (bib15) 1987; 16 Cao, Man, Kruk (bib34) 2009; 21 Xu, Yang, Li, Li, Chen (bib48) 2009; 1 Cai, Xu, Guo, Ultrathin (bib27) 2019; 9 Kwon, Shin, Soh, Chang, Kim, Lee, Ko, Kim, Kim, Hyeon (bib6) 2017; 30 Liu, Feng, Wan, Zheng, Yang, Kang, Yu, Tong, Ge, Zuo, Cao, Song (bib9) 2018; 210 Liotta, Wu, Pantaleo, Venezia (bib29) 2013; 3 Chen, Ciotonea, Ungureanu, Dumitriu, Catrinescu, Wojcieszak, Dumeignil, Royer (bib36) 2019; 334 Huang, Lyu, Yang, Huang (bib38) 2012; 134 Deb, Saikia, Chowdhury (bib4) 2019; 4 Zhao, Feng, Huo, Melosh, Fredrickson, Chmelka, Stucky (bib30) 1998; 279 Bae, Shin, Jeong, Kim, Han, Lee (bib14) 2019; 9 Yu, Takei, Ohashi, He, Zhang, Haruta (bib24) 2009; 267 Uddin, Honda, Kato, Takagi (bib12) 2017; 291 Zhang, Li, Yang, Li, Chang, Chu, Zhang, Wang, An (bib3) 2012; 57 Wang, Kavanagh, Guo, Guo, Lu, Hu (bib42) 2012; 296 Wang, Cao, Hu, Li, Xie, Jia (bib45) 2017; 9 Schmidt (bib33) 2009; 117 Xie, Yong, Liu, Haruta, Shen (bib18) 2009; 458 Peng, Li, Sun, Ren, Chen, Fu, Wu, Ye (bib21) 2018; 220 Qu, Alvarez, Li (bib1) 2013; 47 Chen, Li, Cai, Chen, Jia (bib39) 2020; 8 Grillo, Natile, Glisenti (bib50) 2004; 48 Kresse, Furthmüller (bib43) 1996; 6 Wang (10.1016/j.micromeso.2022.111733_bib42) 2012; 296 Uddin (10.1016/j.micromeso.2022.111733_bib12) 2017; 291 Liotta (10.1016/j.micromeso.2022.111733_bib29) 2013; 3 Jiang (10.1016/j.micromeso.2022.111733_bib47) 2011; 13 Haruta (10.1016/j.micromeso.2022.111733_bib16) 1989; 115 Singh (10.1016/j.micromeso.2022.111733_bib10) 2018; 11 Xu (10.1016/j.micromeso.2022.111733_bib48) 2009; 1 Wang (10.1016/j.micromeso.2022.111733_bib45) 2017; 9 Hoa (10.1016/j.micromeso.2022.111733_bib7) 2015; 2015 Xie (10.1016/j.micromeso.2022.111733_bib18) 2009; 458 Peng (10.1016/j.micromeso.2022.111733_bib21) 2018; 220 Galarneau (10.1016/j.micromeso.2022.111733_bib37) 2003; 27 Liu (10.1016/j.micromeso.2022.111733_bib44) 2013; 140−141 Bazula (10.1016/j.micromeso.2022.111733_bib32) 2008; 108 Qu (10.1016/j.micromeso.2022.111733_bib1) 2013; 47 Lin (10.1016/j.micromeso.2022.111733_bib49) 2003; 86 Kang (10.1016/j.micromeso.2022.111733_bib8b) 2013; 228 Liu (10.1016/j.micromeso.2022.111733_bib8a) 2018; 210 Comotti (10.1016/j.micromeso.2022.111733_bib17) 2006; 128 Yu (10.1016/j.micromeso.2022.111733_bib24) 2009; 267 Rasmussen (10.1016/j.micromeso.2022.111733_bib35) 2010; 26 Shokouhimehr (10.1016/j.micromeso.2022.111733_bib22) 2018; 20 Haruta (10.1016/j.micromeso.2022.111733_bib15) 1987; 16 Zhang (10.1016/j.micromeso.2022.111733_bib3) 2012; 57 Huang (10.1016/j.micromeso.2022.111733_bib19) 2012; 134 Bucko (10.1016/j.micromeso.2022.111733_bib46) 2010; 114 Wang (10.1016/j.micromeso.2022.111733_bib28) 2017; 9 Zhao (10.1016/j.micromeso.2022.111733_bib30) 1998; 279 Schmidt (10.1016/j.micromeso.2022.111733_bib33) 2009; 117 Malta (10.1016/j.micromeso.2022.111733_bib20) 2017; 355 Ataloglou (10.1016/j.micromeso.2022.111733_bib23) 2005; 57 Ozkan (10.1016/j.micromeso.2022.111733_bib11) 1992; 134 Salek (10.1016/j.micromeso.2022.111733_bib26) 2014; 147 Grillo (10.1016/j.micromeso.2022.111733_bib50) 2004; 48 Yabe (10.1016/j.micromeso.2022.111733_bib13) 2018; 8 Kwon (10.1016/j.micromeso.2022.111733_bib6) 2017; 30 Kanel (10.1016/j.micromeso.2022.111733_bib5) 2006; 40 Bae (10.1016/j.micromeso.2022.111733_bib14) 2019; 9 Jansson (10.1016/j.micromeso.2022.111733_bib41) 2000; 194 Kresse (10.1016/j.micromeso.2022.111733_bib43) 1996; 6 Shin (10.1016/j.micromeso.2022.111733_bib2) 2020; 15 Cai (10.1016/j.micromeso.2022.111733_bib27) 2019; 9 Cao (10.1016/j.micromeso.2022.111733_bib34) 2009; 21 Wei (10.1016/j.micromeso.2022.111733_bib8) 2013; 238 Deb (10.1016/j.micromeso.2022.111733_bib4) 2019; 4 Omata (10.1016/j.micromeso.2022.111733_bib40) 1996; 146 Chen (10.1016/j.micromeso.2022.111733_bib36) 2019; 334 Huang (10.1016/j.micromeso.2022.111733_bib38) 2012; 134 Barczak (10.1016/j.micromeso.2022.111733_bib31) 2010; 256 Chen (10.1016/j.micromeso.2022.111733_bib39) 2020; 8 Jain (10.1016/j.micromeso.2022.111733_bib25) 2017; 121 |
References_xml | – volume: 117 start-page: 372 year: 2009 end-page: 379 ident: bib33 publication-title: Microporous Mesoporous Mater. – volume: 20 start-page: 3809 year: 2018 ident: bib22 publication-title: Green Chem. – volume: 9 start-page: 16128 year: 2017 end-page: 16137 ident: bib45 publication-title: ACS Appl. Mater. Interfaces – volume: 291 start-page: 24 year: 2017 end-page: 28 ident: bib12 publication-title: Catal. Today – volume: 140−141 start-page: 317 year: 2013 end-page: 326 ident: bib44 publication-title: Appl. Catal., B – volume: 86 start-page: 63 year: 2003 end-page: 68 ident: bib49 publication-title: Catal. Lett. – volume: 3 start-page: 3085 year: 2013 ident: bib29 publication-title: Catal. Sci. Technol. – volume: 48 start-page: 267 year: 2004 end-page: 274 ident: bib50 publication-title: Appl. Catal. B Environ. – volume: 256 start-page: 5370 year: 2010 end-page: 5375 ident: bib31 publication-title: Appl. Surf. Sci. – volume: 334 start-page: 48 year: 2019 end-page: 58 ident: bib36 publication-title: Catal. Today – volume: 13 start-page: 978 year: 2011 end-page: 984 ident: bib47 publication-title: Phys. Chem. Chem. Phys. – volume: 30 start-page: 1704290 year: 2017 ident: bib6 publication-title: Adv. Mater. – volume: 2015 start-page: 972025 year: 2015 ident: bib7 publication-title: J. Nanomater. – volume: 238 start-page: 376 year: 2013 end-page: 387 ident: bib8 publication-title: J. Power Sources – volume: 16 start-page: 405 year: 1987 end-page: 408 ident: bib15 publication-title: Chem. Lett. – volume: 210 start-page: 907 year: 2018 end-page: 916 ident: bib9 publication-title: Chemosphere – volume: 194 start-page: 55 year: 2000 end-page: 60 ident: bib41 publication-title: J. Catal. – volume: 458 start-page: 746 year: 2009 end-page: 749 ident: bib18 publication-title: Nature – volume: 121 start-page: 20296 year: 2017 end-page: 20305 ident: bib25 publication-title: J. Phys. Chem. C – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib43 publication-title: Comput. Mater. Sci. – volume: 220 start-page: 462 year: 2018 end-page: 470 ident: bib21 publication-title: Appl. Catal. B Environ. – volume: 267 start-page: 121 year: 2009 end-page: 128 ident: bib24 publication-title: J. Catal. – volume: 21 start-page: 1144 year: 2009 end-page: 1153 ident: bib34 publication-title: Chem. Mater. – volume: 114 start-page: 11814 year: 2010 end-page: 11824 ident: bib46 publication-title: J. Phys. Chem. – volume: 11 start-page: 187 year: 2018 end-page: 240 ident: bib10 publication-title: Rachna, Environ. Technol. Inno. – volume: 1 start-page: 384 year: 2009 end-page: 392 ident: bib48 publication-title: ChemCatChem – volume: 115 start-page: 301 year: 1989 end-page: 309 ident: bib16 publication-title: J. Catal. – volume: 9 start-page: 2558 year: 2019 end-page: 2567 ident: bib27 publication-title: ACS Catal. – volume: 57 start-page: 2647 year: 2012 end-page: 2653 ident: bib3 publication-title: J. Chem. Eng. Data – volume: 9 start-page: 10093 year: 2019 end-page: 10100 ident: bib14 publication-title: ACS Catal. – volume: 279 start-page: 548 year: 1998 ident: bib30 publication-title: Science – volume: 27 start-page: 73 year: 2003 end-page: 79 ident: bib37 publication-title: New J. Chem. – volume: 355 start-page: 1399 year: 2017 end-page: 1402 ident: bib20 publication-title: Science – volume: 47 year: 2013 ident: bib1 publication-title: Water Res. – volume: 4 start-page: 20394 year: 2019 end-page: 20401 ident: bib4 publication-title: ACS Omega – volume: 134 start-page: 24 year: 1992 ident: bib11 publication-title: J. Catal. – volume: 108 start-page: 266 year: 2008 end-page: 275 ident: bib32 publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 6619 year: 2020 end-page: 6630 ident: bib39 publication-title: J. Mater. Chem. – volume: 26 start-page: 10147 year: 2010 end-page: 10157 ident: bib35 publication-title: Langmuir – volume: 146 start-page: 255 year: 1996 end-page: 267 ident: bib40 publication-title: Appl. Catal. Gen. – volume: 128 start-page: 917 year: 2006 end-page: 924 ident: bib17 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1470 year: 2018 end-page: 11477 ident: bib13 publication-title: ACS Catal. – volume: 9 start-page: 16128 year: 2017 end-page: 16137 ident: bib28 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 1261 year: 2012 end-page: 1267 ident: bib19 publication-title: J. Am. Chem. Soc. – volume: 147 start-page: 1 year: 2014 end-page: 7 ident: bib26 publication-title: Appl. Catal. B Environ. – volume: 57 start-page: 299 year: 2005 end-page: 312 ident: bib23 publication-title: Appl. Catal. B Environ. – volume: 15 start-page: 646 year: 2020 end-page: 655 ident: bib2 publication-title: Nat. Nanotechnol. – volume: 40 start-page: 2045 year: 2006 end-page: 2050 ident: bib5 publication-title: Environ. Sci. Technol. – volume: 134 start-page: 1261 year: 2012 end-page: 1267 ident: bib38 publication-title: J. Am. Chem. Soc. – volume: 296 start-page: 110 year: 2012 end-page: 119 ident: bib42 publication-title: J. Catal. – volume: 20 start-page: 3809 year: 2018 ident: 10.1016/j.micromeso.2022.111733_bib22 publication-title: Green Chem. doi: 10.1039/C8GC01240G – volume: 9 start-page: 10093 year: 2019 ident: 10.1016/j.micromeso.2022.111733_bib14 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02920 – volume: 121 start-page: 20296 year: 2017 ident: 10.1016/j.micromeso.2022.111733_bib25 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05480 – volume: 355 start-page: 1399 year: 2017 ident: 10.1016/j.micromeso.2022.111733_bib20 publication-title: Science doi: 10.1126/science.aal3439 – volume: 30 start-page: 1704290 year: 2017 ident: 10.1016/j.micromeso.2022.111733_bib6 publication-title: Adv. Mater. doi: 10.1002/adma.201704290 – volume: 117 start-page: 372 year: 2009 ident: 10.1016/j.micromeso.2022.111733_bib33 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.07.020 – volume: 296 start-page: 110 year: 2012 ident: 10.1016/j.micromeso.2022.111733_bib42 publication-title: J. Catal. doi: 10.1016/j.jcat.2012.09.005 – volume: 40 start-page: 2045 year: 2006 ident: 10.1016/j.micromeso.2022.111733_bib5 publication-title: Environ. Sci. Technol. doi: 10.1021/es0520924 – volume: 238 start-page: 376 year: 2013 ident: 10.1016/j.micromeso.2022.111733_bib8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.173 – volume: 108 start-page: 266 year: 2008 ident: 10.1016/j.micromeso.2022.111733_bib32 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2007.04.008 – volume: 267 start-page: 121 year: 2009 ident: 10.1016/j.micromeso.2022.111733_bib24 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.08.003 – volume: 9 start-page: 16128 year: 2017 ident: 10.1016/j.micromeso.2022.111733_bib28 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01142 – volume: 27 start-page: 73 year: 2003 ident: 10.1016/j.micromeso.2022.111733_bib37 publication-title: New J. Chem. doi: 10.1039/b207378c – volume: 458 start-page: 746 year: 2009 ident: 10.1016/j.micromeso.2022.111733_bib18 publication-title: Nature doi: 10.1038/nature07877 – volume: 291 start-page: 24 year: 2017 ident: 10.1016/j.micromeso.2022.111733_bib12 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.03.032 – volume: 146 start-page: 255 year: 1996 ident: 10.1016/j.micromeso.2022.111733_bib40 publication-title: Appl. Catal. Gen. doi: 10.1016/S0926-860X(96)00151-2 – volume: 47 year: 2013 ident: 10.1016/j.micromeso.2022.111733_bib1 publication-title: Water Res. doi: 10.1016/j.watres.2012.09.058 – volume: 4 start-page: 20394 year: 2019 ident: 10.1016/j.micromeso.2022.111733_bib4 publication-title: ACS Omega doi: 10.1021/acsomega.9b03280 – volume: 8 start-page: 6619 year: 2020 ident: 10.1016/j.micromeso.2022.111733_bib39 publication-title: J. Mater. Chem. doi: 10.1039/C9TA13488C – volume: 194 start-page: 55 year: 2000 ident: 10.1016/j.micromeso.2022.111733_bib41 publication-title: J. Catal. doi: 10.1006/jcat.2000.2924 – volume: 128 start-page: 917 year: 2006 ident: 10.1016/j.micromeso.2022.111733_bib17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0561441 – volume: 220 start-page: 462 year: 2018 ident: 10.1016/j.micromeso.2022.111733_bib21 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.07.048 – volume: 134 start-page: 1261 year: 2012 ident: 10.1016/j.micromeso.2022.111733_bib19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209662v – volume: 48 start-page: 267 year: 2004 ident: 10.1016/j.micromeso.2022.111733_bib50 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2003.11.003 – volume: 57 start-page: 2647 year: 2012 ident: 10.1016/j.micromeso.2022.111733_bib3 publication-title: J. Chem. Eng. Data doi: 10.1021/je300365p – volume: 256 start-page: 5370 year: 2010 ident: 10.1016/j.micromeso.2022.111733_bib31 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.12.082 – volume: 134 start-page: 1261 year: 2012 ident: 10.1016/j.micromeso.2022.111733_bib38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209662v – volume: 9 start-page: 16128 year: 2017 ident: 10.1016/j.micromeso.2022.111733_bib45 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01142 – volume: 114 start-page: 11814 year: 2010 ident: 10.1016/j.micromeso.2022.111733_bib46 publication-title: J. Phys. Chem. doi: 10.1021/jp106469x – volume: 3 start-page: 3085 year: 2013 ident: 10.1016/j.micromeso.2022.111733_bib29 publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy00193h – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.micromeso.2022.111733_bib43 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 15 start-page: 646 year: 2020 ident: 10.1016/j.micromeso.2022.111733_bib2 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0737-y – volume: 334 start-page: 48 year: 2019 ident: 10.1016/j.micromeso.2022.111733_bib36 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.01.064 – volume: 279 start-page: 548 year: 1998 ident: 10.1016/j.micromeso.2022.111733_bib30 publication-title: Science doi: 10.1126/science.279.5350.548 – volume: 228 start-page: 731 year: 2013 ident: 10.1016/j.micromeso.2022.111733_bib8b publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.05.041 – volume: 134 start-page: 24 year: 1992 ident: 10.1016/j.micromeso.2022.111733_bib11 publication-title: J. Catal. doi: 10.1016/0021-9517(92)90206-W – volume: 11 start-page: 187 year: 2018 ident: 10.1016/j.micromeso.2022.111733_bib10 publication-title: Rachna, Environ. Technol. Inno. doi: 10.1016/j.eti.2018.05.006 – volume: 1 start-page: 384 year: 2009 ident: 10.1016/j.micromeso.2022.111733_bib48 publication-title: ChemCatChem doi: 10.1002/cctc.200900115 – volume: 147 start-page: 1 year: 2014 ident: 10.1016/j.micromeso.2022.111733_bib26 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.08.015 – volume: 21 start-page: 1144 year: 2009 ident: 10.1016/j.micromeso.2022.111733_bib34 publication-title: Chem. Mater. doi: 10.1021/cm8012733 – volume: 140−141 start-page: 317 year: 2013 ident: 10.1016/j.micromeso.2022.111733_bib44 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.04.025 – volume: 26 start-page: 10147 year: 2010 ident: 10.1016/j.micromeso.2022.111733_bib35 publication-title: Langmuir doi: 10.1021/la100268q – volume: 2015 start-page: 972025 year: 2015 ident: 10.1016/j.micromeso.2022.111733_bib7 publication-title: J. Nanomater. doi: 10.1155/2015/972025 – volume: 16 start-page: 405 year: 1987 ident: 10.1016/j.micromeso.2022.111733_bib15 publication-title: Chem. Lett. doi: 10.1246/cl.1987.405 – volume: 115 start-page: 301 year: 1989 ident: 10.1016/j.micromeso.2022.111733_bib16 publication-title: J. Catal. doi: 10.1016/0021-9517(89)90034-1 – volume: 57 start-page: 299 year: 2005 ident: 10.1016/j.micromeso.2022.111733_bib23 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2004.11.010 – volume: 13 start-page: 978 year: 2011 ident: 10.1016/j.micromeso.2022.111733_bib47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C0CP01138J – volume: 210 start-page: 907 year: 2018 ident: 10.1016/j.micromeso.2022.111733_bib8a publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.085 – volume: 9 start-page: 2558 year: 2019 ident: 10.1016/j.micromeso.2022.111733_bib27 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04064 – volume: 8 start-page: 1470 year: 2018 ident: 10.1016/j.micromeso.2022.111733_bib13 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02476 – volume: 86 start-page: 63 year: 2003 ident: 10.1016/j.micromeso.2022.111733_bib49 publication-title: Catal. Lett. doi: 10.1023/A:1022659025068 |
SSID | ssj0017121 |
Score | 2.404445 |
Snippet | Ordered mesoporous SiO2 samples (SBA-15) with different pore sizes were prepared as carriers, and a series of catalysts (CoOx@SBA-15(X)) were synthesized to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111733 |
SubjectTerms | Catalyst CO oxidation Cobalt oxide Confinement effect SBA-15 |
Title | Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation |
URI | https://dx.doi.org/10.1016/j.micromeso.2022.111733 |
Volume | 333 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc1mk83GWwmW-mrFWugtJPuAiKbFRNCLv93ZPEoLQg-ekt3NsGF2MvtN-GYWoUuA3FrYPLBUoLnlSrhLRMwtkZj9jAeKlLkwjyM2nLp3M2_WQmGTC2NolbXvr3x66a3rnl6tzd4iTXsTQgHsc8ALJtvE80yiuev6xsqvfpY0D-KTOvcKPibz9BrH670kvancZAE6jnEfPqV_71Aru85gD-3WcBH3qzfaRy2VHaCdlSKCh2gcmpIeBZ5_pVJhCG81jEmcZthMCfAaYns8SccOjnNc0TfAw-Hyv813XmBArTgcl-LlKh2h6eDmJRxa9TEJlqCEFBYVkmkmmQPN2FPSFj4nTHmKA3IWroy1I7ViTFMp_CQBxMFj6NMwLJTNfXqM2tk8UycIa1hSIhIqNIQZieMHSrscMJIw1Yxd5nUQa1QTibqGuDnK4i1qyGKv0VKnkdFpVOm0g-yl4KIqo7FZ5LrRfbRmERE4-03Cp_8RPkPbplUxzc5Ru_j4VBcAPYqkW9pWF231w-eHJ3O9vR-OfgEt9dv6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPvfQazDPzaY3CZVYXwcVvIVkH5DSqtQU2n_f2SSKQsFDb8kOQ8K3m5lvNjOzAE9IuRU3WWDIQDHDFXiV8oQZPNX-jAXSKmphBkMaTd3XmTerQbiuhdFplZXtL216Ya2rkVaFZmuZZa2x5SDZZ8gXdLWJ53kH0NDdqbw6NNrdXjTc_Ezwrar8Cr8nrbCT5vVR5L3JlS4EtG1tQXzH-dtJbTmezimcVIyRtMuXOoOanJ_D8VYfwQsYhbqrR04W35mQBCNchTJBsjnRj0SGjeE9GWcjmyQrUmZwoJEjxdbNzyonSFxJOCrUi4m6hGnnZRJGRnVSgsEdy8oNhwuqqKA23iaeFCb3mUWlJxmSZ-6KRNlCSUqVI7ifpkg6WIJjCsVcmsx3rqA-X8zlNRCFs2rx1OEKI43U9gOpXIY0ieuGxi71mkDX0MS8aiOuT7N4j9f5Ym_xBtNYYxqXmDbB3Cguy04a-1We19jHO4siRnu_T_nmP8qPcBhNBv243x32buFIS8rEszuo559f8h6ZSJ4-VCvtF9h93RY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cobalt+oxide+confined+in+mesoporous+SiO2+as+effective+catalyst+for+CO+oxidation&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Liu%2C+Tao&rft.au=Ju%2C+Xiaoqiu&rft.au=Hu%2C+Zhixin&rft.au=Xie%2C+Rongrong&rft.date=2022-03-01&rft.issn=1387-1811&rft.volume=333&rft.spage=111733&rft_id=info:doi/10.1016%2Fj.micromeso.2022.111733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micromeso_2022_111733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon |