Parametric analysis, modeling and optimization of the process parameters in electric discharge machining of aluminium metal matrix composite
Optimizing electric discharge machining (EDM) for aluminum/SiC p metal matrix composites poses challenges due to intricate machine parameters and process complexity, impacting process economy and elevating product costs. The research aims to find the optimal combination of process parameters which i...
Saved in:
Published in | Engineering Research Express Vol. 6; no. 2; pp. 25542 - 25569 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimizing electric discharge machining (EDM) for aluminum/SiC p metal matrix composites poses challenges due to intricate machine parameters and process complexity, impacting process economy and elevating product costs. The research aims to find the optimal combination of process parameters which include pulse on-time, pulse current, duty cycle (%), gap voltage, sensitivity and flushing pressure for EDM of Al/SiC p -MMC using a copper electrode for the selected response factors such as material erosion rate and surface roughness, R a . The experiments were designed using the central composite design of response surface methodology and an advanced optimization technique known as Teaching–learning-based optimization (TLBO), is applied to find the optimal combination of process parameters to obtain maximum material erosion rate subject to the desired range of surface roughness (SR), R a . The combination of the high pulse on-time (i.e. 150 μ s) and high pulse current (i.e. 12A) results in high material removal rate with deep craters on the machined surface clearly visible in SEM images contrasting the minimized surface roughness at lower values of pulse on-time (50 μ s) and the pulse current (4A). Pulse on - time (T on ) is found to be the most significant factor for material erosion rate and surface roughness with percentage contribution of 70.86 and 54.9 respectively for optimization of the response. The regression models were developed at 95% confidence level for material removal rate and surface roughness with R 2 value of 0.93 and 0.95 respectively signifying high degree of accuracy in predicting the response. Confirmation tests conducted to check the adequacy of the established models revealed that the percentage error between the predicted and experimental responses is found to be within acceptable levels. Electron discharge machining of the aluminium metal matrix composite at the optimized conditions could provide economical aspect in the aerospace and automobile industry. |
---|---|
AbstractList | Optimizing electric discharge machining (EDM) for aluminum/SiC p metal matrix composites poses challenges due to intricate machine parameters and process complexity, impacting process economy and elevating product costs. The research aims to find the optimal combination of process parameters which include pulse on-time, pulse current, duty cycle (%), gap voltage, sensitivity and flushing pressure for EDM of Al/SiC p -MMC using a copper electrode for the selected response factors such as material erosion rate and surface roughness, R a . The experiments were designed using the central composite design of response surface methodology and an advanced optimization technique known as Teaching–learning-based optimization (TLBO), is applied to find the optimal combination of process parameters to obtain maximum material erosion rate subject to the desired range of surface roughness (SR), R a . The combination of the high pulse on-time (i.e. 150 μ s) and high pulse current (i.e. 12A) results in high material removal rate with deep craters on the machined surface clearly visible in SEM images contrasting the minimized surface roughness at lower values of pulse on-time (50 μ s) and the pulse current (4A). Pulse on - time (T on ) is found to be the most significant factor for material erosion rate and surface roughness with percentage contribution of 70.86 and 54.9 respectively for optimization of the response. The regression models were developed at 95% confidence level for material removal rate and surface roughness with R 2 value of 0.93 and 0.95 respectively signifying high degree of accuracy in predicting the response. Confirmation tests conducted to check the adequacy of the established models revealed that the percentage error between the predicted and experimental responses is found to be within acceptable levels. Electron discharge machining of the aluminium metal matrix composite at the optimized conditions could provide economical aspect in the aerospace and automobile industry. |
Author | Kumar, Harmesh Wadhwa, Amandeep Singh Kaushik, Arishu Akhai, Shalom |
Author_xml | – sequence: 1 givenname: Harmesh orcidid: 0000-0002-5360-8875 surname: Kumar fullname: Kumar, Harmesh organization: Punjab State Aeronautical Engineering College , Patiala, India – sequence: 2 givenname: Amandeep Singh orcidid: 0000-0002-7480-9254 surname: Wadhwa fullname: Wadhwa, Amandeep Singh organization: Panjab University University Institute of Engineering and Technology, Chandigarh, India – sequence: 3 givenname: Shalom orcidid: 0000-0002-7533-457X surname: Akhai fullname: Akhai, Shalom organization: Maharishi Markandeshwar (Deemed to be University) Department of Mechanical Engineering, MMEC, Mullana-Ambala, Haryana - 133207, India – sequence: 4 givenname: Arishu orcidid: 0000-0003-3330-5778 surname: Kaushik fullname: Kaushik, Arishu organization: Baba Banda Singh Bahadur Engineering College , Fatehgarh Sahib, India |
BookMark | eNp9kL1OwzAURi1UJErpzuiJqYHYThxnRBV_UiUYYLZs56Y1SuLITqWWZ-ChSRqEEEKdru_1d77hnKNJ4xpA6JLE1yQW4oZyRiLB8_RGFYlW-Qma_pwmv95naB6C1XHCOeEZyabo80V5VUPnrcGqUdU-2LDAtSugss26PxXYtZ2t7YfqrGuwK3G3Adx6ZyAE3I40-IBtg6ECc2gqbDAb5deAa2U2thmqelJV27pftjXuGVX1n316h42rWxdsBxfotFRVgPn3nKG3-7vX5WO0en54Wt6uIsMI6SKmEwGC0lTFSQFAIWEly2mpKdeCcEh5kRsBmdIlZCzLMy10bEBzobPE5IzNUDz2Gu9C8FDK1tta-b0ksRyEysGYHIzJUWiP8D-Isd1BSeeVrY6BixG0rpXvbut7yeFY_OqfOPid5JLKmKZpQmVblOwL-eac9A |
CODEN | ERENBL |
CitedBy_id | crossref_primary_10_1142_S0218625X25500477 |
Cites_doi | 10.1007/s11998-008-9144-2 10.1016/S0890-6955(01)00107-9 10.3390/ma14071656 10.1016/j.jmrt.2021.09.074 10.1016/j.compositesb.2021.109278 10.1016/j.iswa.2022.200163 10.1016/j.jestch.2015.01.007 10.1016/j.apm.2013.10.073 10.1016/j.jmapro.2020.09.010 10.1016/j.surfcoat.2021.127321 10.1016/j.ijmachtools.2022.103906 10.1115/1.4053522 10.1016/j.jmrt.2023.09.127 10.1007/s11831-019-09340-0 10.1080/14484846.2019.1701395 10.1088/2053-1591/ab1cd3 10.1016/j.compstruct.2020.112786 10.1504/IJMMM.2008.020961 10.1016/j.neucom.2023.126898 10.3390/su132413709 10.1016/j.measurement.2013.06.007 10.1080/10426914.2015.1025976 10.1179/0020296713Z.000000000161 10.1007/s40436-021-00371-0 10.1016/j.ijmachtools.2019.01.003 10.1088/2631-7990/ad16d6 10.1007/s11269-019-02204-z 10.1007/s00170-012-4115-2 10.1016/j.jksues.2020.05.002 10.1177/0954405416667402 10.1007/s00170-023-12630-4 10.1007/s00170-008-1825-6 10.1016/j.jmapro.2021.05.048 10.1016/j.ijmachtools.2021.103744 10.1007/978-981-15-2125-6_13 10.1016/j.porgcoat.2020.105847 10.1016/j.matpr.2021.10.495 10.1016/j.matpr.2022.04.610 10.1016/j.knosys.2019.07.007 10.3390/coatings11030296 10.1016/j.proeng.2012.06.086 10.1007/s00170-014-6445-8 10.1016/j.ijlmm.2022.04.003 10.1007/s11356-016-6457-z 10.1016/j.mspro.2014.07.090 10.1016/j.jestch.2018.12.002 10.1080/15560350802316702 10.1016/j.jestch.2016.07.003 10.1016/j.jmatprotec.2006.12.030 10.1016/j.jmatprotec.2020.116875 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/2631-8695/ad4ba9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-8695 |
ExternalDocumentID | 10_1088_2631_8695_ad4ba9 erxad4ba9 |
GroupedDBID | ABJNI ALMA_UNASSIGNED_HOLDINGS AAYXX CITATION |
ID | FETCH-LOGICAL-c311t-3b48e8225a04dee2e43f392fb26b816e56d9c8e7abfe73797b8b0ceb68b74c933 |
IEDL.DBID | O3W |
ISSN | 2631-8695 |
IngestDate | Thu Jul 03 08:30:21 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Tue Jun 17 22:16:46 EDT 2025 Tue Aug 20 22:17:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-3b48e8225a04dee2e43f392fb26b816e56d9c8e7abfe73797b8b0ceb68b74c933 |
Notes | ERX-103881.R2 |
ORCID | 0000-0002-5360-8875 0000-0002-7480-9254 0000-0003-3330-5778 0000-0002-7533-457X |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1088_2631_8695_ad4ba9 crossref_primary_10_1088_2631_8695_ad4ba9 iop_journals_10_1088_2631_8695_ad4ba9 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering Research Express |
PublicationTitleAbbrev | ERX |
PublicationTitleAlternate | Eng. Res. Express |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Mohanty (erxad4ba9bib33) 2017; 20 Venkatesan (erxad4ba9bib40) 2021; 13 Al-Amin (erxad4ba9bib36) 2021; 15 Prasad (erxad4ba9bib32) 2015; 77 Samal (erxad4ba9bib1) 2020; 59 Croll (erxad4ba9bib46) 2020; 148 Kumar (erxad4ba9bib41) 2019; 33 Han (erxad4ba9bib17) 2021; 288 Lin (erxad4ba9bib20) 2002; 42 Khanna (erxad4ba9bib47) 2010; 44 Laghari (erxad4ba9bib6) 2020; 27 Rao (erxad4ba9bib23) 2008; 209 Aich (erxad4ba9bib30) 2014; 38 Talla (erxad4ba9bib31) 2015; 18 Hakami (erxad4ba9bib53) 2017; 231 El-Taweel (erxad4ba9bib22) 2009; 44 Pimenov (erxad4ba9bib15) 2023; 129 Sathish (erxad4ba9bib48) 2021; 225 Kannan (erxad4ba9bib54) 2008; 3 Zhang (erxad4ba9bib42) 2020; 187 Assarzadeh (erxad4ba9bib25) 2012; 64 Guo (erxad4ba9bib4) 2022; 178 Patel (erxad4ba9bib24) 2008; 23 Walsh (erxad4ba9bib50) 2014; 92 Ibrahim (erxad4ba9bib56) 2016; 23 Priyaranjan (erxad4ba9bib12) 2020; 59 Milan (erxad4ba9bib29) 2014; 6 Jiang (erxad4ba9bib9) 2021; 68 Bains (erxad4ba9bib18) 2016 Khanna (erxad4ba9bib37) 2022; 5 Parvin (erxad4ba9bib57) 2020; 28 Verma (erxad4ba9bib3) 2023; 26 Puhan (erxad4ba9bib27) 2013; 46 Nguyen (erxad4ba9bib35) 2021; 33 Deshmukh (erxad4ba9bib5) 2022; 52 Phate (erxad4ba9bib34) 2019; 22 Diaz (erxad4ba9bib13) 2019; 139 Ali (erxad4ba9bib11) 2022; 24 Kumar (erxad4ba9bib39) 2020; 253 Sowrabh (erxad4ba9bib8) 2021; 8 Sorensen (erxad4ba9bib51) 2009; 6 Malakar (erxad4ba9bib44) 2020 Majumdar (erxad4ba9bib28) 2014; 229 Mondal (erxad4ba9bib38) 2022; 62 Hariharasakthisudhan (erxad4ba9bib2) 2019; 6 Pandey (erxad4ba9bib19) 2022; 20 Mandal (erxad4ba9bib21) 2007; 186 Du (erxad4ba9bib49) 2021; 420 Jawahir (erxad4ba9bib14) 2022; 144 Zhao (erxad4ba9bib7) 2024; 6 Fatehi (erxad4ba9bib45) 2023; 17 Mahmood (erxad4ba9bib52) 2021; 11 Elsheikh (erxad4ba9bib10) 2022; 10 Zhou (erxad4ba9bib43) 2023; 561 Grilli (erxad4ba9bib55) 2021; 14 Wang (erxad4ba9bib16) 2021; 166 Gopalakannan (erxad4ba9bib26) 2012; 38 |
References_xml | – volume: 6 start-page: 135 year: 2009 ident: erxad4ba9bib51 article-title: Anticorrosive coatings: a review publication-title: J. Coat. Technol. Res. doi: 10.1007/s11998-008-9144-2 – volume: 42 start-page: 27 year: 2002 ident: erxad4ba9bib20 article-title: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics publication-title: International Journal of Machine Tools & Manufacture doi: 10.1016/S0890-6955(01)00107-9 – volume: 14 start-page: 1656 year: 2021 ident: erxad4ba9bib55 article-title: Critical raw materials saving by protective coatings under extreme conditions: a review of last trends in alloys and coatings for aerospace engine applications publication-title: Materials doi: 10.3390/ma14071656 – volume: 8 start-page: 31 year: 2021 ident: erxad4ba9bib8 article-title: Reinforcements, production techniques and property analysis of AA7075 matrix composites− a critical review publication-title: Manuf. Rev. – volume: 15 start-page: 2557 year: 2021 ident: erxad4ba9bib36 article-title: Analysis of hybrid HA/CNT suspended-EDM process and multiple-objectives optimization to improve machining responses of 316L steel publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2021.09.074 – volume: 24 year: 2022 ident: erxad4ba9bib11 article-title: Residual stress in engineering materials: a review publication-title: Adv. Eng. Mater. – volume: 225 year: 2021 ident: erxad4ba9bib48 article-title: A critical review on functionally graded coatings: methods, properties, and challenges publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2021.109278 – volume: 44 year: 2010 ident: erxad4ba9bib47 article-title: Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices publication-title: J. Phys. D: Appl. Phys. – volume: 17 year: 2023 ident: erxad4ba9bib45 article-title: An advanced teaching–learning-based algorithm to solve unconstrained optimization problems publication-title: Intelligent Systems with Applications doi: 10.1016/j.iswa.2022.200163 – volume: 18 start-page: 369 year: 2015 ident: erxad4ba9bib31 article-title: Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2015.01.007 – volume: 38 start-page: 2800 year: 2014 ident: erxad4ba9bib30 article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization publication-title: Applied Mathematical Modeling doi: 10.1016/j.apm.2013.10.073 – volume: 59 start-page: 131 year: 2020 ident: erxad4ba9bib12 article-title: Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2020.09.010 – volume: 420 year: 2021 ident: erxad4ba9bib49 article-title: Microstructure and properties of plasma electrolytic oxidation coating on 55% SiCp/Al matrix composites publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127321 – volume: 178 year: 2022 ident: erxad4ba9bib4 article-title: Surface integrity and material removal mechanisms in high-speed grinding of Al/SiCp metal matrix composites publication-title: Int. J. Mach. Tools Manuf doi: 10.1016/j.ijmachtools.2022.103906 – volume: 144 start-page: 110801 year: 2022 ident: erxad4ba9bib14 article-title: A review of advances in modeling of conventional machining processes: from merchant to the present publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4053522 – volume: 28 start-page: 21831 year: 2020 ident: erxad4ba9bib57 article-title: A study on the solutions of environment pollutions and worker’s health problems caused by textile manufacturing operations publication-title: Biomed. J. Sci. Tech. Res – volume: 26 start-page: 8569 year: 2023 ident: erxad4ba9bib3 article-title: Exploring the intricacies of machine learningbased optimization of electric discharge machining on squeeze cast TiB2/AA6061 composites: insights from morphological, and microstructural aspects in the surface structure analysis of recast layer formation and worn-out analysis publication-title: Journal of materials research and technology doi: 10.1016/j.jmrt.2023.09.127 – volume: 27 start-page: 1363 year: 2020 ident: erxad4ba9bib6 article-title: A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-019-09340-0 – volume: 20 start-page: 245 year: 2022 ident: erxad4ba9bib19 article-title: Experimental modelling and optimisation of electrical arc machining of Al-B4C metal matrix composite publication-title: Australian Journal of Mechanical Engineering doi: 10.1080/14484846.2019.1701395 – volume: 6 year: 2019 ident: erxad4ba9bib2 article-title: Regression and Grey relational analysis on friction and wear behavior of AA6061/Al2O3/Si3N4/graphite hybrid nano composites publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab1cd3 – volume: 253 year: 2020 ident: erxad4ba9bib39 article-title: A new approach to control the delamination and thrust force during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112786 – volume: 3 start-page: 241 year: 2008 ident: erxad4ba9bib54 article-title: Effect of tool wear progression on cutting forces and surface quality during cutting metal matrix composites publication-title: Int. J. Mach. Mach. Mater. doi: 10.1504/IJMMM.2008.020961 – volume: 561 year: 2023 ident: erxad4ba9bib43 article-title: Advances in teaching–learning-based optimization algorithm: a comprehensive survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126898 – volume: 13 year: 2021 ident: erxad4ba9bib40 article-title: Re-allocation of distributed generations using available renewable potential based multi-criterion-multi-objective hybrid technique publication-title: Sustainability doi: 10.3390/su132413709 – volume: 46 start-page: 3581 year: 2013 ident: erxad4ba9bib27 article-title: A hybrid approach for multi-response optimization of non-conventional machining on AlSiCp-MMC publication-title: Measurement doi: 10.1016/j.measurement.2013.06.007 – start-page: 553 year: 2016 ident: erxad4ba9bib18 article-title: Fabrication and machining of metal matrix composites: a review publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2015.1025976 – volume: 59 start-page: 131 year: 2020 ident: erxad4ba9bib1 article-title: Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2020.09.010 – volume: 92 start-page: 83 year: 2014 ident: erxad4ba9bib50 article-title: A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology publication-title: Transactions of the IMF doi: 10.1179/0020296713Z.000000000161 – volume: 10 start-page: 287 year: 2022 ident: erxad4ba9bib10 article-title: A comprehensive review on residual stresses in turning publication-title: Advances in Manufacturing doi: 10.1007/s40436-021-00371-0 – volume: 139 start-page: 24 year: 2019 ident: erxad4ba9bib13 article-title: The new challenges of machining ceramic matrix composites (CMCs): review of surface integrity publication-title: Int. J. Mach. Tools Manuf doi: 10.1016/j.ijmachtools.2019.01.003 – volume: 209 start-page: 1512 year: 2008 ident: erxad4ba9bib23 article-title: Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm publication-title: J. Mater. Process. Technol. – volume: 229 start-page: 1481 year: 2014 ident: erxad4ba9bib28 article-title: Comparative study of three evolutionary algorithms coupled with neural network model for optimization of electric discharge machining process parameters publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. – volume: 6 year: 2024 ident: erxad4ba9bib7 article-title: Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis publication-title: International Journal of Extreme Manufacturing doi: 10.1088/2631-7990/ad16d6 – volume: 33 start-page: 1817 year: 2019 ident: erxad4ba9bib41 article-title: Optimization of cropping patterns using elitist-Jaya and elitist-TLBO algorithms publication-title: Water Resour. Manage. doi: 10.1007/s11269-019-02204-z – volume: 64 start-page: 1459 year: 2012 ident: erxad4ba9bib25 article-title: A dual response surface-desirability approach to process modeling and optimization of Al2O3 power-mixed electrical discharge machining (PMEDM) parameters publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4115-2 – volume: 33 start-page: 284 year: 2021 ident: erxad4ba9bib35 article-title: Optimizing process parameters in edm using low frequency vibration for material removal rate and surface roughness publication-title: Journal of King Saud University—Engineering Sciences doi: 10.1016/j.jksues.2020.05.002 – volume: 231 start-page: 739 year: 2017 ident: erxad4ba9bib53 article-title: Tool wear and surface quality of metal matrix composites due to machining: a review publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. doi: 10.1177/0954405416667402 – volume: 129 start-page: 4743 year: 2023 ident: erxad4ba9bib15 article-title: Review of improvement of machinability and surface integrity in machining on aluminum alloys publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-12630-4 – volume: 44 start-page: 100 year: 2009 ident: erxad4ba9bib22 article-title: Multi-response optimization of EDM with Al–Cu–Si–TiC P/M composite electrode publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1825-6 – volume: 68 start-page: 356 year: 2021 ident: erxad4ba9bib9 article-title: Modeling the superposition of residual stresses induced by cutting force and heat during the milling of thin-walled parts publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2021.05.048 – volume: 166 year: 2021 ident: erxad4ba9bib16 article-title: Advancements in material removal mechanism and surface integrity of high speed metal cutting: a review publication-title: Int. J. Mach. Tools Manuf doi: 10.1016/j.ijmachtools.2021.103744 – start-page: 303 year: 2020 ident: erxad4ba9bib44 article-title: TLBO based cluster-head selection for multi-objective optimization in wireless sensor networks doi: 10.1007/978-981-15-2125-6_13 – volume: 148 year: 2020 ident: erxad4ba9bib46 article-title: Surface roughness profile and its effect on coating adhesion and corrosion protection: a review publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2020.105847 – volume: 52 start-page: 1078 year: 2022 ident: erxad4ba9bib5 article-title: Machining of composite materials through advance machining process publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.10.495 – volume: 62 start-page: 6601 year: 2022 ident: erxad4ba9bib38 article-title: Comparative study on EDM process parameters optimization using BBO and ACO algorithms publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.04.610 – volume: 187 year: 2020 ident: erxad4ba9bib42 article-title: Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.07.007 – volume: 11 start-page: 296 year: 2021 ident: erxad4ba9bib52 article-title: Laser coatings via state-of-the-art additive manufacturing: a review publication-title: Coatings doi: 10.3390/coatings11030296 – volume: 38 start-page: 685 year: 2012 ident: erxad4ba9bib26 article-title: Modeling and optimization of EDM process parameters on machining of Al-7075-B4C MMC using RSM publication-title: Procedia Engineering ICMOC doi: 10.1016/j.proeng.2012.06.086 – volume: 77 start-page: 427 year: 2015 ident: erxad4ba9bib32 article-title: Empirical modeling and optimization of kerf width and wire wear ratio in wire electrical discharge machining publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6445-8 – volume: 5 start-page: 315 year: 2022 ident: erxad4ba9bib37 article-title: WEDM of Al/SiC/Ti composite: a hybrid approach of RSM-ARAS-TLBO algorithm publication-title: International Journal of Lightweight Materials and Manufacture doi: 10.1016/j.ijlmm.2022.04.003 – volume: 23 start-page: 13754 year: 2016 ident: erxad4ba9bib56 article-title: Environmental application of nanotechnology: air, soil, and water publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-016-6457-z – volume: 6 start-page: 741 year: 2014 ident: erxad4ba9bib29 article-title: Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel publication-title: Procedia Materials Science doi: 10.1016/j.mspro.2014.07.090 – volume: 22 start-page: 468 year: 2019 ident: erxad4ba9bib34 article-title: Modelling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2018.12.002 – volume: 23 start-page: 665 year: 2008 ident: erxad4ba9bib24 article-title: Understanding the role of weight percentage and size of silicon carbide particulate reinforcement on electro-discharge machining of aluminum-based composites publication-title: Mater. Manuf. Processes doi: 10.1080/15560350802316702 – volume: 20 start-page: 552 year: 2017 ident: erxad4ba9bib33 article-title: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2016.07.003 – volume: 186 start-page: 154 year: 2007 ident: erxad4ba9bib21 article-title: Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.12.030 – volume: 288 year: 2021 ident: erxad4ba9bib17 article-title: On understanding the specific cutting mechanisms governing the workpiece surface integrity in metal matrix composites machining publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116875 |
SSID | ssib046616717 ssib037096498 ssib052001916 |
Score | 2.2719634 |
Snippet | Optimizing electric discharge machining (EDM) for aluminum/SiC p metal matrix composites poses challenges due to intricate machine parameters and process... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 25542 |
SubjectTerms | electric discharge machining material erosion rate modeling surface roughness teaching-learning-based optimization |
Title | Parametric analysis, modeling and optimization of the process parameters in electric discharge machining of aluminium metal matrix composite |
URI | https://iopscience.iop.org/article/10.1088/2631-8695/ad4ba9 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEA6efelLUVrRWm0e7IPg6mWTzWbxSaSihVYfFH0LmewEBO9uuZ7gH-Ef7cxlzx9QpG-7SyaE2ezMN5uZb4TYIYiPqKAtEqiyMCqqApTCgqlAlIZYxcA_9H__sadX5tdNdbMkDp9rYSZdb_r36TITBWcV9glx7qC0WhXONhUT4EJoBuKDdtZx5HWurxebSdcEzs1LLGHIEdlXsQvTDVGssji6_NfEb1zVgJbzyvOcrIhPPWSUR3mBq2IJx5_F40XgtCrm15ehJxbZk_O-NuSM6FErJ2QNRn2ZpZwkSVBPdrkuQHZZmrCfvB3L3AuHZuIaXaZOQjmaJ1nyVCQZyILRzf1IkgwtZcS8_g-S09E55wu_iKuTn5fHp0XfWaGIWqlZocE4JGhQhaFpEUs0OhFQSlBacMpiZdsmOqwDJKx13dTgYBgRrIPaxEbrNbE8noxxXUibyGhgCLZOxkRTQzJg2yE0LnKzqnJDHCyU6GNPO87dL-78_PjbOc9q96x2n9W-IXafJbpMufHO2B_0Xnz_3f19Z9z3N-Nw-uCtLz1HVKb0XZu-_udMm-JjSbgmZ4t9E8uz6T1uES6ZwbYYnJ1fbM934RM7Dt_l |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEA5tBfFFFCvWX81DfSi43mWTzWYfRT1qq20fLPYtZLITELy7pV6hf4R_tDObnG1Bim-7S2YIs9mZL5uZb4TYI4iPqKCvEqi6MiqqCpTCiqlAlIbYxMA_9L8e24Mzc3jenJc-p2MtzHIorv8dXWai4GzCkhDnJrXVqnK2a5gAF0I3Gfq0Ke412lru3XCiv68XlG4JoJvr_YShYGRv7F-Ycoj2K-vjy38pvxWuNmlKN6LP7JF4WGCjfJ8n-Vhs4OKJ-H0aOLWKOfZlKOQib-XY24YCEj3q5ZI8wryUWsplkgT35JBrA-SQpQn_yR8LmfvhkCau02X6JJTzMdGSVZFkIC9GN5dzSTI0lTlz-19JTknnvC_cFmezT98-HFSlu0IVtVKrSoNxSPCgCVPTI9ZodCKwlKC24JTFxvZddNgGSNjqtmvBwTQiWAetiZ3WT8XWYrnAZ0LaRI4DQ7BtMiaaFpIB20-hc5EbVtU7YrI2oo-Fepw7YPz04xG4c57N7tnsPpt9R-z_lRgy7cYdY9_Qe_Hl2_t1x7jdW-Pw4spbX3veVZna0yp6_p-adsX9048z_-Xz8dEL8aAmmJOTx16KrdXFJb4imLKC1-NS_APCguLL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+analysis%2C+modeling+and+optimization+of+the+process+parameters+in+electric+discharge+machining+of+aluminium+metal+matrix+composite&rft.jtitle=Engineering+Research+Express&rft.au=Kumar%2C+Harmesh&rft.au=Wadhwa%2C+Amandeep+Singh&rft.au=Akhai%2C+Shalom&rft.au=Kaushik%2C+Arishu&rft.date=2024-06-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1088%2F2631-8695%2Fad4ba9&rft.externalDocID=erxad4ba9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |