Magnetic catalysis versus magnetic inhibition

We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former enhances the chiral-symmetry breaking at finite B according to the magnetic catalysis, while the latter suppresses the chiral condensa...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 110; no. 3; p. 031601
Main Authors Fukushima, Kenji, Hidaka, Yoshimasa
Format Journal Article
LanguageEnglish
Published United States 18.01.2013
Online AccessGet more information
ISSN1079-7114
DOI10.1103/PhysRevLett.110.031601

Cover

Loading…
Abstract We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former enhances the chiral-symmetry breaking at finite B according to the magnetic catalysis, while the latter suppresses the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model, we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the magnetic inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.
AbstractList We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former enhances the chiral-symmetry breaking at finite B according to the magnetic catalysis, while the latter suppresses the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model, we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the magnetic inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.
Author Hidaka, Yoshimasa
Fukushima, Kenji
Author_xml – sequence: 1
  givenname: Kenji
  surname: Fukushima
  fullname: Fukushima, Kenji
  organization: Department of Physics, Keio University, Kanagawa 223-8522, Japan
– sequence: 2
  givenname: Yoshimasa
  surname: Hidaka
  fullname: Hidaka, Yoshimasa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23373911$$D View this record in MEDLINE/PubMed
BookMark eNo1jttKAzEURYMo9qK_UOYHUnNyMpPJoxS1woil6HPJ5GIjnbRM0sL8vRbt04a9Ye01IddxHx0hM2BzAIYPq-2Q1u7UuJzPxZwhVAyuyBiYVFQCiBGZpPTNGANe1bdkxBElKoAxoW_6K7ocTGF01rshhVScXJ-OqeguS4jb0IYc9vGO3Hi9S-7-P6fk8_npY7GkzfvL6-KxoQYBMkV0qJAJb5QsUYP9tVRaeoH6_Iue1xbAWi9KwZwBXlYejBQSUKhatXxKZn_cw7HtnN0c-tDpfthcvPkP20NGSQ
CitedBy_id crossref_primary_10_1016_j_physletb_2016_03_066
crossref_primary_10_1007_JHEP02_2017_030
crossref_primary_10_1016_j_ppnp_2019_04_001
crossref_primary_10_1142_S0217732314500588
crossref_primary_10_1103_PhysRevC_102_015206
crossref_primary_10_1007_JHEP01_2015_129
crossref_primary_10_1103_PhysRevD_100_014020
crossref_primary_10_1140_epja_s10050_021_00519_3
crossref_primary_10_1103_PhysRevD_94_096003
crossref_primary_10_1140_epjc_s10052_023_12309_w
crossref_primary_10_1103_PhysRevD_87_106002
crossref_primary_10_1140_epja_s10050_021_00629_y
crossref_primary_10_1016_j_physletb_2016_02_017
crossref_primary_10_1016_j_poly_2025_117424
crossref_primary_10_1007_s11030_024_11030_4
crossref_primary_10_1103_PhysRevD_89_054029
crossref_primary_10_1103_PhysRevC_91_065205
crossref_primary_10_1140_epjc_s10052_020_8110_8
crossref_primary_10_1103_PhysRevC_90_025203
crossref_primary_10_1103_PhysRevD_102_014032
crossref_primary_10_1140_epjc_s10052_016_4123_8
crossref_primary_10_1103_PhysRevB_110_L081101
crossref_primary_10_1007_JHEP03_2014_009
crossref_primary_10_1088_1742_6596_761_1_012066
crossref_primary_10_1016_j_physletb_2013_02_024
crossref_primary_10_1103_PhysRevD_96_066032
crossref_primary_10_1016_j_ppnp_2023_104093
crossref_primary_10_1103_PhysRevD_92_096011
crossref_primary_10_1088_1674_1137_ac5c2d
crossref_primary_10_1103_PhysRevD_95_076008
crossref_primary_10_1103_PhysRevD_102_086020
crossref_primary_10_1016_j_physletb_2014_05_073
crossref_primary_10_1103_PhysRevD_93_076007
crossref_primary_10_1103_PhysRevD_91_014017
crossref_primary_10_1140_epja_s10050_021_00354_6
crossref_primary_10_1103_PhysRevD_100_074024
crossref_primary_10_1103_PhysRevD_94_036007
crossref_primary_10_1007_JHEP07_2019_007
crossref_primary_10_3390_sym15061213
crossref_primary_10_1103_PhysRevD_96_114026
crossref_primary_10_1103_PhysRevD_97_011501
crossref_primary_10_1103_PhysRevD_90_044024
crossref_primary_10_1007_JHEP04_2014_187
crossref_primary_10_1016_j_physletb_2016_05_018
crossref_primary_10_1088_0034_4885_79_7_076302
crossref_primary_10_1016_j_physrep_2015_02_003
crossref_primary_10_1103_PhysRevD_106_034018
crossref_primary_10_1016_j_physletb_2020_135477
crossref_primary_10_1103_PhysRevLett_117_102301
crossref_primary_10_1103_PhysRevD_92_016002
crossref_primary_10_1103_PhysRevLett_117_192302
crossref_primary_10_1016_j_physletb_2013_09_023
crossref_primary_10_1103_PhysRevD_110_054002
crossref_primary_10_1103_PhysRevD_88_065030
crossref_primary_10_1103_PhysRevD_94_113006
crossref_primary_10_1103_PhysRevD_88_054009
crossref_primary_10_1016_j_ppnp_2023_104068
crossref_primary_10_1103_PhysRevD_105_086011
crossref_primary_10_1103_PhysRevD_90_056005
crossref_primary_10_1007_JHEP10_2022_053
crossref_primary_10_1103_PhysRevD_91_034031
crossref_primary_10_1103_PhysRevD_93_016007
crossref_primary_10_1103_PhysRevD_89_094023
crossref_primary_10_1103_PhysRevD_98_054509
crossref_primary_10_1103_PhysRevD_91_045025
crossref_primary_10_1088_1742_6596_630_1_012046
crossref_primary_10_1007_JHEP03_2024_126
crossref_primary_10_1016_j_physletb_2023_138317
crossref_primary_10_1103_PhysRevD_89_085034
crossref_primary_10_1103_PhysRevLett_114_181601
crossref_primary_10_1140_epja_i2016_16266_y
crossref_primary_10_1103_PhysRevD_110_034024
crossref_primary_10_1140_epjc_s10052_021_09311_5
crossref_primary_10_1016_j_physletb_2017_02_002
crossref_primary_10_1016_j_physletb_2014_02_028
crossref_primary_10_1103_PhysRevD_96_054032
crossref_primary_10_1103_PhysRevD_98_034003
crossref_primary_10_1103_PhysRevD_95_054013
crossref_primary_10_1140_epja_i2018_12485_6
crossref_primary_10_1103_PhysRevD_106_094017
crossref_primary_10_1103_PhysRevD_99_074029
crossref_primary_10_1103_PhysRevD_106_016005
crossref_primary_10_1016_j_nuclphysb_2022_115862
crossref_primary_10_1103_PhysRevD_89_114502
crossref_primary_10_1007_JHEP07_2013_165
crossref_primary_10_1007_JHEP07_2015_173
crossref_primary_10_1103_PhysRevD_108_054001
crossref_primary_10_1103_PhysRevD_104_014505
crossref_primary_10_1093_ptep_ptz023
crossref_primary_10_1103_PhysRevC_99_035210
crossref_primary_10_1103_PhysRevD_91_074011
crossref_primary_10_1088_0253_6102_64_4_433
crossref_primary_10_1103_PhysRevD_97_034014
crossref_primary_10_1016_j_nuclphysa_2016_03_016
crossref_primary_10_1103_PhysRevD_96_074019
crossref_primary_10_1103_PhysRevD_97_054021
crossref_primary_10_1103_PhysRevD_89_016002
crossref_primary_10_1140_epjc_s10052_025_13952_1
crossref_primary_10_1007_JHEP04_2020_162
crossref_primary_10_1103_PhysRevD_91_054006
crossref_primary_10_1007_JHEP04_2013_112
crossref_primary_10_1103_PhysRevD_95_034013
crossref_primary_10_1103_PhysRevD_94_074016
crossref_primary_10_1007_JHEP01_2014_118
crossref_primary_10_1103_PhysRevD_94_054020
crossref_primary_10_1103_PhysRevD_98_054006
crossref_primary_10_1103_PhysRevD_92_016006
crossref_primary_10_1103_PhysRevD_96_114012
crossref_primary_10_1051_epjconf_201713713012
crossref_primary_10_1088_1742_6596_432_1_012004
crossref_primary_10_1103_PhysRevD_89_014508
crossref_primary_10_1103_PhysRevD_92_065011
crossref_primary_10_1103_PhysRevD_92_105018
crossref_primary_10_1103_PhysRevD_103_076015
crossref_primary_10_1103_PhysRevD_108_076020
crossref_primary_10_1103_PhysRevD_91_116010
crossref_primary_10_1103_PhysRevD_110_014016
crossref_primary_10_1103_PhysRevD_89_085011
crossref_primary_10_1103_PhysRevD_93_045013
crossref_primary_10_1140_epja_s10050_021_00505_9
crossref_primary_10_1103_PhysRevD_97_014014
crossref_primary_10_1103_RevModPhys_88_025001
crossref_primary_10_1103_PhysRevD_105_034003
crossref_primary_10_1140_epja_i2017_12320_8
crossref_primary_10_1088_1674_1137_abcfad
crossref_primary_10_1103_PhysRevD_90_074009
crossref_primary_10_1103_PhysRevD_94_054019
crossref_primary_10_1103_PhysRevD_110_066010
crossref_primary_10_1103_PhysRevD_97_054035
crossref_primary_10_1142_S021773231750105X
crossref_primary_10_1103_PhysRevD_89_036006
crossref_primary_10_1103_PhysRevD_93_014010
crossref_primary_10_1103_PhysRevD_93_074028
crossref_primary_10_1088_0253_6102_64_3_325
crossref_primary_10_1007_s41365_016_0178_3
crossref_primary_10_1103_PhysRevD_92_036008
crossref_primary_10_1103_PhysRevD_100_054014
crossref_primary_10_1103_PhysRevD_94_074043
crossref_primary_10_1016_j_physletb_2016_05_058
crossref_primary_10_1088_1742_6596_1024_1_012042
crossref_primary_10_1140_epja_s10050_021_00461_4
crossref_primary_10_1103_PhysRevD_88_025016
crossref_primary_10_1103_PhysRevD_93_085019
crossref_primary_10_1007_JHEP12_2024_096
crossref_primary_10_1103_PhysRevD_90_105030
crossref_primary_10_1016_j_physletb_2023_138228
crossref_primary_10_1142_S0217732324501499
crossref_primary_10_1140_epjc_s10052_022_11166_3
crossref_primary_10_1088_1674_1137_ac7201
crossref_primary_10_1140_epjp_s13360_024_05925_2
crossref_primary_10_1140_epja_s10050_021_00570_0
crossref_primary_10_1103_PhysRevD_93_125004
crossref_primary_10_1103_PhysRevD_103_056009
crossref_primary_10_1103_PhysRevD_107_086016
crossref_primary_10_1103_PhysRevD_94_074034
crossref_primary_10_1103_PhysRevD_92_036012
crossref_primary_10_1103_PhysRevD_91_016002
crossref_primary_10_1103_PhysRevD_97_014022
crossref_primary_10_1103_PhysRevD_88_056008
crossref_primary_10_1103_PhysRevD_91_016007
crossref_primary_10_1140_epjs_s11734_021_00023_1
crossref_primary_10_1007_JHEP02_2017_042
crossref_primary_10_1103_PhysRevD_94_074030
crossref_primary_10_1103_PhysRevD_102_114035
crossref_primary_10_1007_JHEP11_2013_168
crossref_primary_10_1103_PhysRevD_89_116011
crossref_primary_10_1103_PhysRevD_104_114512
crossref_primary_10_1016_j_physletb_2019_135184
crossref_primary_10_1007_JHEP03_2013_033
crossref_primary_10_1140_epja_i2016_16017_2
crossref_primary_10_1051_epjconf_201612900036
crossref_primary_10_1016_j_physletb_2015_12_063
crossref_primary_10_1103_PhysRevD_103_086021
crossref_primary_10_1103_PhysRevD_89_056013
crossref_primary_10_1103_PhysRevD_97_034026
crossref_primary_10_1103_PhysRevD_96_034004
crossref_primary_10_1088_1674_1137_acc641
crossref_primary_10_1103_PhysRevD_93_104052
crossref_primary_10_1140_epja_i2015_15045_8
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.110.031601
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 23373911
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ABSSX
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c311t-33e39304fc9753a1d1039a7f43a37393f28d11ddf4540ec1256f1c747134989b2
IngestDate Mon Jul 21 06:00:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-33e39304fc9753a1d1039a7f43a37393f28d11ddf4540ec1256f1c747134989b2
PMID 23373911
ParticipantIDs pubmed_primary_23373911
PublicationCentury 2000
PublicationDate 2013-Jan-18
PublicationDateYYYYMMDD 2013-01-18
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2013
SSID ssj0001268
Score 2.5226464
Snippet We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The...
SourceID pubmed
SourceType Index Database
StartPage 031601
Title Magnetic catalysis versus magnetic inhibition
URI https://www.ncbi.nlm.nih.gov/pubmed/23373911
Volume 110
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9OEXwRv7-lD76NaLN0SfsoogxBEZmgTyNpG1d1dbDNB_9679K0HXOCCiWUpA3X-7VH7prfHSEnTISpFtJQoSNDAxlENGxLTZNESZ5wLX1bpvPmVnQeguvH9mNdBNGyS8b6NP6cyyv5D6rQB7giS_YPyFaTQgecA77QAsLQ_grjG_WcIwmxaYMwNrcI7rKYjJqDciTL-5nOKu27ZehdiY5jrrxZUk9NBZm8Tkb9bKAcc-clqyPUiXq13U_v9oqRmo4bYA0HRp2pSwtb58uISlZwOCtj6DaZZtPOsjVt8PWLIu7w3er6mP0BRb9PP5CGhF2n328A7Q0HFosW55JH7BejM9mwy6EGaYBfgIVOMTqzUsbUROhY4CDS2XyBMP2zm2TGlbBLiu4aWXW-gHdeALtOFtJ8gywX2Iw2CS3h9Sp4vQJer4TXq-HdIg9Xl92LDnXVLWjMGRtTzlMecT8wMXKbFUvwp7ySJuAKpeOmFSaMJYnBHIlpDAtRYViMMQQeRGGkW9tkMX_P013iCfCbZRi0uebgbYex0nhEvvGFCk3g75Gd4jl7wyKFSa_UwP6PIwdkpX5rDsmSgW8mPYIF2FgfW61_ARwTLo4
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+catalysis+versus+magnetic+inhibition&rft.jtitle=Physical+review+letters&rft.au=Fukushima%2C+Kenji&rft.au=Hidaka%2C+Yoshimasa&rft.date=2013-01-18&rft.eissn=1079-7114&rft.volume=110&rft.issue=3&rft.spage=031601&rft_id=info:doi/10.1103%2FPhysRevLett.110.031601&rft_id=info%3Apmid%2F23373911&rft_id=info%3Apmid%2F23373911&rft.externalDocID=23373911