Magnetic catalysis versus magnetic inhibition
We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former enhances the chiral-symmetry breaking at finite B according to the magnetic catalysis, while the latter suppresses the chiral condensa...
Saved in:
Published in | Physical review letters Vol. 110; no. 3; p. 031601 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
18.01.2013
|
Online Access | Get more information |
ISSN | 1079-7114 |
DOI | 10.1103/PhysRevLett.110.031601 |
Cover
Loading…
Abstract | We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former enhances the chiral-symmetry breaking at finite B according to the magnetic catalysis, while the latter suppresses the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model, we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the magnetic inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B. |
---|---|
AbstractList | We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former enhances the chiral-symmetry breaking at finite B according to the magnetic catalysis, while the latter suppresses the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model, we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the magnetic inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B. |
Author | Hidaka, Yoshimasa Fukushima, Kenji |
Author_xml | – sequence: 1 givenname: Kenji surname: Fukushima fullname: Fukushima, Kenji organization: Department of Physics, Keio University, Kanagawa 223-8522, Japan – sequence: 2 givenname: Yoshimasa surname: Hidaka fullname: Hidaka, Yoshimasa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23373911$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jttKAzEURYMo9qK_UOYHUnNyMpPJoxS1woil6HPJ5GIjnbRM0sL8vRbt04a9Ye01IddxHx0hM2BzAIYPq-2Q1u7UuJzPxZwhVAyuyBiYVFQCiBGZpPTNGANe1bdkxBElKoAxoW_6K7ocTGF01rshhVScXJ-OqeguS4jb0IYc9vGO3Hi9S-7-P6fk8_npY7GkzfvL6-KxoQYBMkV0qJAJb5QsUYP9tVRaeoH6_Iue1xbAWi9KwZwBXlYejBQSUKhatXxKZn_cw7HtnN0c-tDpfthcvPkP20NGSQ |
CitedBy_id | crossref_primary_10_1016_j_physletb_2016_03_066 crossref_primary_10_1007_JHEP02_2017_030 crossref_primary_10_1016_j_ppnp_2019_04_001 crossref_primary_10_1142_S0217732314500588 crossref_primary_10_1103_PhysRevC_102_015206 crossref_primary_10_1007_JHEP01_2015_129 crossref_primary_10_1103_PhysRevD_100_014020 crossref_primary_10_1140_epja_s10050_021_00519_3 crossref_primary_10_1103_PhysRevD_94_096003 crossref_primary_10_1140_epjc_s10052_023_12309_w crossref_primary_10_1103_PhysRevD_87_106002 crossref_primary_10_1140_epja_s10050_021_00629_y crossref_primary_10_1016_j_physletb_2016_02_017 crossref_primary_10_1016_j_poly_2025_117424 crossref_primary_10_1007_s11030_024_11030_4 crossref_primary_10_1103_PhysRevD_89_054029 crossref_primary_10_1103_PhysRevC_91_065205 crossref_primary_10_1140_epjc_s10052_020_8110_8 crossref_primary_10_1103_PhysRevC_90_025203 crossref_primary_10_1103_PhysRevD_102_014032 crossref_primary_10_1140_epjc_s10052_016_4123_8 crossref_primary_10_1103_PhysRevB_110_L081101 crossref_primary_10_1007_JHEP03_2014_009 crossref_primary_10_1088_1742_6596_761_1_012066 crossref_primary_10_1016_j_physletb_2013_02_024 crossref_primary_10_1103_PhysRevD_96_066032 crossref_primary_10_1016_j_ppnp_2023_104093 crossref_primary_10_1103_PhysRevD_92_096011 crossref_primary_10_1088_1674_1137_ac5c2d crossref_primary_10_1103_PhysRevD_95_076008 crossref_primary_10_1103_PhysRevD_102_086020 crossref_primary_10_1016_j_physletb_2014_05_073 crossref_primary_10_1103_PhysRevD_93_076007 crossref_primary_10_1103_PhysRevD_91_014017 crossref_primary_10_1140_epja_s10050_021_00354_6 crossref_primary_10_1103_PhysRevD_100_074024 crossref_primary_10_1103_PhysRevD_94_036007 crossref_primary_10_1007_JHEP07_2019_007 crossref_primary_10_3390_sym15061213 crossref_primary_10_1103_PhysRevD_96_114026 crossref_primary_10_1103_PhysRevD_97_011501 crossref_primary_10_1103_PhysRevD_90_044024 crossref_primary_10_1007_JHEP04_2014_187 crossref_primary_10_1016_j_physletb_2016_05_018 crossref_primary_10_1088_0034_4885_79_7_076302 crossref_primary_10_1016_j_physrep_2015_02_003 crossref_primary_10_1103_PhysRevD_106_034018 crossref_primary_10_1016_j_physletb_2020_135477 crossref_primary_10_1103_PhysRevLett_117_102301 crossref_primary_10_1103_PhysRevD_92_016002 crossref_primary_10_1103_PhysRevLett_117_192302 crossref_primary_10_1016_j_physletb_2013_09_023 crossref_primary_10_1103_PhysRevD_110_054002 crossref_primary_10_1103_PhysRevD_88_065030 crossref_primary_10_1103_PhysRevD_94_113006 crossref_primary_10_1103_PhysRevD_88_054009 crossref_primary_10_1016_j_ppnp_2023_104068 crossref_primary_10_1103_PhysRevD_105_086011 crossref_primary_10_1103_PhysRevD_90_056005 crossref_primary_10_1007_JHEP10_2022_053 crossref_primary_10_1103_PhysRevD_91_034031 crossref_primary_10_1103_PhysRevD_93_016007 crossref_primary_10_1103_PhysRevD_89_094023 crossref_primary_10_1103_PhysRevD_98_054509 crossref_primary_10_1103_PhysRevD_91_045025 crossref_primary_10_1088_1742_6596_630_1_012046 crossref_primary_10_1007_JHEP03_2024_126 crossref_primary_10_1016_j_physletb_2023_138317 crossref_primary_10_1103_PhysRevD_89_085034 crossref_primary_10_1103_PhysRevLett_114_181601 crossref_primary_10_1140_epja_i2016_16266_y crossref_primary_10_1103_PhysRevD_110_034024 crossref_primary_10_1140_epjc_s10052_021_09311_5 crossref_primary_10_1016_j_physletb_2017_02_002 crossref_primary_10_1016_j_physletb_2014_02_028 crossref_primary_10_1103_PhysRevD_96_054032 crossref_primary_10_1103_PhysRevD_98_034003 crossref_primary_10_1103_PhysRevD_95_054013 crossref_primary_10_1140_epja_i2018_12485_6 crossref_primary_10_1103_PhysRevD_106_094017 crossref_primary_10_1103_PhysRevD_99_074029 crossref_primary_10_1103_PhysRevD_106_016005 crossref_primary_10_1016_j_nuclphysb_2022_115862 crossref_primary_10_1103_PhysRevD_89_114502 crossref_primary_10_1007_JHEP07_2013_165 crossref_primary_10_1007_JHEP07_2015_173 crossref_primary_10_1103_PhysRevD_108_054001 crossref_primary_10_1103_PhysRevD_104_014505 crossref_primary_10_1093_ptep_ptz023 crossref_primary_10_1103_PhysRevC_99_035210 crossref_primary_10_1103_PhysRevD_91_074011 crossref_primary_10_1088_0253_6102_64_4_433 crossref_primary_10_1103_PhysRevD_97_034014 crossref_primary_10_1016_j_nuclphysa_2016_03_016 crossref_primary_10_1103_PhysRevD_96_074019 crossref_primary_10_1103_PhysRevD_97_054021 crossref_primary_10_1103_PhysRevD_89_016002 crossref_primary_10_1140_epjc_s10052_025_13952_1 crossref_primary_10_1007_JHEP04_2020_162 crossref_primary_10_1103_PhysRevD_91_054006 crossref_primary_10_1007_JHEP04_2013_112 crossref_primary_10_1103_PhysRevD_95_034013 crossref_primary_10_1103_PhysRevD_94_074016 crossref_primary_10_1007_JHEP01_2014_118 crossref_primary_10_1103_PhysRevD_94_054020 crossref_primary_10_1103_PhysRevD_98_054006 crossref_primary_10_1103_PhysRevD_92_016006 crossref_primary_10_1103_PhysRevD_96_114012 crossref_primary_10_1051_epjconf_201713713012 crossref_primary_10_1088_1742_6596_432_1_012004 crossref_primary_10_1103_PhysRevD_89_014508 crossref_primary_10_1103_PhysRevD_92_065011 crossref_primary_10_1103_PhysRevD_92_105018 crossref_primary_10_1103_PhysRevD_103_076015 crossref_primary_10_1103_PhysRevD_108_076020 crossref_primary_10_1103_PhysRevD_91_116010 crossref_primary_10_1103_PhysRevD_110_014016 crossref_primary_10_1103_PhysRevD_89_085011 crossref_primary_10_1103_PhysRevD_93_045013 crossref_primary_10_1140_epja_s10050_021_00505_9 crossref_primary_10_1103_PhysRevD_97_014014 crossref_primary_10_1103_RevModPhys_88_025001 crossref_primary_10_1103_PhysRevD_105_034003 crossref_primary_10_1140_epja_i2017_12320_8 crossref_primary_10_1088_1674_1137_abcfad crossref_primary_10_1103_PhysRevD_90_074009 crossref_primary_10_1103_PhysRevD_94_054019 crossref_primary_10_1103_PhysRevD_110_066010 crossref_primary_10_1103_PhysRevD_97_054035 crossref_primary_10_1142_S021773231750105X crossref_primary_10_1103_PhysRevD_89_036006 crossref_primary_10_1103_PhysRevD_93_014010 crossref_primary_10_1103_PhysRevD_93_074028 crossref_primary_10_1088_0253_6102_64_3_325 crossref_primary_10_1007_s41365_016_0178_3 crossref_primary_10_1103_PhysRevD_92_036008 crossref_primary_10_1103_PhysRevD_100_054014 crossref_primary_10_1103_PhysRevD_94_074043 crossref_primary_10_1016_j_physletb_2016_05_058 crossref_primary_10_1088_1742_6596_1024_1_012042 crossref_primary_10_1140_epja_s10050_021_00461_4 crossref_primary_10_1103_PhysRevD_88_025016 crossref_primary_10_1103_PhysRevD_93_085019 crossref_primary_10_1007_JHEP12_2024_096 crossref_primary_10_1103_PhysRevD_90_105030 crossref_primary_10_1016_j_physletb_2023_138228 crossref_primary_10_1142_S0217732324501499 crossref_primary_10_1140_epjc_s10052_022_11166_3 crossref_primary_10_1088_1674_1137_ac7201 crossref_primary_10_1140_epjp_s13360_024_05925_2 crossref_primary_10_1140_epja_s10050_021_00570_0 crossref_primary_10_1103_PhysRevD_93_125004 crossref_primary_10_1103_PhysRevD_103_056009 crossref_primary_10_1103_PhysRevD_107_086016 crossref_primary_10_1103_PhysRevD_94_074034 crossref_primary_10_1103_PhysRevD_92_036012 crossref_primary_10_1103_PhysRevD_91_016002 crossref_primary_10_1103_PhysRevD_97_014022 crossref_primary_10_1103_PhysRevD_88_056008 crossref_primary_10_1103_PhysRevD_91_016007 crossref_primary_10_1140_epjs_s11734_021_00023_1 crossref_primary_10_1007_JHEP02_2017_042 crossref_primary_10_1103_PhysRevD_94_074030 crossref_primary_10_1103_PhysRevD_102_114035 crossref_primary_10_1007_JHEP11_2013_168 crossref_primary_10_1103_PhysRevD_89_116011 crossref_primary_10_1103_PhysRevD_104_114512 crossref_primary_10_1016_j_physletb_2019_135184 crossref_primary_10_1007_JHEP03_2013_033 crossref_primary_10_1140_epja_i2016_16017_2 crossref_primary_10_1051_epjconf_201612900036 crossref_primary_10_1016_j_physletb_2015_12_063 crossref_primary_10_1103_PhysRevD_103_086021 crossref_primary_10_1103_PhysRevD_89_056013 crossref_primary_10_1103_PhysRevD_97_034026 crossref_primary_10_1103_PhysRevD_96_034004 crossref_primary_10_1088_1674_1137_acc641 crossref_primary_10_1103_PhysRevD_93_104052 crossref_primary_10_1140_epja_i2015_15045_8 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.110.031601 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 23373911 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ABSSX ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD F5P MVM N9A NPBMV NPM P0- P2P ROL S7W SJN TN5 UBE WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c311t-33e39304fc9753a1d1039a7f43a37393f28d11ddf4540ec1256f1c747134989b2 |
IngestDate | Mon Jul 21 06:00:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c311t-33e39304fc9753a1d1039a7f43a37393f28d11ddf4540ec1256f1c747134989b2 |
PMID | 23373911 |
ParticipantIDs | pubmed_primary_23373911 |
PublicationCentury | 2000 |
PublicationDate | 2013-Jan-18 |
PublicationDateYYYYMMDD | 2013-01-18 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2013 |
SSID | ssj0001268 |
Score | 2.5226464 |
Snippet | We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 031601 |
Title | Magnetic catalysis versus magnetic inhibition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23373911 |
Volume | 110 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9OEXwRv7-lD76NaLN0SfsoogxBEZmgTyNpG1d1dbDNB_9679K0HXOCCiWUpA3X-7VH7prfHSEnTISpFtJQoSNDAxlENGxLTZNESZ5wLX1bpvPmVnQeguvH9mNdBNGyS8b6NP6cyyv5D6rQB7giS_YPyFaTQgecA77QAsLQ_grjG_WcIwmxaYMwNrcI7rKYjJqDciTL-5nOKu27ZehdiY5jrrxZUk9NBZm8Tkb9bKAcc-clqyPUiXq13U_v9oqRmo4bYA0HRp2pSwtb58uISlZwOCtj6DaZZtPOsjVt8PWLIu7w3er6mP0BRb9PP5CGhF2n328A7Q0HFosW55JH7BejM9mwy6EGaYBfgIVOMTqzUsbUROhY4CDS2XyBMP2zm2TGlbBLiu4aWXW-gHdeALtOFtJ8gywX2Iw2CS3h9Sp4vQJer4TXq-HdIg9Xl92LDnXVLWjMGRtTzlMecT8wMXKbFUvwp7ySJuAKpeOmFSaMJYnBHIlpDAtRYViMMQQeRGGkW9tkMX_P013iCfCbZRi0uebgbYex0nhEvvGFCk3g75Gd4jl7wyKFSa_UwP6PIwdkpX5rDsmSgW8mPYIF2FgfW61_ARwTLo4 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+catalysis+versus+magnetic+inhibition&rft.jtitle=Physical+review+letters&rft.au=Fukushima%2C+Kenji&rft.au=Hidaka%2C+Yoshimasa&rft.date=2013-01-18&rft.eissn=1079-7114&rft.volume=110&rft.issue=3&rft.spage=031601&rft_id=info:doi/10.1103%2FPhysRevLett.110.031601&rft_id=info%3Apmid%2F23373911&rft_id=info%3Apmid%2F23373911&rft.externalDocID=23373911 |