Method for exploratory cluster analysis and visualisation of single-trial ERP ensembles

The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. We propose a complete pipeline for the cluster analysis of ERP...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 250; pp. 22 - 33
Main Authors Williams, N.J., Nasuto, S.J., Saddy, J.D.
Format Journal Article
LanguageEnglish
Published Netherlands 30.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. We propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). After validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership. Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation. Given the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging.
AbstractList The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. We propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). After validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership. Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation. Given the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging.
The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data.BACKGROUNDThe validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data.We propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA).NEW METHODWe propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA).After validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.RESULTSAfter validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation.COMPARISON WITH EXISTING METHOD(S)Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation.Given the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging.CONCLUSIONSGiven the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging.
Author Nasuto, S.J.
Williams, N.J.
Saddy, J.D.
Author_xml – sequence: 1
  givenname: N.J.
  surname: Williams
  fullname: Williams, N.J.
– sequence: 2
  givenname: S.J.
  surname: Nasuto
  fullname: Nasuto, S.J.
– sequence: 3
  givenname: J.D.
  surname: Saddy
  fullname: Saddy, J.D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25698176$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtO5DAQRS0EgubxC8jL2SRjO4kdS7NBiMdIjEAIBDvLsSuMW07cYzuI_nvSQG_YzKpqce4t1TlEu2MYAaFTSkpKKP-5LJcjTAPkvyUjtCkJKwkRO2hBW8EKLtrnXbSYwaYgTJADdJjSkhBSS8L30QFruGyp4Av09GeuCBb3IWJ4W_kQdQ5xjY2fUoaI9aj9Ork0Lxa_ujRp75LOLow49Di58cVDkaPTHl_c32EYEwydh3SM9nrtE5x8zSP0eHnxcH5d3Nxe_T4_uylMRWkuqqptOrC15rqrZc-tNqTpWttIW0nK6s4IBrITVtSWS1NZybQ0tmq57A0VpjpCPz57VzH8myBlNbhkwHs9QpiSorxtN2-LekZPv9CpG8CqVXSDjmu1lTEDvz4BE0NKEXplXP74NUftvKJEbdyrpdq6Vxv3ijA1u5_j_Ft8e-E_wXcrQ44m
CitedBy_id crossref_primary_10_1049_htl_2017_0049
crossref_primary_10_1088_2057_1976_aaeeed
crossref_primary_10_1016_j_cmpb_2018_06_011
crossref_primary_10_3389_fnins_2020_521595
crossref_primary_10_1016_j_neuroimage_2018_01_056
crossref_primary_10_1016_j_brainres_2018_09_004
crossref_primary_10_3389_fnhum_2019_00066
crossref_primary_10_1016_j_bbr_2020_113042
Cites_doi 10.1016/j.bandl.2005.05.001
10.1080/01969727408546059
10.1109/10.844236
10.1109/10.7271
10.1063/1.1505813
10.1055/s-0038-1634987
10.1016/S1388-2457(02)00365-6
10.1016/1350-4533(95)90380-T
10.1073/pnas.0505785103
10.1142/S0218001496000438
10.1016/S0168-5597(97)96681-8
10.1109/TBME.2004.826692
10.1111/1467-9868.00293
10.1038/scientificamerican0792-66
10.1016/S0031-3203(99)00137-5
10.1016/S0079-6123(06)59004-1
10.1016/0013-4694(95)98480-V
10.1109/72.554199
10.1109/TBME.1987.326024
10.1155/2011/965237
10.1109/10.605424
10.1016/0013-4694(88)90149-6
10.1016/j.clinph.2006.05.012
10.1007/s00422-004-0500-8
10.1207/s15516709cog0901_5
10.1109/T-C.1969.222678
10.1098/rspa.1998.0193
10.1162/089976699300016719
ContentType Journal Article
Copyright Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2015.02.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 33
ExternalDocumentID 25698176
10_1016_j_jneumeth_2015_02_007
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
AAYXX
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSN
SSZ
T5K
WUQ
X7M
ZGI
~G-
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c311t-3385bed4a6ab49f6dac05b8d59d39124bc72e9b7d74d69c3d92a9cd3869fc17c3
ISSN 0165-0270
1872-678X
IngestDate Fri Jul 11 06:48:41 EDT 2025
Mon Jul 21 05:58:57 EDT 2025
Tue Jul 01 02:57:03 EDT 2025
Thu Apr 24 22:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Empirical Mode Decomposition
k-means clustering
Stability Index
ERP cluster analysis
Genetic Algorithms
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-3385bed4a6ab49f6dac05b8d59d39124bc72e9b7d74d69c3d92a9cd3869fc17c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 25698176
PQID 1688004974
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1688004974
pubmed_primary_25698176
crossref_citationtrail_10_1016_j_jneumeth_2015_02_007
crossref_primary_10_1016_j_jneumeth_2015_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-30
PublicationDateYYYYMMDD 2015-07-30
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2015
References Sammon (10.1016/j.jneumeth.2015.02.007_bib0170) 1969; C-18
Zouridakis (10.1016/j.jneumeth.2015.02.007_bib0210) 1997; 44
Flandrin (10.1016/j.jneumeth.2015.02.007_bib0060) 2004
Lee (10.1016/j.jneumeth.2015.02.007_bib0125) 1999; 11
Mazaheri (10.1016/j.jneumeth.2015.02.007_bib0135) 2006; 103
Huang (10.1016/j.jneumeth.2015.02.007_bib0090) 1998; 454
Flandrin (10.1016/j.jneumeth.2015.02.007_bib0065) 2007
Saddy (10.1016/j.jneumeth.2015.02.007_bib0160) 2004; 90
Rubin (10.1016/j.jneumeth.2015.02.007_bib0150) 2004; 91
Rumelhart (10.1016/j.jneumeth.2015.02.007_bib0155) 1985; 9
Bhandari (10.1016/j.jneumeth.2015.02.007_bib0015) 1996; 10
Quiroga (10.1016/j.jneumeth.2015.02.007_bib0140) 2003; 114
Thakor (10.1016/j.jneumeth.2015.02.007_bib0190) 1987; 34
Demartines (10.1016/j.jneumeth.2015.02.007_bib0040) 1997; 8
Lange (10.1016/j.jneumeth.2015.02.007_bib0115) 2000; 47
Boudraa (10.1016/j.jneumeth.2015.02.007_bib0025) 2007
Spencer (10.1016/j.jneumeth.2015.02.007_bib0175) 2005
Maulik (10.1016/j.jneumeth.2015.02.007_bib0130) 2000; 33
Başar (10.1016/j.jneumeth.2015.02.007_bib0005) 2006; 159
Ben-Hur (10.1016/j.jneumeth.2015.02.007_bib0010) 2002
Cerutti (10.1016/j.jneumeth.2015.02.007_bib0030) 1988; 35
Haig (10.1016/j.jneumeth.2015.02.007_bib0075) 1995; 94
Tseng (10.1016/j.jneumeth.2015.02.007_bib0200) 1995; 17
Farwell (10.1016/j.jneumeth.2015.02.007_bib0055) 1988; 70
Drenhaus (10.1016/j.jneumeth.2015.02.007_bib0045) 2006; 96
Tibshirani (10.1016/j.jneumeth.2015.02.007_bib0195) 2001; 63
Jansen (10.1016/j.jneumeth.2015.02.007_bib0100) 1994; 33
Tass (10.1016/j.jneumeth.2015.02.007_bib0185) 2003; 13
Curio (10.1016/j.jneumeth.2015.02.007_bib0035) 2004; 51
Jongsma (10.1016/j.jneumeth.2015.02.007_bib0105) 2006; 117
Blankertz (10.1016/j.jneumeth.2015.02.007_bib0020) 2004
Salvador (10.1016/j.jneumeth.2015.02.007_bib0165) 2004
Frisch (10.1016/j.jneumeth.2015.02.007_bib0070) 1929; 1
Holland (10.1016/j.jneumeth.2015.02.007_bib0085) 1992; 267
Tan (10.1016/j.jneumeth.2015.02.007_bib0180) 2006
Williams (10.1016/j.jneumeth.2015.02.007_bib0205) 2011; 2011
Hartigan (10.1016/j.jneumeth.2015.02.007_bib0080) 1992; 28
Dunn (10.1016/j.jneumeth.2015.02.007_bib0050) 1974; 4
Ihrke (10.1016/j.jneumeth.2015.02.007_bib0095) 2009
Laskaris (10.1016/j.jneumeth.2015.02.007_bib0120) 1997; 104
Rilling (10.1016/j.jneumeth.2015.02.007_bib0145) 2003
Kay (10.1016/j.jneumeth.2015.02.007_bib0110) 1988
References_xml – year: 2004
  ident: 10.1016/j.jneumeth.2015.02.007_bib0020
– volume: 1
  start-page: 36
  year: 1929
  ident: 10.1016/j.jneumeth.2015.02.007_bib0070
  article-title: Correlation and scatter in statistical variables
  publication-title: Nordic Stat J
– volume: 96
  start-page: 255
  issue: 3
  year: 2006
  ident: 10.1016/j.jneumeth.2015.02.007_bib0045
  article-title: Diagnosis and repair of negative polarity constructions in the light of symbolic resonance analysis
  publication-title: Brain Lang
  doi: 10.1016/j.bandl.2005.05.001
– volume: 4
  start-page: 95
  year: 1974
  ident: 10.1016/j.jneumeth.2015.02.007_bib0050
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J Cybern
  doi: 10.1080/01969727408546059
– volume: 47
  start-page: 822
  issue: 6
  year: 2000
  ident: 10.1016/j.jneumeth.2015.02.007_bib0115
  article-title: Overcoming selective ensemble averaging: unsupervised identification of event-related brain potentials
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.844236
– volume: 35
  start-page: 701
  issue: 9
  year: 1988
  ident: 10.1016/j.jneumeth.2015.02.007_bib0030
  article-title: A parametric method of identification of single-trial event-related potentials in the brain
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.7271
– year: 2009
  ident: 10.1016/j.jneumeth.2015.02.007_bib0095
  article-title: Denoising and averaging techniques for electrophysiological data
– volume: 28
  start-page: 100
  issue: 1
  year: 1992
  ident: 10.1016/j.jneumeth.2015.02.007_bib0080
  article-title: Algorithm as 136: a k-means clustering algorithm
  publication-title: J R Stat Soc Ser C: Appl Stat
– year: 2004
  ident: 10.1016/j.jneumeth.2015.02.007_bib0165
  article-title: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
– volume: 13
  start-page: 364
  issue: 1
  year: 2003
  ident: 10.1016/j.jneumeth.2015.02.007_bib0185
  article-title: Stochastic phase resetting of stimulus-locked responses of two coupled oscillators: transient response clustering, synchronisation and desynchronisation
  publication-title: Chaos
  doi: 10.1063/1.1505813
– volume: 33
  start-page: 49
  year: 1994
  ident: 10.1016/j.jneumeth.2015.02.007_bib0100
  article-title: Selective averaging of evoked potentials using trajectory-based clustering
  publication-title: Methods Inform Med
  doi: 10.1055/s-0038-1634987
– volume: 114
  start-page: 376
  year: 2003
  ident: 10.1016/j.jneumeth.2015.02.007_bib0140
  article-title: Single-trial event-related potentials with wavelet denoising
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00365-6
– year: 2005
  ident: 10.1016/j.jneumeth.2015.02.007_bib0175
  article-title: Averaging, detection, and classification of single-trial ERPs
– volume: 17
  start-page: 71
  issue: 1
  year: 1995
  ident: 10.1016/j.jneumeth.2015.02.007_bib0200
  article-title: Evaluation of parametric methods in EEG signal analysis
  publication-title: Med Eng Phys
  doi: 10.1016/1350-4533(95)90380-T
– volume: 103
  start-page: 2948
  issue: 8
  year: 2006
  ident: 10.1016/j.jneumeth.2015.02.007_bib0135
  article-title: Posterior alpha activity is not phase-reset by visual stimuli
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0505785103
– start-page: 6
  year: 2002
  ident: 10.1016/j.jneumeth.2015.02.007_bib0010
  article-title: A stability based method for discovering structure in clustered data
– volume: 10
  start-page: 731
  year: 1996
  ident: 10.1016/j.jneumeth.2015.02.007_bib0015
  article-title: Genetic algorithm with elitist model and its convergence
  publication-title: Int J Pattern Recogn Artif Intell
  doi: 10.1142/S0218001496000438
– volume: 90
  start-page: 493
  issue: 1–3
  year: 2004
  ident: 10.1016/j.jneumeth.2015.02.007_bib0160
  article-title: Processing polarity items: contrastive licensing costs, brain and language
  publication-title: Brain Lang
– volume: 104
  start-page: 151
  year: 1997
  ident: 10.1016/j.jneumeth.2015.02.007_bib0120
  article-title: Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0168-5597(97)96681-8
– year: 2006
  ident: 10.1016/j.jneumeth.2015.02.007_bib0180
– volume: 51
  start-page: 1044
  issue: 6
  year: 2004
  ident: 10.1016/j.jneumeth.2015.02.007_bib0035
  article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.826692
– volume: 63
  start-page: 411
  year: 2001
  ident: 10.1016/j.jneumeth.2015.02.007_bib0195
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J R Stat Soc: Ser B: Stat Methodol
  doi: 10.1111/1467-9868.00293
– volume: 267
  start-page: 66
  year: 1992
  ident: 10.1016/j.jneumeth.2015.02.007_bib0085
  article-title: Genetic algorithms
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 33
  start-page: 1455
  year: 2000
  ident: 10.1016/j.jneumeth.2015.02.007_bib0130
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(99)00137-5
– year: 2004
  ident: 10.1016/j.jneumeth.2015.02.007_bib0060
  article-title: Detrending and denoising with empirical mode decompositions
– volume: 159
  start-page: 43
  year: 2006
  ident: 10.1016/j.jneumeth.2015.02.007_bib0005
  article-title: Principles of oscillatory brain dynamics and a treatise of recognition of faces and facial expressions
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(06)59004-1
– volume: 94
  start-page: 288
  year: 1995
  ident: 10.1016/j.jneumeth.2015.02.007_bib0075
  article-title: Classification of single-trial ERP sub-types: application of globally optimal vector quantization using simulated annealing
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(95)98480-V
– year: 2003
  ident: 10.1016/j.jneumeth.2015.02.007_bib0145
  article-title: On empirical mode decomposition and its algorithms
– volume: 8
  start-page: 148
  issue: 1
  year: 1997
  ident: 10.1016/j.jneumeth.2015.02.007_bib0040
  article-title: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554199
– volume: 34
  start-page: 6
  year: 1987
  ident: 10.1016/j.jneumeth.2015.02.007_bib0190
  article-title: Adaptive filtering of evoked potentials
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1987.326024
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.jneumeth.2015.02.007_bib0205
  article-title: Evaluation of empirical mode decomposition for event-related potential analysis
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/2011/965237
– year: 2007
  ident: 10.1016/j.jneumeth.2015.02.007_bib0065
– year: 1988
  ident: 10.1016/j.jneumeth.2015.02.007_bib0110
– volume: 44
  start-page: 673
  year: 1997
  ident: 10.1016/j.jneumeth.2015.02.007_bib0210
  article-title: A fuzzy clustering approach to EP estimation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.605424
– volume: 70
  start-page: 510
  year: 1988
  ident: 10.1016/j.jneumeth.2015.02.007_bib0055
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(88)90149-6
– volume: 117
  start-page: 1957
  year: 2006
  ident: 10.1016/j.jneumeth.2015.02.007_bib0105
  article-title: Tracking pattern learning with single-trial event-related potentials
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.05.012
– volume: 91
  start-page: 63
  year: 2004
  ident: 10.1016/j.jneumeth.2015.02.007_bib0150
  article-title: An adaptive neuro-fuzzy method (ANFIS) for estimating single-trial movement-related potentials
  publication-title: Biol Cybern
  doi: 10.1007/s00422-004-0500-8
– volume: 9
  start-page: 75
  year: 1985
  ident: 10.1016/j.jneumeth.2015.02.007_bib0155
  article-title: Feature discovery by competitive learning
  publication-title: Cogn Sci
  doi: 10.1207/s15516709cog0901_5
– volume: C-18
  start-page: 401
  issue: 5
  year: 1969
  ident: 10.1016/j.jneumeth.2015.02.007_bib0170
  article-title: A nonlinear mapping for data structure analysis
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1969.222678
– year: 2007
  ident: 10.1016/j.jneumeth.2015.02.007_bib0025
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.jneumeth.2015.02.007_bib0090
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.1998.0193
– volume: 11
  start-page: 417
  issue: 2
  year: 1999
  ident: 10.1016/j.jneumeth.2015.02.007_bib0125
  article-title: Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
  publication-title: Neural Comput
  doi: 10.1162/089976699300016719
SSID ssj0004906
Score 2.1868956
Snippet The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 22
SubjectTerms Algorithms
Brain - physiology
Brain-Computer Interfaces
Cluster Analysis
Computer Simulation
Datasets as Topic
Electroencephalography - methods
Evoked Potentials
Humans
Language
Language Tests
Models, Neurological
Neuropsychological Tests
Principal Component Analysis
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Visual Perception - physiology
Title Method for exploratory cluster analysis and visualisation of single-trial ERP ensembles
URI https://www.ncbi.nlm.nih.gov/pubmed/25698176
https://www.proquest.com/docview/1688004974
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCuKL6K6X9UYE8WXoOG2apHmSRVYWYQfRXZy3kivsMJfFmQr64G_35NJOV2fx8lJKS9LQ7-Pk5FwReskcF8xKX-GS8KxUlvhkZZI5IqSrTEm4DVG-E3ZyXr6f0ulg8KYXtdRs1Eh_35lX8j-owjPA1WfJ_gOy3aTwAO4BX7gCwnD9K4xPQ_vnWLU7xNJFl7meN778wVC2BUe8cfzrxdrnT647FdEbCeY2i207jj9-GMKB1i7UPAUV_q6w9kpf2tR5ulPI-2abydbVNJHrJvRpGn7q-Z9A2MU-ySncOBkdchqsmdF_YqOgrHiRwUY37UvSItaQbWVhsVNER2vBbDSDVfu1-vA6Guum8v4A-NWXiwAcaGWiyvkvFbPDHty-uoFuFnBO8C0sRj-2MT6lGLNeWvjuj_p60Gmaq8rJNSeOoHmc3UV3EgL4KOJ_Dw3sch8dHC0B7MU3_AqHIN7gHdlHt05TrMQB-hzZgYEduMcOnNiBW3bAjcFX2IFXDvfZgYEduGPHfXT-7vjs7UmW2mhkmuT5JiOkosqaUjKpSuGYkXpMVWWoMESAeqc0L6xQ3PDSMKGJEYUU2pCKCadzrskDtLdcLe0jhJ0yhXAFIVTr0lRGMsKpk6DRGKKoKw8Rbf9frVONed_qZF63wYSzuoWg9hDU46IGCA7R627cZayy8scRL1p4ahCI3ssll3bVrOucwZYEyHNYzcOIWzdni_Pja988Qbe3fH-K9jZfGvsM1M6Neh6o9RPc24VQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+exploratory+cluster+analysis+and+visualisation+of+single-trial+ERP+ensembles&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Williams%2C+N+J&rft.au=Nasuto%2C+S+J&rft.au=Saddy%2C+J+D&rft.date=2015-07-30&rft.eissn=1872-678X&rft.volume=250&rft.spage=22&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.02.007&rft_id=info%3Apmid%2F25698176&rft.externalDocID=25698176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon