Flexible self-powered triboelectric nanogenerator sensor for wind speed measurement driven by moving trains

Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It would be more demanding for the power supply to these sensors during the long-term maintenance of the rail transit system. The wind pressure/v...

Full description

Saved in:
Bibliographic Details
Published inFlexible and printed electronics Vol. 9; no. 3; pp. 35003 - 35013
Main Authors Dong, Wentao, Huang, Bo, Sheng, Kaiqi, Cheng, Xiao
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2024
Subjects
Online AccessGet full text
ISSN2058-8585
2058-8585
DOI10.1088/2058-8585/ad5c7c

Cover

Abstract Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It would be more demanding for the power supply to these sensors during the long-term maintenance of the rail transit system. The wind pressure/velocity generated by high-speed trains poses a substantial threat to safety of human, and new sensors without an external power supply should be developed to monitor wind pressure/velocity in the trackside. Flexible self-powered wind triboelectric nanogenerator (W-TENG) sensor with a single-electrode mode based on conductive hydrogel is designed to wind pressure/velocity monitoring without power supply by harvesting wind energy. It is devoted the relationship between the output voltage of the sensors and the wind pressure/velocity driven by high-speed trains. Material selection and structural design methods are adopted to enhance the energy harvesting efficiency and sensing accuracy of self-powered W-TENG sensors. Open-circuit current of 2.8 μ A and open-circuit voltage of 12 V are achieved, and the output voltage signal has the linear relationship with trackside wind pressure/velocity. Field tests are implemented to evaluate the performance of self-powered W-TENG sensors in wind pressure/velocity measurement caused by moving trains, providing an idea to SHM application in intelligent transmit systems.
AbstractList Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It would be more demanding for the power supply to these sensors during the long-term maintenance of the rail transit system. The wind pressure/velocity generated by high-speed trains poses a substantial threat to safety of human, and new sensors without an external power supply should be developed to monitor wind pressure/velocity in the trackside. Flexible self-powered wind triboelectric nanogenerator (W-TENG) sensor with a single-electrode mode based on conductive hydrogel is designed to wind pressure/velocity monitoring without power supply by harvesting wind energy. It is devoted the relationship between the output voltage of the sensors and the wind pressure/velocity driven by high-speed trains. Material selection and structural design methods are adopted to enhance the energy harvesting efficiency and sensing accuracy of self-powered W-TENG sensors. Open-circuit current of 2.8 μ A and open-circuit voltage of 12 V are achieved, and the output voltage signal has the linear relationship with trackside wind pressure/velocity. Field tests are implemented to evaluate the performance of self-powered W-TENG sensors in wind pressure/velocity measurement caused by moving trains, providing an idea to SHM application in intelligent transmit systems.
Author Sheng, Kaiqi
Cheng, Xiao
Huang, Bo
Dong, Wentao
Author_xml – sequence: 1
  givenname: Wentao
  orcidid: 0000-0002-7207-8355
  surname: Dong
  fullname: Dong, Wentao
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China
– sequence: 2
  givenname: Bo
  surname: Huang
  fullname: Huang, Bo
  organization: School of Electrical and Automation Engineering, East China Jiaotong University , Nanchang 330013, People’s Republic of China
– sequence: 3
  givenname: Kaiqi
  surname: Sheng
  fullname: Sheng, Kaiqi
  organization: School of Electrical and Automation Engineering, East China Jiaotong University , Nanchang 330013, People’s Republic of China
– sequence: 4
  givenname: Xiao
  surname: Cheng
  fullname: Cheng, Xiao
  organization: School of Electrical and Automation Engineering, East China Jiaotong University , Nanchang 330013, People’s Republic of China
BookMark eNp9kM1LAzEQxYNUsNbePe7Jk2uTTdPdHKX4BQUveg7ZZFJSd5Ml2bb2vzdLRUTUwzDDML_Hm3eORs47QOiS4BuCq2pWYFblFavYTGqmSnWCxl-r0bf5DE1j3GCMCeclrfAYvd038G7rBrIIjck7v4cAOuuDrT00oNKgMiedX4ODIHsf0qGLqZlUe-t0FjtIRAsybgO04PpMB7sDl9WHrPU769ZJTloXL9CpkU2E6WefoNf7u5flY756fnha3q5yRQnpc4IXlJRzYJgzakwFEsraEKm0oVyBhoJIxkhNC64pXai6ULKEOVGa8YJDSSdocdRVwccYwAhle9lb7wYfjSBYDKmJIRYxxCKOqSUQ_wC7YFsZDv8hV0fE-k5s_Da49JkwHQguqMCUYUxFl5xP0PUvh3_qfgC_BJCJ
CitedBy_id crossref_primary_10_3390_bios15010006
crossref_primary_10_1016_j_ymssp_2025_112459
Cites_doi 10.1016/j.nanoen.2021.106382
10.1002/pol.20220306
10.1088/2058-8585/ad16ed
10.1016/j.nanoen.2021.106032
10.3390/nano13050863
10.1016/j.nanoen.2020.105184
10.1016/j.nanoen.2022.107442
10.1016/j.mattod.2016.12.001
10.1080/23248378.2022.2062062
10.1002/advs.202201070
10.1016/j.seta.2023.103466
10.1016/j.nanoen.2020.104813
10.3390/app9224865
10.1002/aenm.201601529
10.1016/j.future.2013.01.010
10.1088/2058-8585/ad0ebd
10.1016/j.xcrp.2020.100207
10.3390/app10103495
10.1016/j.jclepro.2023.139550
10.1016/j.sna.2023.114613
10.1016/j.sna.2023.114535
10.1109/JSEN.2020.3041603
10.1177/1045389X221121902
10.1016/j.renene.2018.12.010
10.1002/admt.201700317
10.1109/JSEN.2022.3179416
10.1021/acsnano.5b04396
10.1016/j.cplett.2021.138437
10.1016/j.cej.2023.145866
10.1039/C5EE01532D
10.1021/acsami.3c00386
10.1002/aenm.201702649
10.1016/j.jallcom.2023.168850
10.1016/j.autcon.2021.103952
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2058-8585/ad5c7c
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-8585
ExternalDocumentID 10_1088_2058_8585_ad5c7c
fpead5c7c
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52165069
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Jiangxi Province
  grantid: 20224BAB214051
  funderid: http://dx.doi.org/10.13039/501100004479
GroupedDBID AAGCD
AATNI
ABHWH
ABJNI
ABVAM
ACGFS
ACHIP
ADEQX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CJUJL
CRLBU
EBS
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
CITATION
ID FETCH-LOGICAL-c311t-1063174e50953ff8eae7bf1acdf39cede21a551b329d336cb2ca7e41cd5929e73
IEDL.DBID IOP
ISSN 2058-8585
IngestDate Thu Jul 03 08:33:27 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Tue Aug 20 22:17:05 EDT 2024
Tue Jun 17 22:16:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-1063174e50953ff8eae7bf1acdf39cede21a551b329d336cb2ca7e41cd5929e73
Notes FPE-100974.R2
ORCID 0000-0002-7207-8355
PageCount 11
ParticipantIDs iop_journals_10_1088_2058_8585_ad5c7c
crossref_citationtrail_10_1088_2058_8585_ad5c7c
crossref_primary_10_1088_2058_8585_ad5c7c
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Flexible and printed electronics
PublicationTitleAbbrev FPE
PublicationTitleAlternate Flex. Print. Electron
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Chen (fpead5c7cbib5) 2023; 13
Ubbi (fpead5c7cbib1) 2013; 29
Park (fpead5c7cbib7) 2022; 9
Ali (fpead5c7cbib15) 2023; 363
Patnam (fpead5c7cbib28) 2023; 15
Barmpakos (fpead5c7cbib2) 2023; 8
Zhang (fpead5c7cbib6) 2023; 429
Bian (fpead5c7cbib13) 2018; 3
Liu (fpead5c7cbib9) 2023; 474
Wang (fpead5c7cbib20) 2017; 20
Xu (fpead5c7cbib17) 2021; 89
Singh (fpead5c7cbib10) 2023; 941
Gou (fpead5c7cbib33) 2021; 132
Yesilyurt (fpead5c7cbib21) 2023; 8
Ma (fpead5c7cbib25) 2021; 86
Chen (fpead5c7cbib31) 2020; 1
Bethi (fpead5c7cbib12) 2019; 135
Zheng (fpead5c7cbib22) 2023; 362
Liu (fpead5c7cbib11) 2022; 99
Shen (fpead5c7cbib26) 2022; 22
Wang (fpead5c7cbib3) 2015; 8
Li (fpead5c7cbib8) 2023; 60
Yoon (fpead5c7cbib34) 2020; 10
Yan (fpead5c7cbib4) 2023; 34
Zou (fpead5c7cbib18) 2019; 9
Chen (fpead5c7cbib14) 2018; 8
Cho (fpead5c7cbib24) 2020; 77
Wang (fpead5c7cbib23) 2015; 9
Du (fpead5c7cbib32) 2022; 60
Chen (fpead5c7cbib27) 2021; 21
Xu (fpead5c7cbib30) 2017; 7
W (fpead5c7cbib19) 2023; 11
Lu (fpead5c7cbib16) 2020; 75
Zhang (fpead5c7cbib29) 2021; 769
References_xml – volume: 89
  year: 2021
  ident: fpead5c7cbib17
  article-title: A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106382
– volume: 60
  start-page: 2733
  year: 2022
  ident: fpead5c7cbib32
  article-title: Ultra‐stretchable, anti‐freezing conductive hydrogels crosslinked by strong hydrogen bonding for flexible sensors
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20220306
– volume: 8
  year: 2023
  ident: fpead5c7cbib2
  article-title: A fully printed sensor with optical readout for real-time flow monitoring
  publication-title: Flex. Print. Electron.
  doi: 10.1088/2058-8585/ad16ed
– volume: 86
  year: 2021
  ident: fpead5c7cbib25
  article-title: Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106032
– volume: 13
  start-page: 863
  year: 2023
  ident: fpead5c7cbib5
  article-title: Stretchable woven fabric-based triboelectric nanogenerator for energy harvesting and self-powered sensing
  publication-title: Nanomaterials
  doi: 10.3390/nano13050863
– volume: 77
  year: 2020
  ident: fpead5c7cbib24
  article-title: Triboelectric nanogenerator based on intercalated Al layer within fluttering dielectric film
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105184
– volume: 99
  year: 2022
  ident: fpead5c7cbib11
  article-title: Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107442
– volume: 20
  start-page: 74
  year: 2017
  ident: fpead5c7cbib20
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 11
  start-page: 111
  year: 2023
  ident: fpead5c7cbib19
  article-title: Fluctuating wind pressure on vertical sound barrier during two high-speed trains passing each other
  publication-title: Int. J. Rail Trans.
  doi: 10.1080/23248378.2022.2062062
– volume: 9
  year: 2022
  ident: fpead5c7cbib7
  article-title: Plasticized PVC‐gel single layer‐based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201070
– volume: 60
  year: 2023
  ident: fpead5c7cbib8
  article-title: Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators
  publication-title: Sustain. Energy Technol. Assess.
  doi: 10.1016/j.seta.2023.103466
– volume: 75
  year: 2020
  ident: fpead5c7cbib16
  article-title: Simultaneous energy harvesting and signal sensing from a single triboelectric nanogenerator for intelligent self-powered wireless sensing systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104813
– volume: 9
  start-page: 4865
  year: 2019
  ident: fpead5c7cbib18
  article-title: Wind load characteristics of wind barriers induced by high-speed trains based on field measurements
  publication-title: Appl. Sci.
  doi: 10.3390/app9224865
– volume: 7
  year: 2017
  ident: fpead5c7cbib30
  article-title: Environmentally friendly hydrogel‐based triboelectric nanogenerators for versatile energy harvesting and self‐powered sensors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601529
– volume: 29
  start-page: 1645
  year: 2013
  ident: fpead5c7cbib1
  article-title: Internet of things (IoT): a vision, architectural elements, and future directions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.01.010
– volume: 8
  year: 2023
  ident: fpead5c7cbib21
  article-title: Screen printable PANI/carbide-derived carbon supercapacitor electrode ink with chitosan binder
  publication-title: Flex. Print. Electron.
  doi: 10.1088/2058-8585/ad0ebd
– volume: 1
  year: 2020
  ident: fpead5c7cbib31
  article-title: A triboelectric nanogenerator exploiting the Bernoulli effect for scavenging wind energy
  publication-title: Cells Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100207
– volume: 10
  start-page: 3495
  year: 2020
  ident: fpead5c7cbib34
  article-title: Effect of high-speed train-induced wind on trackside UAV thrust near railway bridge
  publication-title: Appl. Sci.
  doi: 10.3390/app10103495
– volume: 429
  year: 2023
  ident: fpead5c7cbib6
  article-title: A hybrid nanogenerator based on wind energy harvesting for powering self-driven sensing systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.139550
– volume: 362
  year: 2023
  ident: fpead5c7cbib22
  article-title: High performance triboelectric nanogenerator with needle tips discharge for gas detection applications
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2023.114613
– volume: 363
  year: 2023
  ident: fpead5c7cbib15
  article-title: Low profile wind Savonius turbine triboelectric nanogenerator for powering small electronics
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2023.114535
– volume: 21
  start-page: 6802
  year: 2021
  ident: fpead5c7cbib27
  article-title: Fabrication of wearable hydrogel sensors with simple ionic-digital conversion and inherent water retention
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3041603
– volume: 34
  start-page: 825
  year: 2023
  ident: fpead5c7cbib4
  article-title: Energy harvesting using integrated piezoelectric transducer in a composite smart structure for self-powered sensor applications
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X221121902
– volume: 135
  start-page: 1056
  year: 2019
  ident: fpead5c7cbib12
  article-title: Modified Savonius wind turbine for harvesting wind energy from trains moving in tunnels
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.010
– volume: 3
  year: 2018
  ident: fpead5c7cbib13
  article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel
  publication-title: Adv Mater. Technol.
  doi: 10.1002/admt.201700317
– volume: 22
  start-page: 12522
  year: 2022
  ident: fpead5c7cbib26
  article-title: A fully flexible hydrogel electrode for daily EEG monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3179416
– volume: 9
  start-page: 9554
  year: 2015
  ident: fpead5c7cbib23
  article-title: Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04396
– volume: 769
  year: 2021
  ident: fpead5c7cbib29
  article-title: High-strength and highly electrically conductive hydrogels for wearable strain sensor
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.138437
– volume: 474
  year: 2023
  ident: fpead5c7cbib9
  article-title: Hybrid tribo/piezoelectric nanogenerator textile derived from 3D interlocked parallel-arranged yarns for bio-motion energy harvesting and tactile sensing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.145866
– volume: 8
  start-page: 2250
  year: 2015
  ident: fpead5c7cbib3
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 15
  start-page: 16768
  year: 2023
  ident: fpead5c7cbib28
  article-title: Single-electrode triboelectric nanogenerators based on ionic conductive hydrogel for mechanical energy harvester and smart touch sensor applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c00386
– volume: 8
  year: 2018
  ident: fpead5c7cbib14
  article-title: Scavenging wind energy by triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702649
– volume: 941
  year: 2023
  ident: fpead5c7cbib10
  article-title: MoS2-PVDF/PDMS based flexible hybrid piezo-triboelectric nanogenerator for harvesting mechanical energy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.168850
– volume: 132
  year: 2021
  ident: fpead5c7cbib33
  article-title: A wind hazard warning system for safe and efficient operation of high-speed trains
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103952
SSID ssj0001997380
Score 2.293728
Snippet Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 35003
SubjectTerms conductive hydrogel
self-powered sensor
structural health monitoring
triboelectric nanogenerator (TENG)
wind pressure
Title Flexible self-powered triboelectric nanogenerator sensor for wind speed measurement driven by moving trains
URI https://iopscience.iop.org/article/10.1088/2058-8585/ad5c7c
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEA4uFz24i7s56MFDn22TNi2eRHyo4HJQ8CCELBOR9-wr9onor3fS1hUR8dRSJs1kkk6-ZNJvCNniRuSxAh7kuYCACx0HCh8FeZw569A7RnX0_PQsPbriJ9fJ9QjZe_8XZlC2rr-Dtw1RcGPC9kBchsv1JAt8OGtX2cQIM0rGfeJKP7yPzy8-NliwdpaFbWjyp4JfpqJRrO7TzNKdJjdvOjUHSnqdx6HumJdvdI3_VHqGTLWIk-43orNkBIo5MvmJh3Ce9LqeFlP3gVbQd0HpM6eBpT4Z1qDJk3NnaKGKwW1NUo3LdBQsKrwg5KVPuKynVYnTIL3_2HGk9sE7Uqqf6X29a0HrbBTVArnqHl4eHAVtFobAsCgaop9OEWNwSDwznXMZKBDaRcpYx3IDFuJIIezSLM4tY6nRsVECeGRsgtALBFskY8WggCVCnWMgTKrTUCU8DhFpWAMaXbUII2cEXya7bx0iTUtR7nXryzpUnmXSm1F6M8rGjMtk571E2dBz_CK7jb0j22-0-kVu84ucK0Hmkkkfgw2ZLK1b-eObVskEtpI3R9LWyNjw4RHWEcMM9UY9Vl8B7GXucg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SFU5AH2JpcD60B56yG4SO3FyRMAK-qAcutLeXD_GFWLJRmRXCH59x0no7iKEKnFKFI2T8TgZf_ZMviHkEzcijxXwIM8FBFzoOFB4KcjjzFmH3jGqo-c_ztPTIf86SkZtndP6X5hJ2br-Hp42RMGNCduEuAyX60kW-HBWX9nECNMvrVsl6wm6Yp_TdfbzYr7JghqwLGzDk081XpqOVvGRC7PLYIv8ftCrSSq56s2mumfuH1E2vkDxbbLZIk962Ii_IStQvCUbC3yE78jVwNNj6jHQCsYuKH0FNbDUF8WaNPVyLg0tVDH5U5NV43IdBYsKDwh96S0u72lV4nRIr-c7j9TeeIdK9R29rncvaF2VonpPhoOTX0enQVuNITAsiqbor1PEGhwSz1DnXAYKhHaRMtax3ICFOFIIvzSLc8tYanRslAAeGZsgBAPBPpC1YlLADqHOMRAm1WmoEh6HiDisAY0uW4SRM4J3SP9hUKRpqcq9bmNZh8yzTHpTSm9K2ZiyQ778a1E2NB3PyH7GEZLtt1o9I9ddknMlyFwy6WOxIZM4eLv_eacueXVxPJDfz86_fSSvscO8yVLbI2vTmxnsI6yZ6oP61f0L5OLz1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+self-powered+triboelectric+nanogenerator+sensor+for+wind+speed+measurement+driven+by+moving+trains&rft.jtitle=Flexible+and+printed+electronics&rft.au=Dong%2C+Wentao&rft.au=Huang%2C+Bo&rft.au=Sheng%2C+Kaiqi&rft.au=Cheng%2C+Xiao&rft.date=2024-09-01&rft.issn=2058-8585&rft.eissn=2058-8585&rft.volume=9&rft.issue=3&rft.spage=35003&rft_id=info:doi/10.1088%2F2058-8585%2Fad5c7c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2058_8585_ad5c7c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8585&client=summon