Flexible self-powered triboelectric nanogenerator sensor for wind speed measurement driven by moving trains
Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It would be more demanding for the power supply to these sensors during the long-term maintenance of the rail transit system. The wind pressure/v...
Saved in:
Published in | Flexible and printed electronics Vol. 9; no. 3; pp. 35003 - 35013 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2058-8585 2058-8585 |
DOI | 10.1088/2058-8585/ad5c7c |
Cover
Abstract | Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It would be more demanding for the power supply to these sensors during the long-term maintenance of the rail transit system. The wind pressure/velocity generated by high-speed trains poses a substantial threat to safety of human, and new sensors without an external power supply should be developed to monitor wind pressure/velocity in the trackside. Flexible self-powered wind triboelectric nanogenerator (W-TENG) sensor with a single-electrode mode based on conductive hydrogel is designed to wind pressure/velocity monitoring without power supply by harvesting wind energy. It is devoted the relationship between the output voltage of the sensors and the wind pressure/velocity driven by high-speed trains. Material selection and structural design methods are adopted to enhance the energy harvesting efficiency and sensing accuracy of self-powered W-TENG sensors. Open-circuit current of 2.8 μ A and open-circuit voltage of 12 V are achieved, and the output voltage signal has the linear relationship with trackside wind pressure/velocity. Field tests are implemented to evaluate the performance of self-powered W-TENG sensors in wind pressure/velocity measurement caused by moving trains, providing an idea to SHM application in intelligent transmit systems. |
---|---|
AbstractList | Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It would be more demanding for the power supply to these sensors during the long-term maintenance of the rail transit system. The wind pressure/velocity generated by high-speed trains poses a substantial threat to safety of human, and new sensors without an external power supply should be developed to monitor wind pressure/velocity in the trackside. Flexible self-powered wind triboelectric nanogenerator (W-TENG) sensor with a single-electrode mode based on conductive hydrogel is designed to wind pressure/velocity monitoring without power supply by harvesting wind energy. It is devoted the relationship between the output voltage of the sensors and the wind pressure/velocity driven by high-speed trains. Material selection and structural design methods are adopted to enhance the energy harvesting efficiency and sensing accuracy of self-powered W-TENG sensors. Open-circuit current of 2.8 μ A and open-circuit voltage of 12 V are achieved, and the output voltage signal has the linear relationship with trackside wind pressure/velocity. Field tests are implemented to evaluate the performance of self-powered W-TENG sensors in wind pressure/velocity measurement caused by moving trains, providing an idea to SHM application in intelligent transmit systems. |
Author | Sheng, Kaiqi Cheng, Xiao Huang, Bo Dong, Wentao |
Author_xml | – sequence: 1 givenname: Wentao orcidid: 0000-0002-7207-8355 surname: Dong fullname: Dong, Wentao organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China – sequence: 2 givenname: Bo surname: Huang fullname: Huang, Bo organization: School of Electrical and Automation Engineering, East China Jiaotong University , Nanchang 330013, People’s Republic of China – sequence: 3 givenname: Kaiqi surname: Sheng fullname: Sheng, Kaiqi organization: School of Electrical and Automation Engineering, East China Jiaotong University , Nanchang 330013, People’s Republic of China – sequence: 4 givenname: Xiao surname: Cheng fullname: Cheng, Xiao organization: School of Electrical and Automation Engineering, East China Jiaotong University , Nanchang 330013, People’s Republic of China |
BookMark | eNp9kM1LAzEQxYNUsNbePe7Jk2uTTdPdHKX4BQUveg7ZZFJSd5Ml2bb2vzdLRUTUwzDDML_Hm3eORs47QOiS4BuCq2pWYFblFavYTGqmSnWCxl-r0bf5DE1j3GCMCeclrfAYvd038G7rBrIIjck7v4cAOuuDrT00oNKgMiedX4ODIHsf0qGLqZlUe-t0FjtIRAsybgO04PpMB7sDl9WHrPU769ZJTloXL9CpkU2E6WefoNf7u5flY756fnha3q5yRQnpc4IXlJRzYJgzakwFEsraEKm0oVyBhoJIxkhNC64pXai6ULKEOVGa8YJDSSdocdRVwccYwAhle9lb7wYfjSBYDKmJIRYxxCKOqSUQ_wC7YFsZDv8hV0fE-k5s_Da49JkwHQguqMCUYUxFl5xP0PUvh3_qfgC_BJCJ |
CitedBy_id | crossref_primary_10_3390_bios15010006 crossref_primary_10_1016_j_ymssp_2025_112459 |
Cites_doi | 10.1016/j.nanoen.2021.106382 10.1002/pol.20220306 10.1088/2058-8585/ad16ed 10.1016/j.nanoen.2021.106032 10.3390/nano13050863 10.1016/j.nanoen.2020.105184 10.1016/j.nanoen.2022.107442 10.1016/j.mattod.2016.12.001 10.1080/23248378.2022.2062062 10.1002/advs.202201070 10.1016/j.seta.2023.103466 10.1016/j.nanoen.2020.104813 10.3390/app9224865 10.1002/aenm.201601529 10.1016/j.future.2013.01.010 10.1088/2058-8585/ad0ebd 10.1016/j.xcrp.2020.100207 10.3390/app10103495 10.1016/j.jclepro.2023.139550 10.1016/j.sna.2023.114613 10.1016/j.sna.2023.114535 10.1109/JSEN.2020.3041603 10.1177/1045389X221121902 10.1016/j.renene.2018.12.010 10.1002/admt.201700317 10.1109/JSEN.2022.3179416 10.1021/acsnano.5b04396 10.1016/j.cplett.2021.138437 10.1016/j.cej.2023.145866 10.1039/C5EE01532D 10.1021/acsami.3c00386 10.1002/aenm.201702649 10.1016/j.jallcom.2023.168850 10.1016/j.autcon.2021.103952 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-8585/ad5c7c |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2058-8585 |
ExternalDocumentID | 10_1088_2058_8585_ad5c7c fpead5c7c |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52165069 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Jiangxi Province grantid: 20224BAB214051 funderid: http://dx.doi.org/10.13039/501100004479 |
GroupedDBID | AAGCD AATNI ABHWH ABJNI ABVAM ACGFS ACHIP ADEQX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT CJUJL CRLBU EBS IJHAN IOP IZVLO KOT N5L PJBAE RIN ROL RPA AAYXX CITATION |
ID | FETCH-LOGICAL-c311t-1063174e50953ff8eae7bf1acdf39cede21a551b329d336cb2ca7e41cd5929e73 |
IEDL.DBID | IOP |
ISSN | 2058-8585 |
IngestDate | Thu Jul 03 08:33:27 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Tue Aug 20 22:17:05 EDT 2024 Tue Jun 17 22:16:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-1063174e50953ff8eae7bf1acdf39cede21a551b329d336cb2ca7e41cd5929e73 |
Notes | FPE-100974.R2 |
ORCID | 0000-0002-7207-8355 |
PageCount | 11 |
ParticipantIDs | iop_journals_10_1088_2058_8585_ad5c7c crossref_citationtrail_10_1088_2058_8585_ad5c7c crossref_primary_10_1088_2058_8585_ad5c7c |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Flexible and printed electronics |
PublicationTitleAbbrev | FPE |
PublicationTitleAlternate | Flex. Print. Electron |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Chen (fpead5c7cbib5) 2023; 13 Ubbi (fpead5c7cbib1) 2013; 29 Park (fpead5c7cbib7) 2022; 9 Ali (fpead5c7cbib15) 2023; 363 Patnam (fpead5c7cbib28) 2023; 15 Barmpakos (fpead5c7cbib2) 2023; 8 Zhang (fpead5c7cbib6) 2023; 429 Bian (fpead5c7cbib13) 2018; 3 Liu (fpead5c7cbib9) 2023; 474 Wang (fpead5c7cbib20) 2017; 20 Xu (fpead5c7cbib17) 2021; 89 Singh (fpead5c7cbib10) 2023; 941 Gou (fpead5c7cbib33) 2021; 132 Yesilyurt (fpead5c7cbib21) 2023; 8 Ma (fpead5c7cbib25) 2021; 86 Chen (fpead5c7cbib31) 2020; 1 Bethi (fpead5c7cbib12) 2019; 135 Zheng (fpead5c7cbib22) 2023; 362 Liu (fpead5c7cbib11) 2022; 99 Shen (fpead5c7cbib26) 2022; 22 Wang (fpead5c7cbib3) 2015; 8 Li (fpead5c7cbib8) 2023; 60 Yoon (fpead5c7cbib34) 2020; 10 Yan (fpead5c7cbib4) 2023; 34 Zou (fpead5c7cbib18) 2019; 9 Chen (fpead5c7cbib14) 2018; 8 Cho (fpead5c7cbib24) 2020; 77 Wang (fpead5c7cbib23) 2015; 9 Du (fpead5c7cbib32) 2022; 60 Chen (fpead5c7cbib27) 2021; 21 Xu (fpead5c7cbib30) 2017; 7 W (fpead5c7cbib19) 2023; 11 Lu (fpead5c7cbib16) 2020; 75 Zhang (fpead5c7cbib29) 2021; 769 |
References_xml | – volume: 89 year: 2021 ident: fpead5c7cbib17 article-title: A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106382 – volume: 60 start-page: 2733 year: 2022 ident: fpead5c7cbib32 article-title: Ultra‐stretchable, anti‐freezing conductive hydrogels crosslinked by strong hydrogen bonding for flexible sensors publication-title: J. Polym. Sci. doi: 10.1002/pol.20220306 – volume: 8 year: 2023 ident: fpead5c7cbib2 article-title: A fully printed sensor with optical readout for real-time flow monitoring publication-title: Flex. Print. Electron. doi: 10.1088/2058-8585/ad16ed – volume: 86 year: 2021 ident: fpead5c7cbib25 article-title: Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106032 – volume: 13 start-page: 863 year: 2023 ident: fpead5c7cbib5 article-title: Stretchable woven fabric-based triboelectric nanogenerator for energy harvesting and self-powered sensing publication-title: Nanomaterials doi: 10.3390/nano13050863 – volume: 77 year: 2020 ident: fpead5c7cbib24 article-title: Triboelectric nanogenerator based on intercalated Al layer within fluttering dielectric film publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105184 – volume: 99 year: 2022 ident: fpead5c7cbib11 article-title: Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107442 – volume: 20 start-page: 74 year: 2017 ident: fpead5c7cbib20 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 11 start-page: 111 year: 2023 ident: fpead5c7cbib19 article-title: Fluctuating wind pressure on vertical sound barrier during two high-speed trains passing each other publication-title: Int. J. Rail Trans. doi: 10.1080/23248378.2022.2062062 – volume: 9 year: 2022 ident: fpead5c7cbib7 article-title: Plasticized PVC‐gel single layer‐based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing publication-title: Adv. Sci. doi: 10.1002/advs.202201070 – volume: 60 year: 2023 ident: fpead5c7cbib8 article-title: Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2023.103466 – volume: 75 year: 2020 ident: fpead5c7cbib16 article-title: Simultaneous energy harvesting and signal sensing from a single triboelectric nanogenerator for intelligent self-powered wireless sensing systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104813 – volume: 9 start-page: 4865 year: 2019 ident: fpead5c7cbib18 article-title: Wind load characteristics of wind barriers induced by high-speed trains based on field measurements publication-title: Appl. Sci. doi: 10.3390/app9224865 – volume: 7 year: 2017 ident: fpead5c7cbib30 article-title: Environmentally friendly hydrogel‐based triboelectric nanogenerators for versatile energy harvesting and self‐powered sensors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601529 – volume: 29 start-page: 1645 year: 2013 ident: fpead5c7cbib1 article-title: Internet of things (IoT): a vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – volume: 8 year: 2023 ident: fpead5c7cbib21 article-title: Screen printable PANI/carbide-derived carbon supercapacitor electrode ink with chitosan binder publication-title: Flex. Print. Electron. doi: 10.1088/2058-8585/ad0ebd – volume: 1 year: 2020 ident: fpead5c7cbib31 article-title: A triboelectric nanogenerator exploiting the Bernoulli effect for scavenging wind energy publication-title: Cells Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100207 – volume: 10 start-page: 3495 year: 2020 ident: fpead5c7cbib34 article-title: Effect of high-speed train-induced wind on trackside UAV thrust near railway bridge publication-title: Appl. Sci. doi: 10.3390/app10103495 – volume: 429 year: 2023 ident: fpead5c7cbib6 article-title: A hybrid nanogenerator based on wind energy harvesting for powering self-driven sensing systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.139550 – volume: 362 year: 2023 ident: fpead5c7cbib22 article-title: High performance triboelectric nanogenerator with needle tips discharge for gas detection applications publication-title: Sens. Actuators A doi: 10.1016/j.sna.2023.114613 – volume: 363 year: 2023 ident: fpead5c7cbib15 article-title: Low profile wind Savonius turbine triboelectric nanogenerator for powering small electronics publication-title: Sens. Actuators A doi: 10.1016/j.sna.2023.114535 – volume: 21 start-page: 6802 year: 2021 ident: fpead5c7cbib27 article-title: Fabrication of wearable hydrogel sensors with simple ionic-digital conversion and inherent water retention publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3041603 – volume: 34 start-page: 825 year: 2023 ident: fpead5c7cbib4 article-title: Energy harvesting using integrated piezoelectric transducer in a composite smart structure for self-powered sensor applications publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X221121902 – volume: 135 start-page: 1056 year: 2019 ident: fpead5c7cbib12 article-title: Modified Savonius wind turbine for harvesting wind energy from trains moving in tunnels publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.010 – volume: 3 year: 2018 ident: fpead5c7cbib13 article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel publication-title: Adv Mater. Technol. doi: 10.1002/admt.201700317 – volume: 22 start-page: 12522 year: 2022 ident: fpead5c7cbib26 article-title: A fully flexible hydrogel electrode for daily EEG monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3179416 – volume: 9 start-page: 9554 year: 2015 ident: fpead5c7cbib23 article-title: Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy publication-title: ACS Nano doi: 10.1021/acsnano.5b04396 – volume: 769 year: 2021 ident: fpead5c7cbib29 article-title: High-strength and highly electrically conductive hydrogels for wearable strain sensor publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2021.138437 – volume: 474 year: 2023 ident: fpead5c7cbib9 article-title: Hybrid tribo/piezoelectric nanogenerator textile derived from 3D interlocked parallel-arranged yarns for bio-motion energy harvesting and tactile sensing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145866 – volume: 8 start-page: 2250 year: 2015 ident: fpead5c7cbib3 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 15 start-page: 16768 year: 2023 ident: fpead5c7cbib28 article-title: Single-electrode triboelectric nanogenerators based on ionic conductive hydrogel for mechanical energy harvester and smart touch sensor applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c00386 – volume: 8 year: 2018 ident: fpead5c7cbib14 article-title: Scavenging wind energy by triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702649 – volume: 941 year: 2023 ident: fpead5c7cbib10 article-title: MoS2-PVDF/PDMS based flexible hybrid piezo-triboelectric nanogenerator for harvesting mechanical energy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.168850 – volume: 132 year: 2021 ident: fpead5c7cbib33 article-title: A wind hazard warning system for safe and efficient operation of high-speed trains publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103952 |
SSID | ssj0001997380 |
Score | 2.293728 |
Snippet | Flexible self-powered sensors have been extensively applied to the Internet of Things, structural health monitoring (SHM), and intelligent transportation. It... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 35003 |
SubjectTerms | conductive hydrogel self-powered sensor structural health monitoring triboelectric nanogenerator (TENG) wind pressure |
Title | Flexible self-powered triboelectric nanogenerator sensor for wind speed measurement driven by moving trains |
URI | https://iopscience.iop.org/article/10.1088/2058-8585/ad5c7c |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEA4uFz24i7s56MFDn22TNi2eRHyo4HJQ8CCELBOR9-wr9onor3fS1hUR8dRSJs1kkk6-ZNJvCNniRuSxAh7kuYCACx0HCh8FeZw569A7RnX0_PQsPbriJ9fJ9QjZe_8XZlC2rr-Dtw1RcGPC9kBchsv1JAt8OGtX2cQIM0rGfeJKP7yPzy8-NliwdpaFbWjyp4JfpqJRrO7TzNKdJjdvOjUHSnqdx6HumJdvdI3_VHqGTLWIk-43orNkBIo5MvmJh3Ce9LqeFlP3gVbQd0HpM6eBpT4Z1qDJk3NnaKGKwW1NUo3LdBQsKrwg5KVPuKynVYnTIL3_2HGk9sE7Uqqf6X29a0HrbBTVArnqHl4eHAVtFobAsCgaop9OEWNwSDwznXMZKBDaRcpYx3IDFuJIIezSLM4tY6nRsVECeGRsgtALBFskY8WggCVCnWMgTKrTUCU8DhFpWAMaXbUII2cEXya7bx0iTUtR7nXryzpUnmXSm1F6M8rGjMtk571E2dBz_CK7jb0j22-0-kVu84ucK0Hmkkkfgw2ZLK1b-eObVskEtpI3R9LWyNjw4RHWEcMM9UY9Vl8B7GXucg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SFU5AH2JpcD60B56yG4SO3FyRMAK-qAcutLeXD_GFWLJRmRXCH59x0no7iKEKnFKFI2T8TgZf_ZMviHkEzcijxXwIM8FBFzoOFB4KcjjzFmH3jGqo-c_ztPTIf86SkZtndP6X5hJ2br-Hp42RMGNCduEuAyX60kW-HBWX9nECNMvrVsl6wm6Yp_TdfbzYr7JghqwLGzDk081XpqOVvGRC7PLYIv8ftCrSSq56s2mumfuH1E2vkDxbbLZIk962Ii_IStQvCUbC3yE78jVwNNj6jHQCsYuKH0FNbDUF8WaNPVyLg0tVDH5U5NV43IdBYsKDwh96S0u72lV4nRIr-c7j9TeeIdK9R29rncvaF2VonpPhoOTX0enQVuNITAsiqbor1PEGhwSz1DnXAYKhHaRMtax3ICFOFIIvzSLc8tYanRslAAeGZsgBAPBPpC1YlLADqHOMRAm1WmoEh6HiDisAY0uW4SRM4J3SP9hUKRpqcq9bmNZh8yzTHpTSm9K2ZiyQ778a1E2NB3PyH7GEZLtt1o9I9ddknMlyFwy6WOxIZM4eLv_eacueXVxPJDfz86_fSSvscO8yVLbI2vTmxnsI6yZ6oP61f0L5OLz1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+self-powered+triboelectric+nanogenerator+sensor+for+wind+speed+measurement+driven+by+moving+trains&rft.jtitle=Flexible+and+printed+electronics&rft.au=Dong%2C+Wentao&rft.au=Huang%2C+Bo&rft.au=Sheng%2C+Kaiqi&rft.au=Cheng%2C+Xiao&rft.date=2024-09-01&rft.issn=2058-8585&rft.eissn=2058-8585&rft.volume=9&rft.issue=3&rft.spage=35003&rft_id=info:doi/10.1088%2F2058-8585%2Fad5c7c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2058_8585_ad5c7c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8585&client=summon |