Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise

We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 108; no. 7; p. 070502
Main Authors Smolin, John A, Gambetta, Jay M, Smith, Graeme
Format Journal Article
LanguageEnglish
Published United States 17.02.2012
Online AccessGet more information

Cover

Loading…
Abstract We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
AbstractList We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
Author Smith, Graeme
Gambetta, Jay M
Smolin, John A
Author_xml – sequence: 1
  givenname: John A
  surname: Smolin
  fullname: Smolin, John A
  email: smolin@us.ibm.com
  organization: IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA. smolin@us.ibm.com
– sequence: 2
  givenname: Jay M
  surname: Gambetta
  fullname: Gambetta, Jay M
– sequence: 3
  givenname: Graeme
  surname: Smith
  fullname: Smith, Graeme
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22401185$$D View this record in MEDLINE/PubMed
BookMark eNo1j11LwzAYhYMo7kP_wsgfaH2TtGtzKWNOYaCIXo80eWOjSzubZLp_b0G9OufinAeeGTnv-g4JWTDIGQNx89SewjMetxhjzqDOoYIS-BmZMqhkVjFWTMgshHcAYHxZX5IJ5wUwVpdTMqytddphF6nH2PaG2n6guveHFF33RmOL1Ktv55PP9u4D967tx9FnUl1MnoaoIlI79H68q5AG9CMq0C8XW6qMcdEdkW5UCsGpjna9C3hFLqzaB7z-yzl5vVu_rO6z7ePmYXW7zbRgEDOrDJYIVoA2VdHUtdayKQQfCy9sKTgTVaOZkKOLlVZKIwzTZcVBN7Jcaj4ni1_uITUeze4wOK-G0-5fnv8AIT9h0Q
CitedBy_id crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1038_srep03496
crossref_primary_10_1140_epjqt_s40507_024_00248_8
crossref_primary_10_1103_PhysRevApplied_14_064004
crossref_primary_10_1103_PhysRevResearch_2_023393
crossref_primary_10_3390_sym16020180
crossref_primary_10_1109_TIT_2021_3062596
crossref_primary_10_1103_PhysRevA_104_052418
crossref_primary_10_1103_PhysRevA_99_012342
crossref_primary_10_1103_PhysRevApplied_22_064029
crossref_primary_10_1103_PRXQuantum_5_030315
crossref_primary_10_1103_PhysRevLett_123_220501
crossref_primary_10_1002_qute_202100061
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1088_1367_2630_14_10_105002
crossref_primary_10_1103_PRXQuantum_6_010303
crossref_primary_10_1088_1367_2630_18_8_083036
crossref_primary_10_1103_PhysRevResearch_5_013226
crossref_primary_10_1103_PhysRevA_101_022317
crossref_primary_10_1093_gji_ggae160
crossref_primary_10_1109_TCYB_2020_2985016
crossref_primary_10_1016_j_rinp_2023_106661
crossref_primary_10_1103_PhysRevA_98_062336
crossref_primary_10_1103_PhysRevLett_118_223604
crossref_primary_10_1103_PhysRevA_96_012334
crossref_primary_10_1103_PhysRevApplied_12_044067
crossref_primary_10_1109_TIM_2019_2927546
crossref_primary_10_1038_s41534_019_0235_y
crossref_primary_10_1038_s41586_019_0980_2
crossref_primary_10_1103_PhysRevResearch_6_013187
crossref_primary_10_1103_PhysRevApplied_21_064017
crossref_primary_10_1103_PhysRevA_106_032426
crossref_primary_10_1103_PhysRevApplied_22_054074
crossref_primary_10_1088_1367_2630_17_11_113050
crossref_primary_10_1088_2058_9565_ad92a4
crossref_primary_10_1007_s11433_017_9040_3
crossref_primary_10_1038_srep38497
crossref_primary_10_22331_q_2021_10_05_557
crossref_primary_10_1103_PhysRevResearch_6_033248
crossref_primary_10_3390_computation12100208
crossref_primary_10_1007_s11433_014_5494_1
crossref_primary_10_1103_PhysRevLett_132_240804
crossref_primary_10_1103_PhysRevX_14_031010
crossref_primary_10_1088_1402_4896_acbcac
crossref_primary_10_1016_j_rinp_2023_107236
crossref_primary_10_1109_TQE_2021_3106958
crossref_primary_10_1103_PhysRevApplied_22_044080
crossref_primary_10_1038_s41567_021_01260_w
crossref_primary_10_22331_q_2022_10_20_844
crossref_primary_10_1016_j_physa_2023_128561
crossref_primary_10_1103_PhysRevA_106_012423
crossref_primary_10_1007_s11128_024_04522_7
crossref_primary_10_1103_PhysRevLett_117_010404
crossref_primary_10_1103_PhysRevResearch_3_043145
crossref_primary_10_1103_PhysRevApplied_13_044059
crossref_primary_10_1016_j_cosrev_2025_100747
crossref_primary_10_1016_j_cpc_2023_108909
crossref_primary_10_1103_PhysRevA_88_012306
crossref_primary_10_1038_s41534_021_00447_6
crossref_primary_10_1103_PhysRevE_109_034112
crossref_primary_10_1140_epjqt_s40507_022_00149_8
crossref_primary_10_1088_2632_2153_ab9a21
crossref_primary_10_1103_PhysRevA_105_022430
crossref_primary_10_1088_2399_6528_ac1df7
crossref_primary_10_22331_q_2020_04_24_257
crossref_primary_10_1103_PhysRevApplied_17_064061
crossref_primary_10_1103_PhysRevA_87_062119
crossref_primary_10_1038_s41534_024_00918_6
crossref_primary_10_1134_S0021364020090052
crossref_primary_10_1364_OE_27_000436
crossref_primary_10_1088_1367_2630_aaa7e2
crossref_primary_10_1103_PhysRevD_111_043038
crossref_primary_10_1021_acs_jpclett_4c02368
crossref_primary_10_1103_PhysRevLett_121_086808
crossref_primary_10_1287_ijoc_2024_0560
crossref_primary_10_1103_PhysRevResearch_2_023026
crossref_primary_10_1103_PhysRevA_101_032343
crossref_primary_10_3390_photonics10020134
crossref_primary_10_1088_1367_2630_ab0438
crossref_primary_10_1145_3517340
crossref_primary_10_1088_2632_2153_ad88d6
crossref_primary_10_1145_3712002
crossref_primary_10_1103_PhysRevA_90_062123
crossref_primary_10_1103_PhysRevE_101_042117
crossref_primary_10_1088_1367_2630_acf187
crossref_primary_10_22331_q_2021_09_28_553
crossref_primary_10_1007_s11433_015_5661_z
crossref_primary_10_1088_2632_2153_ac9036
crossref_primary_10_1103_PhysRevA_105_042413
crossref_primary_10_1007_s11768_024_00215_9
crossref_primary_10_1103_PhysRevLett_130_150402
crossref_primary_10_1103_PRXQuantum_3_040310
crossref_primary_10_1103_PhysRevX_11_041032
crossref_primary_10_1088_1674_1056_22_11_110601
crossref_primary_10_1088_1367_2630_aa8fe6
crossref_primary_10_3390_e25040608
crossref_primary_10_1103_PhysRevResearch_3_033278
crossref_primary_10_1103_PhysRevResearch_5_033154
crossref_primary_10_1103_PhysRevResearch_6_033034
crossref_primary_10_1103_PhysRevResearch_6_033155
crossref_primary_10_2139_ssrn_4299338
crossref_primary_10_1103_PhysRevLett_109_060501
crossref_primary_10_22331_q_2024_08_29_1455
crossref_primary_10_1088_1367_2630_ace6c8
crossref_primary_10_1109_ACCESS_2023_3289005
crossref_primary_10_1140_epjd_s10053_024_00925_4
crossref_primary_10_1103_PhysRevResearch_6_013029
crossref_primary_10_1109_TQE_2022_3176870
crossref_primary_10_3390_s22072669
crossref_primary_10_1103_PRXQuantum_2_040326
crossref_primary_10_1007_s11128_022_03651_1
crossref_primary_10_1038_s41567_023_02076_6
crossref_primary_10_1103_PhysRevLett_115_137002
crossref_primary_10_1103_PRXQuantum_2_040201
crossref_primary_10_1103_PhysRevA_103_042402
crossref_primary_10_1103_PhysRevA_104_062413
crossref_primary_10_1088_2058_9565_ad3d80
crossref_primary_10_1038_s41534_021_00390_6
crossref_primary_10_1038_s42254_022_00552_1
crossref_primary_10_1038_s41598_024_76396_9
crossref_primary_10_1038_s41534_019_0217_0
crossref_primary_10_3390_photonics10020116
crossref_primary_10_1016_j_ifacol_2017_08_1955
crossref_primary_10_1038_s41534_017_0043_1
crossref_primary_10_1103_PhysRevLett_108_260506
crossref_primary_10_1103_PhysRevLett_111_160406
crossref_primary_10_1016_j_ascom_2024_100803
crossref_primary_10_1109_TCST_2018_2868764
crossref_primary_10_1142_S0219749922500241
crossref_primary_10_22331_q_2024_08_13_1437
crossref_primary_10_1007_s11128_021_03285_9
crossref_primary_10_1007_s11128_021_03079_z
crossref_primary_10_1103_PhysRevLett_126_163602
crossref_primary_10_1038_s41534_017_0016_4
crossref_primary_10_1088_1367_2630_aab919
crossref_primary_10_1109_ACCESS_2021_3101214
crossref_primary_10_1002_qute_202100040
crossref_primary_10_1038_s41534_018_0095_x
crossref_primary_10_1016_j_compfluid_2024_106507
crossref_primary_10_1016_j_automatica_2020_108837
crossref_primary_10_1038_ncomms7979
crossref_primary_10_1116_5_0204409
crossref_primary_10_1007_s11128_024_04550_3
crossref_primary_10_1038_s41598_019_49805_7
crossref_primary_10_1038_s41598_024_80188_6
crossref_primary_10_1103_PhysRevResearch_7_013208
crossref_primary_10_3892_etm_2017_4931
crossref_primary_10_1088_1751_8121_acc369
crossref_primary_10_1088_2632_2153_abe5f5
crossref_primary_10_1103_PhysRevA_95_062336
crossref_primary_10_1103_PhysRevB_88_085402
crossref_primary_10_1103_PhysRevApplied_23_014057
crossref_primary_10_1038_s41467_020_20113_3
crossref_primary_10_1103_PhysRevA_99_012336
crossref_primary_10_1088_2058_9565_ad04e7
crossref_primary_10_1063_5_0046144
crossref_primary_10_1038_srep19610
crossref_primary_10_1103_PhysRevA_86_053838
crossref_primary_10_1007_s11128_022_03585_8
crossref_primary_10_1088_2058_9565_aac64e
crossref_primary_10_7498_aps_68_20190157
crossref_primary_10_1088_1367_2630_aa7ce9
crossref_primary_10_1007_s42484_022_00088_8
crossref_primary_10_1088_1751_8121_ab1958
crossref_primary_10_1016_j_ifacol_2023_10_092
crossref_primary_10_3390_quantum6030024
crossref_primary_10_1103_PhysRevApplied_23_034046
crossref_primary_10_1039_D1CP05255A
crossref_primary_10_1109_TIT_2024_3522005
crossref_primary_10_1103_PhysRevA_111_022601
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.108.070502
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 22401185
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ABSSX
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XOL
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c310t-fade5e0f30cd74b88cc9b43288c24f532137bc139240f9f99d3d1c5720cb956c2
IngestDate Mon Jul 21 06:02:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-fade5e0f30cd74b88cc9b43288c24f532137bc139240f9f99d3d1c5720cb956c2
PMID 22401185
ParticipantIDs pubmed_primary_22401185
PublicationCentury 2000
PublicationDate 2012-02-17
PublicationDateYYYYMMDD 2012-02-17
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2012
SSID ssj0001268
Score 2.5473197
Snippet We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a...
SourceID pubmed
SourceType Index Database
StartPage 070502
Title Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise
URI https://www.ncbi.nlm.nih.gov/pubmed/22401185
Volume 108
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lIKReEOVNH9oDN7Rhs7az62NVlVQ9IASt1Fu1TykiTtomRi2_gJ_N7Ms1bRCPi2V5Hcve7_NmZjzfDEJvNVXSVLImVBhO4B9CEDVmnEitHKXOSaZDtsXH8dFpeXxWnQ0GP3pZS-1KDfX3tbqS_0EVjgGuXiX7D8h2F4UDsA_4whYQhu1fYXwY6j_4r_mxEXTIGdShT0NWQTXyetq0DZlNv9rZNNQwvmxhNtvmXdASRX1JcxspzHI3Y2JW0US2yyC0nC-my1_yhj5liJP8ZRaUQZ2N_qVZpGbwITunY8pENgrOTDm6N72GxjnIM7mSNtVQSPEIn9jBSJRfDm1cQymvCR9FbWi3yFLRYxPvLZmw5lRBdL1mNae-qoR_ms_2m5c3-YzI4f0fACoXTcDYGyjgMlV_Hr1TZTsPbaAN8Dd8A1Uf9dnMsbqxSOpyuKX362_Il5VOF7njogRT5eQJepx8DLwfCbOFBnb-FD2KcC2foauONjjSBgNtcEcbDLTB92mDE21woA32tMF92mBPG5xpgzNtcKDNc3T64fDk4Iik1htEg72_Ik4aW1nqCqoNL5UQWteqLBjssNJVBRsVXGnwHuCJXe3q2hRmpCvOqFbgcWv2Aj2YL-b2FcKmKLW0RlPNWamsEEYqRrmRkle1Efo1ehkn6_wi1lc5z9P45rcj22jzlno76KGDF9rugnW4UnsBup-KdmwO
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+method+for+computing+the+maximum-likelihood+quantum+state+from+measurements+with+additive+Gaussian+noise&rft.jtitle=Physical+review+letters&rft.au=Smolin%2C+John+A&rft.au=Gambetta%2C+Jay+M&rft.au=Smith%2C+Graeme&rft.date=2012-02-17&rft.eissn=1079-7114&rft.volume=108&rft.issue=7&rft.spage=070502&rft_id=info:doi/10.1103%2FPhysRevLett.108.070502&rft_id=info%3Apmid%2F22401185&rft_id=info%3Apmid%2F22401185&rft.externalDocID=22401185