Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise
We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which...
Saved in:
Published in | Physical review letters Vol. 108; no. 7; p. 070502 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
17.02.2012
|
Online Access | Get more information |
Cover
Loading…
Abstract | We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one. |
---|---|
AbstractList | We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one. |
Author | Smith, Graeme Gambetta, Jay M Smolin, John A |
Author_xml | – sequence: 1 givenname: John A surname: Smolin fullname: Smolin, John A email: smolin@us.ibm.com organization: IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA. smolin@us.ibm.com – sequence: 2 givenname: Jay M surname: Gambetta fullname: Gambetta, Jay M – sequence: 3 givenname: Graeme surname: Smith fullname: Smith, Graeme |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22401185$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j11LwzAYhYMo7kP_wsgfaH2TtGtzKWNOYaCIXo80eWOjSzubZLp_b0G9OufinAeeGTnv-g4JWTDIGQNx89SewjMetxhjzqDOoYIS-BmZMqhkVjFWTMgshHcAYHxZX5IJ5wUwVpdTMqytddphF6nH2PaG2n6guveHFF33RmOL1Ktv55PP9u4D967tx9FnUl1MnoaoIlI79H68q5AG9CMq0C8XW6qMcdEdkW5UCsGpjna9C3hFLqzaB7z-yzl5vVu_rO6z7ePmYXW7zbRgEDOrDJYIVoA2VdHUtdayKQQfCy9sKTgTVaOZkKOLlVZKIwzTZcVBN7Jcaj4ni1_uITUeze4wOK-G0-5fnv8AIT9h0Q |
CitedBy_id | crossref_primary_10_1080_23746149_2023_2165452 crossref_primary_10_1038_srep03496 crossref_primary_10_1140_epjqt_s40507_024_00248_8 crossref_primary_10_1103_PhysRevApplied_14_064004 crossref_primary_10_1103_PhysRevResearch_2_023393 crossref_primary_10_3390_sym16020180 crossref_primary_10_1109_TIT_2021_3062596 crossref_primary_10_1103_PhysRevA_104_052418 crossref_primary_10_1103_PhysRevA_99_012342 crossref_primary_10_1103_PhysRevApplied_22_064029 crossref_primary_10_1103_PRXQuantum_5_030315 crossref_primary_10_1103_PhysRevLett_123_220501 crossref_primary_10_1002_qute_202100061 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1088_1367_2630_14_10_105002 crossref_primary_10_1103_PRXQuantum_6_010303 crossref_primary_10_1088_1367_2630_18_8_083036 crossref_primary_10_1103_PhysRevResearch_5_013226 crossref_primary_10_1103_PhysRevA_101_022317 crossref_primary_10_1093_gji_ggae160 crossref_primary_10_1109_TCYB_2020_2985016 crossref_primary_10_1016_j_rinp_2023_106661 crossref_primary_10_1103_PhysRevA_98_062336 crossref_primary_10_1103_PhysRevLett_118_223604 crossref_primary_10_1103_PhysRevA_96_012334 crossref_primary_10_1103_PhysRevApplied_12_044067 crossref_primary_10_1109_TIM_2019_2927546 crossref_primary_10_1038_s41534_019_0235_y crossref_primary_10_1038_s41586_019_0980_2 crossref_primary_10_1103_PhysRevResearch_6_013187 crossref_primary_10_1103_PhysRevApplied_21_064017 crossref_primary_10_1103_PhysRevA_106_032426 crossref_primary_10_1103_PhysRevApplied_22_054074 crossref_primary_10_1088_1367_2630_17_11_113050 crossref_primary_10_1088_2058_9565_ad92a4 crossref_primary_10_1007_s11433_017_9040_3 crossref_primary_10_1038_srep38497 crossref_primary_10_22331_q_2021_10_05_557 crossref_primary_10_1103_PhysRevResearch_6_033248 crossref_primary_10_3390_computation12100208 crossref_primary_10_1007_s11433_014_5494_1 crossref_primary_10_1103_PhysRevLett_132_240804 crossref_primary_10_1103_PhysRevX_14_031010 crossref_primary_10_1088_1402_4896_acbcac crossref_primary_10_1016_j_rinp_2023_107236 crossref_primary_10_1109_TQE_2021_3106958 crossref_primary_10_1103_PhysRevApplied_22_044080 crossref_primary_10_1038_s41567_021_01260_w crossref_primary_10_22331_q_2022_10_20_844 crossref_primary_10_1016_j_physa_2023_128561 crossref_primary_10_1103_PhysRevA_106_012423 crossref_primary_10_1007_s11128_024_04522_7 crossref_primary_10_1103_PhysRevLett_117_010404 crossref_primary_10_1103_PhysRevResearch_3_043145 crossref_primary_10_1103_PhysRevApplied_13_044059 crossref_primary_10_1016_j_cosrev_2025_100747 crossref_primary_10_1016_j_cpc_2023_108909 crossref_primary_10_1103_PhysRevA_88_012306 crossref_primary_10_1038_s41534_021_00447_6 crossref_primary_10_1103_PhysRevE_109_034112 crossref_primary_10_1140_epjqt_s40507_022_00149_8 crossref_primary_10_1088_2632_2153_ab9a21 crossref_primary_10_1103_PhysRevA_105_022430 crossref_primary_10_1088_2399_6528_ac1df7 crossref_primary_10_22331_q_2020_04_24_257 crossref_primary_10_1103_PhysRevApplied_17_064061 crossref_primary_10_1103_PhysRevA_87_062119 crossref_primary_10_1038_s41534_024_00918_6 crossref_primary_10_1134_S0021364020090052 crossref_primary_10_1364_OE_27_000436 crossref_primary_10_1088_1367_2630_aaa7e2 crossref_primary_10_1103_PhysRevD_111_043038 crossref_primary_10_1021_acs_jpclett_4c02368 crossref_primary_10_1103_PhysRevLett_121_086808 crossref_primary_10_1287_ijoc_2024_0560 crossref_primary_10_1103_PhysRevResearch_2_023026 crossref_primary_10_1103_PhysRevA_101_032343 crossref_primary_10_3390_photonics10020134 crossref_primary_10_1088_1367_2630_ab0438 crossref_primary_10_1145_3517340 crossref_primary_10_1088_2632_2153_ad88d6 crossref_primary_10_1145_3712002 crossref_primary_10_1103_PhysRevA_90_062123 crossref_primary_10_1103_PhysRevE_101_042117 crossref_primary_10_1088_1367_2630_acf187 crossref_primary_10_22331_q_2021_09_28_553 crossref_primary_10_1007_s11433_015_5661_z crossref_primary_10_1088_2632_2153_ac9036 crossref_primary_10_1103_PhysRevA_105_042413 crossref_primary_10_1007_s11768_024_00215_9 crossref_primary_10_1103_PhysRevLett_130_150402 crossref_primary_10_1103_PRXQuantum_3_040310 crossref_primary_10_1103_PhysRevX_11_041032 crossref_primary_10_1088_1674_1056_22_11_110601 crossref_primary_10_1088_1367_2630_aa8fe6 crossref_primary_10_3390_e25040608 crossref_primary_10_1103_PhysRevResearch_3_033278 crossref_primary_10_1103_PhysRevResearch_5_033154 crossref_primary_10_1103_PhysRevResearch_6_033034 crossref_primary_10_1103_PhysRevResearch_6_033155 crossref_primary_10_2139_ssrn_4299338 crossref_primary_10_1103_PhysRevLett_109_060501 crossref_primary_10_22331_q_2024_08_29_1455 crossref_primary_10_1088_1367_2630_ace6c8 crossref_primary_10_1109_ACCESS_2023_3289005 crossref_primary_10_1140_epjd_s10053_024_00925_4 crossref_primary_10_1103_PhysRevResearch_6_013029 crossref_primary_10_1109_TQE_2022_3176870 crossref_primary_10_3390_s22072669 crossref_primary_10_1103_PRXQuantum_2_040326 crossref_primary_10_1007_s11128_022_03651_1 crossref_primary_10_1038_s41567_023_02076_6 crossref_primary_10_1103_PhysRevLett_115_137002 crossref_primary_10_1103_PRXQuantum_2_040201 crossref_primary_10_1103_PhysRevA_103_042402 crossref_primary_10_1103_PhysRevA_104_062413 crossref_primary_10_1088_2058_9565_ad3d80 crossref_primary_10_1038_s41534_021_00390_6 crossref_primary_10_1038_s42254_022_00552_1 crossref_primary_10_1038_s41598_024_76396_9 crossref_primary_10_1038_s41534_019_0217_0 crossref_primary_10_3390_photonics10020116 crossref_primary_10_1016_j_ifacol_2017_08_1955 crossref_primary_10_1038_s41534_017_0043_1 crossref_primary_10_1103_PhysRevLett_108_260506 crossref_primary_10_1103_PhysRevLett_111_160406 crossref_primary_10_1016_j_ascom_2024_100803 crossref_primary_10_1109_TCST_2018_2868764 crossref_primary_10_1142_S0219749922500241 crossref_primary_10_22331_q_2024_08_13_1437 crossref_primary_10_1007_s11128_021_03285_9 crossref_primary_10_1007_s11128_021_03079_z crossref_primary_10_1103_PhysRevLett_126_163602 crossref_primary_10_1038_s41534_017_0016_4 crossref_primary_10_1088_1367_2630_aab919 crossref_primary_10_1109_ACCESS_2021_3101214 crossref_primary_10_1002_qute_202100040 crossref_primary_10_1038_s41534_018_0095_x crossref_primary_10_1016_j_compfluid_2024_106507 crossref_primary_10_1016_j_automatica_2020_108837 crossref_primary_10_1038_ncomms7979 crossref_primary_10_1116_5_0204409 crossref_primary_10_1007_s11128_024_04550_3 crossref_primary_10_1038_s41598_019_49805_7 crossref_primary_10_1038_s41598_024_80188_6 crossref_primary_10_1103_PhysRevResearch_7_013208 crossref_primary_10_3892_etm_2017_4931 crossref_primary_10_1088_1751_8121_acc369 crossref_primary_10_1088_2632_2153_abe5f5 crossref_primary_10_1103_PhysRevA_95_062336 crossref_primary_10_1103_PhysRevB_88_085402 crossref_primary_10_1103_PhysRevApplied_23_014057 crossref_primary_10_1038_s41467_020_20113_3 crossref_primary_10_1103_PhysRevA_99_012336 crossref_primary_10_1088_2058_9565_ad04e7 crossref_primary_10_1063_5_0046144 crossref_primary_10_1038_srep19610 crossref_primary_10_1103_PhysRevA_86_053838 crossref_primary_10_1007_s11128_022_03585_8 crossref_primary_10_1088_2058_9565_aac64e crossref_primary_10_7498_aps_68_20190157 crossref_primary_10_1088_1367_2630_aa7ce9 crossref_primary_10_1007_s42484_022_00088_8 crossref_primary_10_1088_1751_8121_ab1958 crossref_primary_10_1016_j_ifacol_2023_10_092 crossref_primary_10_3390_quantum6030024 crossref_primary_10_1103_PhysRevApplied_23_034046 crossref_primary_10_1039_D1CP05255A crossref_primary_10_1109_TIT_2024_3522005 crossref_primary_10_1103_PhysRevA_111_022601 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.108.070502 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 22401185 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ABSSX ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD F5P MVM N9A NPBMV NPM P0- P2P ROL S7W SJN TN5 UBE WH7 XOL XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c310t-fade5e0f30cd74b88cc9b43288c24f532137bc139240f9f99d3d1c5720cb956c2 |
IngestDate | Mon Jul 21 06:02:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-fade5e0f30cd74b88cc9b43288c24f532137bc139240f9f99d3d1c5720cb956c2 |
PMID | 22401185 |
ParticipantIDs | pubmed_primary_22401185 |
PublicationCentury | 2000 |
PublicationDate | 2012-02-17 |
PublicationDateYYYYMMDD | 2012-02-17 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2012 |
SSID | ssj0001268 |
Score | 2.5473197 |
Snippet | We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 070502 |
Title | Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22401185 |
Volume | 108 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lIKReEOVNH9oDN7Rhs7az62NVlVQ9IASt1Fu1TykiTtomRi2_gJ_N7Ms1bRCPi2V5Hcve7_NmZjzfDEJvNVXSVLImVBhO4B9CEDVmnEitHKXOSaZDtsXH8dFpeXxWnQ0GP3pZS-1KDfX3tbqS_0EVjgGuXiX7D8h2F4UDsA_4whYQhu1fYXwY6j_4r_mxEXTIGdShT0NWQTXyetq0DZlNv9rZNNQwvmxhNtvmXdASRX1JcxspzHI3Y2JW0US2yyC0nC-my1_yhj5liJP8ZRaUQZ2N_qVZpGbwITunY8pENgrOTDm6N72GxjnIM7mSNtVQSPEIn9jBSJRfDm1cQymvCR9FbWi3yFLRYxPvLZmw5lRBdL1mNae-qoR_ms_2m5c3-YzI4f0fACoXTcDYGyjgMlV_Hr1TZTsPbaAN8Dd8A1Uf9dnMsbqxSOpyuKX362_Il5VOF7njogRT5eQJepx8DLwfCbOFBnb-FD2KcC2foauONjjSBgNtcEcbDLTB92mDE21woA32tMF92mBPG5xpgzNtcKDNc3T64fDk4Iik1htEg72_Ik4aW1nqCqoNL5UQWteqLBjssNJVBRsVXGnwHuCJXe3q2hRmpCvOqFbgcWv2Aj2YL-b2FcKmKLW0RlPNWamsEEYqRrmRkle1Efo1ehkn6_wi1lc5z9P45rcj22jzlno76KGDF9rugnW4UnsBup-KdmwO |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+method+for+computing+the+maximum-likelihood+quantum+state+from+measurements+with+additive+Gaussian+noise&rft.jtitle=Physical+review+letters&rft.au=Smolin%2C+John+A&rft.au=Gambetta%2C+Jay+M&rft.au=Smith%2C+Graeme&rft.date=2012-02-17&rft.eissn=1079-7114&rft.volume=108&rft.issue=7&rft.spage=070502&rft_id=info:doi/10.1103%2FPhysRevLett.108.070502&rft_id=info%3Apmid%2F22401185&rft_id=info%3Apmid%2F22401185&rft.externalDocID=22401185 |